

Puppet 2.7 Cookbook

RAW Book

Build reliable, scalable, secure, high-performance systems
to fully utilize the power of cloud computing

John Arundel

BIRMINGHAM - MUMBAI

Puppet 2.7 Cookbook
Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), Packt Publishing, nor its
dealers or distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Current RAW Publication: July 2011

RAW Production Reference: 1050711

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849515-38-2

www.packtpub.com

 About the Author

John Arundel is a sysadmin, architect and systems integrator of 20 years experience.
He is a published author of several technical books, a well-known expert on Puppet, the
open-source configuration management system, and speaks regularly at technical user
groups and conferences. Together with a small network of trusted associates, John has
been helping small businesses grow for over five years.

Table of Contents
 Preface 1
Chapter 1: Puppet Infrastructure 7

Introduction 7
Using version control 8
Deploying changes with Rake 10
Configuring Puppet's file server 13
Running Puppet from cron 15
Retrieving files from Puppet's filebucket 16
Using autosign 18
Pre-signing certificates 19
Scaling Puppet using Passenger 20
Creating a decentralized Puppet architecture 24

Chapter 2: Monitoring, Reporting, and Troubleshooting 29
Introduction 30
Generating reports 30
Emailing log messages containing 32
specific tags 32
Creating graphical reports 34
Producing automatic HTML documentation 34
Drawing dependency graphs 36
Testing your Puppet manifests 39
Doing a dry run 42
Detecting compilation errors 44
Understanding Puppet errors 45
Logging command output 47
Logging debug messages 48
Inspecting configuration settings 49
Using tags 50

ii

Table of Contents

Using run stages 52
Using environments 54

Chapter 3: Puppet Language and Style 57
Using modules 58
Using standard naming conventions 61
Using community Puppet style 63
Using embedded Ruby 65
Writing manifests in pure Ruby 65
Iterating over multiple items 68
Writing powerful conditional statements 70
Using regular expressions in if statements 72
Using selectors and case statements 74
Checking if values are contained in strings 76
Using regular expression substitutions 77

Chapter 4: Writing Better Manifests 79
Introduction 80
Using arrays of resources 80
Using defines 81
Using dependencies 83
Using node inheritance 86
Using class inheritance and overriding 88
Passing parameters to classes 93
Writing reusable, cross-platform manifests 95
Getting information about the environment 97
Importing dynamic information with generate 98
Importing data from CSV files 100
Passing arguments to shell commands 103

Chapter 5: Working with Files and Packages 105
Making quick edits to config files 106
Using Augeas to automatically edit config files 107
Building config files using snippets 110
Using ERB templates 112
Using array iteration in templates 116
Installing packages from a third-party repository 118
Setting up an APT package repository 119
Setting up a gem repository 125
Building packages automatically from source 128
Comparing package versions 130

iii

Table of Contents

Chapter 6: Users and Other Resources 133
Using virtual resources 134
Managing users with virtual resources 136
Managing users' SSH access 139
Managing users' customization files 142
Efficiently distributing cron jobs 144
Running a command when a file is updated 145
Using host resources 149
Using multiple file sources 150
Distributing directory trees using recursive file resources 153
Cleaning up old files 155
Using schedules with resources 156
Auditing resources 158
Temporarily disabling resources 159
Managing timezones 161

 Preface
Welcome to Puppet 2.7 Cookbook, the RAW edition. A RAW (Read As we Write) book contains
all the material written for the book so far, but available for you right now, before it’s finished.
As the author writes more, you will be invited to download the new material and continue
reading, and learning. Chapters in a RAW book are not “work in progress”, they are drafts
ready for you to read, use, and learn from. They are not the finished article of course—they
are RAW!

Ever wanted a robot butler? It may not bring you drinks, but Puppet can do most everything
else. System administration used to be dominated by tedious, manual, daily operations tasks
and repetitive, error-prone activities such as building servers and installing software. The
advent of configuration management systems - robot sysadmins - has helped to automate
away much of the manual work and freed us humans to solve more interesting problems
such as:

How can servers provision themselves, install their own software stack, deploy their
own applications, and monitor themselves, all without your intervention?

How can you keep all your servers identical, even when dependencies change?

How can you build dynamically-scalable architectures which automatically add or
reduce capacity in response to demand?

How can you effectively co-ordinate and control changes made by distributed teams
of developers and sysadmins?

How can you build your infrastructure from simple, easy-to-read specifications that
are always up-to-date?

How can you automate manual processes, reduce maintenance and downtime, and
give yourself the time to address performance improvements, capacity planning, long-
term strategy, and business focus?

How can you be agile in responding to changing customer demand, changing
developer requirements, and changing business needs?















Preface

�

Answers to all of these questions can be found in this book. You’ll learn to take Puppet to the
limits of its capabilities, explore the latest features, and implement cutting-edge ideas from
some of today’s leading Puppet experts. Each recipe contains valuable, real-life examples that
you can use in production on your own systems, and shows you how to apply and adapt them
with step-by-step instructions and console commands.

The book is structured so that you can dip in at any point and try out a recipe without
having to work your way through from cover to cover. You’ll find links and references to more
information on every topic, so that you can explore further for yourself. Whatever your level of
Puppet experience, there’s something for you, from simple workflow tips to advanced, high-
performance Puppet architectures.

I’ve tried hard to write the kind of book that would be useful in your everyday work as an
infrastructure engineer or consultant. I hope it will inspire you to learn, experiment, and to
come up with your own new ideas in this exciting and fast-moving field.

What’s in This RAW Book
In this RAW book, you will find these chapters:

Chapter 1: Puppet infrastructure, In this chapter you will understand how to implement the
best methods for using version control with Puppet, automating your workflow, configuring
Puppet for file serving, certificate management, improving Puppetmaster performance, and
building a distributed Puppet architecture based on Git.

Chapter 2: Monitoring, reporting and troubleshooting, Through this chapter you will learn
to use environments, tags, and run stages for generating reports and documentation with
Puppet, testing and dry-running your manifests. It will help you understand Puppet’s error
messages and logging debug information.

Chapter 3: Puppet language and style, In this chapter you will learn to structure your
manifests with modules, maintain your code using standard naming and style conventions,
build config files dynamically and iterate over arrays using embedded Ruby in your templates.
Finally you will learn to perform different computations using iteration, conditionals, and
regular expressions, using selectors and case statements.

Chapter 4: Writing better manifests, This chapter builds on the concepts introduced in Chapter
3 teaching you to maintain and organize your code by using arrays, ordering your resources
with dependencies, using class and node inheritance and overriding parameters. You will also
learn how to read information from the environment, import data from external scripts and
CSV files, and discover how to to write reusable manifests.

Chapter 5: Working with files and packages,Through this chapter you will learn how to manage
config files, use Augeas to automatically edit config files, generate files from templates,
manage third-party package repositories, build your own package and gem repositories, and
build packages from its source.

Preface

�

Chapter 6: Users and other resources: In this chapter you will understand how to simplify the
administration of a large number of users using virtual resources, manage their SSH keys and
customization files, distribute directory trees and cron jobs, use multiple file sources and host
resources, and also how to clean up files with tidy resources.

What’s Still to Come?
We mentioned before that the book isn’t finished, and here is what we currently plan to
include in the remainder of the book:

Chapter 7: Applications: Learn to work with popular application platforms such as Drupal
and Rails to manage your mailing lists and source code repositories with the help of MySQL,
Apache, Nginx, and Tomcat.

Chapter 8: Server and cloud infrastructure: Through this chapter you will learn to work with
EC2, Rackspace, and similar other cloud platforms. It also covers load balancing and virtual
IPs, NFS file servers, logical volume managers, OpenVZ virtual machines, and Windows.

Chapter 9: External tools and the Puppet ecosystem, In this chapter you will discover what you
can do to bring out the best from Puppet using external tools such as Dashboard ,Foreman,
and MCollective. This chapter also teaches you how to create Facter facts, automatically
generate Puppet manifests, download publically-available modules, work with external node
classifiers, and create your own resource types and providers.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: “Puppet’s regsubst function provides an easy way
to manipulate text.”

A block of code is set as follows:

$class_c = regsubst($ipaddress, “(.*)\..*”, “\1.0”)
notify { $ipaddress: }
notify { $class_c: }

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

$class_c = regsubst($ipaddress, “(.*)\..*”, “\1.0”)
notify { $ipaddress: }
notify { $class_c: }

Preface

�

Any command-line input or output is written as follows:

puppet agent --test

notice: The latest stable Puppet version is 2.6.7. You’re using 2.6.4.

New terms and important words are introduced in a bold-type font. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: “clicking the Next
button moves you to the next screen”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

What Is a RAW Book?
Buying a Packt RAW book allows you to access Packt books before they’re published. A RAW
(Read As we Write) book is an eBook available for immediate download, and containing all the
material written for the book so far.

As the author writes more, you are invited to download the new material and continue reading,
and learning. Chapters in a RAW book are not “work in progress”, they are drafts ready for you
to read, use, and learn from. They are not the finished article of course—they are RAW! With a
RAW book, you get immediate access, and the opportunity to participate in the development
of the book, making sure that your voice is heard to get the kind of book that you want.

Is a RAW Book a Proper Book?
Yes, but it’s just not all there yet! RAW chapters will be released as soon as we are happy
for them to go into your book—we want you to have material that you can read and use
straightaway. However, they will not have been through the full editorial process yet. You are
receiving RAW content, available as soon as it written. If you find errors or mistakes in the
book, or you think there are things that could be done better, you can contact us and we will
make sure to get these things right before the final version is published.

Preface

�

When Do Chapters Become Available?
As soon as a chapter has been written and we are happy for it go into the RAW book, the new
chapter will be added into the RAW eBook in your account. You will be notified that another
chapter has become available and be invited to download it from your account. eBooks are
licensed to you only; however, you are entitled to download them as often as you like and on
as many different computers as you wish.

How Do I Know When New Chapters Are Released?
When new chapters are released all RAW customers will be notified by email with instructions
on how to download their new eBook. Packt will also update the book’s page on its website
with a list of the available chapters.

Where Do I Get the Book From?
You download your RAW book much in the same way as any Packt eBook. In the download
area of your Packt account, you will have a link to download the RAW book.

What Happens If I Have Problems with My RAW Book?
You are a Packt customer and as such, will be able to contact our dedicated Customer Service
team. Therefore, if you experience any problems opening or downloading your RAW book,
contact service@packtpub.com and they will reply to you quickly and courteously as they
would to any Packt customer.

Is There Source Code Available During the RAW Phase?
Any source code for the RAW book can be downloaded from the Support page of our website
(http://www.packtpub.com/support). Simply select the book from the list.

How Do I Post Feedback and Errata for a RAW Title?
If you find mistakes in this book, or things that you can think can be done better, let us know.
You can contact us directly at rawbooks@packtpub.com to discuss any concerns you may
have with the book.

Feedback from our readers is always welcome. Let us know what you think about this
book, what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of. To send us general feedback, simply drop an email
to feedback@packtpub.com, making sure to mention the book title in the subject of
your message.

1
Puppet Infrastructure

"Computers in the future may have as few as 1,000 vacuum tubes and weigh only
1.5 tons."

— Popular Mechanics, 1949

In this chapter, we will cover:

Using version control

Deploying changes with Rake

Configuring Puppet's file server

Running Puppet from cron

Retrieving files from Puppet's filebucket

Using autosign

Pre-signing certificates

Scaling Puppet using Passenger

Creating a decentralized Puppet architecture

Introduction
Some of the recipes in this chapter, and in the rest of this book, represent best practice,
agreed on by the Puppet community in general. Others are tips and tricks which will make
it easier for you to work with Puppet, or introduce you to features which you may not have
been previously aware of. Some recipes are short-cuts which I wouldn't recommend you use
as standard operating procedure, but may be useful in emergencies. Finally, there are some
experimental recipes which you may like to try, but are only useful or applicable in very large
infrastructures or otherwise unusual circumstances.



















Puppet Infrastructure

�

My hope is that, by reading through and thinking about the recipes presented here, you will
gain a deeper and broader understanding of how Puppet works and how you can use it to help
you build better infrastructures. Only you can decide whether a particular recipe is appropriate
for you and your organization, but I hope this collection will inspire you to experiment, find out
more, and most of all - have fun!

Using version control
Ever deleted something and wished you hadn't? The most important tip in this book is to put
your Puppet manifests in a version control system such as Git or Subversion. Editing the
manifests directly on the Puppetmaster is a bad idea, because your changes could get applied
before you're ready. Puppet automatically detects any changes to manifest files, so you might
find half-finished manifests being applied to your clients. This could have nasty results!

Instead, use version control (I recommend Git) and make the /etc/puppet directory on the
Puppetmaster a checkout from your repository. This gives you several advantages:

You don't run the risk of Puppet applying incomplete changes

You can undo changes and roll back to any previous version of your manifest

You can experiment with new features using a branch, without affecting the master
version used in production

If several people need to make changes to the manifests, they can make them
independently, in their own working copies, and then merge their changes later

·You can use the log feature to see what was changed, and when (and by whom)

Getting ready
You'll need a Puppetmaster and a set of existing manifests in /etc/puppet. If you don't have
these already, refer to the Puppet documentation to find out how to install Puppet and create
your first manifests.

To put your manifests under version control, you're going to import the /etc/puppet
directory from the Puppetmaster into your version control system, and make it a working
copy. In this example, we'll use Git.

How to do it...
1. Turn the /etc/puppet directory on the Puppetmaster into a Git repository:

root@cookbook:/etc/puppet# git init

Initialized empty Git repository in /etc/puppet/.git/

root@cookbook:/etc/puppet# git add *











Chapter 1

�

root@cookbook:/etc/puppet# git commit -m "initial commit"

[master (root-commit) 26d668c] initial commit
 2 files changed, 104 insertions(+), 0 deletions(-)
 create mode 100644 auth.conf
 create mode 100644 puppet.conf

2. Clone this to a bare Git repository:
root@cookbook:/etc/puppet# git clone --bare /etc/puppet /var/git/
puppet.git

 Initialized empty Git repository in /var/git/puppet.git/

3. Add the bare repo as the origin for the /etc/puppet checkout:
root@cookbook:/etc/puppet# git remote add -t master origin /var/
git/puppet.git

3. Create a separate checkout for you to work in, so that you are not editing the one used
by the Puppetmaster:
root@cookbook:/etc/puppet# cd

root@cookbook:~# git clone /var/git/puppet.git puppet-work

 Initialized empty Git repository in /root/puppet-work/.git/

How it works...
You've created a master repo which you can check out anywhere and work on, before
committing your changes. The Puppetmaster has its own checkout which you can update with
the latest version from the master repo, once you are satisfied that it's ready for production.

There's more...
Now that you've set up version control, you can use the following workflow for editing your
Puppet manifests:

1. Make your changes in the working copy

2. Commit the changes and push them to the origin repo

3. Update the Puppetmaster's working copy

Here is an example where we add a new file to the manifest, commit it, and then update the
Puppetmaster's working copy:

root@cookbook:~# cd puppet-work

root@cookbook:~/puppet-work# mkdir manifests

root@cookbook:~/puppet-work# touch manifests/nodes.pp

Puppet Infrastructure

10

root@cookbook:~/puppet-work# git add manifests/nodes.pp

root@cookbook:~/puppet-work# git commit -m "adding nodes.pp"

 [master 5c7b94c] adding nodes.pp
 0 files changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 manifests/nodes.pp

root@cookbook:~/puppet-work# git push

 Counting objects: 5, done.
 Compressing objects: 100% (2/2), done.
 Writing objects: 100% (4/4), 365 bytes, done.
 Total 4 (delta 0), reused 0 (delta 0)
 Unpacking objects: 100% (4/4), done.
 To /var/git/puppet.git
 26d668c..5c7b94c master -> master

root@cookbook:~/puppet-work# cd /etc/puppet

root@cookbook:/etc/puppet# git pull

 remote: Counting objects: 5, done.
 remote: Compressing objects: 100% (2/2), done.
 remote: Total 4 (delta 0), reused 0 (delta 0)
 Unpacking objects: 100% (4/4), done.
 From /var/git/puppet
 26d668c..5c7b94c master -> origin/master
 Updating 26d668c..5c7b94c
 Fast-forward
 0 files changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 manifests/nodes.pp

You can automate this process by using a tool such as Rake.

See also
Deploying changes with Rake

Creating a decentralized Puppet architecture

Using commit hooks

Deploying changes with Rake
Like everyone who makes his living with a keyboard, I hate unnecessary typing. If you are
using the workflow described in 'Using version control for your Puppet manifests', you can add
some automation to make this process a little easier. There are several tools which can run
commands for you on remote servers, including Capistrano and Fabric, but for this example
we'll use Rake.







Chapter 1

11

Getting ready
If you don't have the Rake gem installed already, run:

gem install rake

How to do it...
1. Create a file in the top level of your Puppet working copy named Rakefile that looks

like this:
PUPPETMASTER = 'cookbook'
SSH = 'ssh -t -A'

task :deploy do
 sh "git push"
 sh "#{SSH} #{PUPPETMASTER} 'cd /etc/puppet && sudo git pull'"
end

2. When you make changes in your working copy of the Puppet manifests, you can simply
run:
rake deploy

and Rake will take care of updating the Git repo and refreshing the Puppetmaster's working
copy for you:

git push
Counting objects: 4, done.
Delta compression using 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 452 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)
To ssh://git@cookbook.bitfieldconsulting.com/var/git/cookbook
 561e5a6..a8b8c76 master -> master
ssh -A -l root cookbook 'cd /etc/puppet && git pull'
From ssh://cookbook.bitfieldconsulting.com/var/git/cookbook
 561e5a6..a8b8c76 master -> origin/master
Updating 561e5a6..a8b8c76
Fast-forward
Rakefile | 6 ++++++
1 files changed, 6 insertions(+), 0 deletions(-)
create mode 100644 Rakefile

Puppet Infrastructure

12

3. You can also add a Rake task to run Puppet on the client machine:
task :apply => [:deploy] do
 client = ENV['CLIENT']
 sh "#{SSH} #{client} 'sudo puppet agent --test'" do |ok,
status|
 puts case status.exitstatus
 when 0 then "Client is up to date."
 when 1 then "Puppet couldn't compile the manifest."
 when 2 then "Puppet made changes."
 when 4 then "Puppet found errors."
 end
 end
end

4. When you want to test your changes on the client, run:
rake CLIENT=cookbook apply

Replace cookbook with the name of the client machine, or set the CLIENT environment
variable so that Rake knows which machine to run Puppet on.

info: Caching catalog for cookbook
info: Applying configuration version '1292865016'
info: Creating state file /var/lib/puppet/state/state.yaml
notice: Finished catalog run in 0.03 seconds

5. If you want to see what changes Puppet would make, without actually changing
anything, use the --noop flag:
task :noop => [:deploy] do
 client = ENV['CLIENT']
 sh "#{SSH} #{client} 'sudo puppet agent --test --noop'"
end

Now you can run:

rake noop

to get a preview of the changes.

How it works...
A Rakefile consists of a series of tasks, identified by the task keyword. The task definition is
a set of steps, in this case the sequence of shell commands required to push your manifest
changes to the master repo, and update the Puppetmaster's working copy.

Tasks can be linked, so that one depends on the other. For example, in our Rakefile the
apply task is linked to deploy, so that whenever you run rake apply, Rake will make sure
the deploy task is done first, then do the apply task.

Chapter 1

13

There's more...
You can extend this Rakefile to automate more tasks, including running a syntax check on the
Puppet manifests before updating them, and even bootstrapping a new machine with Puppet.
Rake is a powerful tool and can be a big help in managing a large network with Puppet.

See also
Using version control for your Puppet manifests

Creating a distributed Puppet architecture based on Git

Checking your manifests using commit hooks

Configuring Puppet's file server
Somewhere in every nuclear power plant control system, there's a file named `reactor.
conf`. Deploying configuration files is one of the commonest uses of Puppet. Most non-trivial
services need some kind of config file, and you can have Puppet push it to the client using a
file resource like this:

file { "/opt/nginx/conf.d/app_production.conf":
 source => "puppet:///modules/app/app_production.conf",
}

The source parameter works like this: the first part after puppet:/// is assumed to be the
name of a mount point, and the remainder is treated as a path to the file.

puppet:///<mount point>/<path>

Most commonly the value of <mount point> is modules, as in the example above. In this
case, Puppet will look for the file in:

manifests/modules/app/files/app_production.conf

modules is a mount point which Puppet treats specially: it expects the next path component
to be the name of a module, and it will then look in the module's files directory for the
remainder of the path.

However, Puppet lets you create custom mount points, which can have individual access
control settings, and can be mapped to different locations on the Puppetmaster. In this recipe
we'll see how to create and configure these custom mount points.







Puppet Infrastructure

14

How to do it...
1. Add a stanza to the Puppetmaster's fileserver.conf, with the name of your mount

point in square brackets, and the path where Puppet should look for data, like this:
[san]
 path /mnt/san/mydata/puppet

2. In your manifest, specify a file source using your mount point name, like this:
source => "puppet:///san/admin/users.htpasswd",

and Puppet will convert this to the path:

/mnt/san/mydata/puppet/admin/users.htpasswd

One good reason to create a custom mount point like this is to add some security. Let's say
you have a top-secret password file which should only be deployed to the web server, and
no other machine needs it. If someone can run Puppet on any machine that has a valid
certificate to access the Puppetmaster, there's nothing to stop them executing a manifest
like this:

file { "/home/cracker/goodstuff/passwords.txt":
 source => "puppet:///web/passwords.txt",
}

and they can retrieve the secret data. Indeed, anyone who can check out the Puppet repo or
who has an account on the Puppetmaster could access this file. One way to avoid this is to put
secret data into a special mount point with access control.

3. Add allow and deny parameters to your mount point definition in fileserver.conf
like this:
 [secret]
 /data/secret
 allow web.example.com
 deny *

How it works...
In this case, only web.example.com can access the file. The default is to deny all access, so
the deny * line isn't strictly necessary, but it's good style to make it explicit. The web server
can then use a file resource like this:

 file { "/etc/passwords.txt":
 source => "puppet:///secret/passwords.txt",
 }

If this manifest is executed on web.example.com, it will work, but on any other clients,
it will fail.

Chapter 1

15

There's more...
You can also specify an IP address instead of a hostname, optionally using CIDR (slash)
notation or wildcards, like this:

allow 10.0.55.0/24
allow 192.168.0.*

See also
Using modules

Distributing directory trees

Using multiple file sources

Running Puppet from cron
Is your Puppet sleeping on the job? By default, when you run the Puppet agent on a client, it
will become a daemon (background process), waking up every 30 minutes to check for any
manifest updates and apply them. If you want more control over when Puppet runs, you can
trigger it using cron instead.

For example, if you have very many Puppet clients, you may want to deliberately stagger the
Puppet run times to spread the load on the Puppetmaster. A simple way to do this is to set the
minute or hour of the cron job time using a hash of the client hostname.

How to do it...
1. Use Puppet's inline_template function, which allows you to execute Ruby code, to

:
cron { "run-puppet":
 command => "/usr/sbin/puppet agent --test >/dev/null 2>&1",
 minute => inline_template("<%= hostname.hash % 60 %>"),
}

How it works...
Because each hostname produces a unique hash value, each client will run Puppet at a
different minute past the hour. This hashing technique is useful for randomizing any cron
jobs to improve the odds that they won't interfere with each other.







Puppet Infrastructure

16

There's more...
Nothing for this section.

See also
Randomly distributing cron job runs to reduce load

Using embedded Ruby to supplement the Puppet language with 'inline_template'

Retrieving files from Puppet's filebucket
We all make mistakes; that's why pencils have erasers. Whenever Puppet changes a file on
the client, it keeps a backup copy of the previous version. We can see this process in action if
we make a change, however small, to an existing file:

root@cookbook:/etc/puppet# puppet agent --test

info: Caching catalog for cookbook
info: Applying configuration version '1293459139'
--- /etc/sudoers 2010-12-27 07:12:20.421896753 -0700
+++ /tmp/puppet-file20101227-1927-13hjvy6-0 2010-12-27
07:13:21.645702932 -0700
@@ -12,7 +12,7 @@

 # User alias specification
-User_Alias SYSOPS = john
+User_Alias SYSOPS = john,bob

info: FileBucket adding /etc/sudoers as {md5}c07d0aa2d43d58ea7b5c5307
f532a0b1
info: /Stage[main]/Admin::Sudoers/File[/etc/sudoers]: Filebucketed /
etc/sudoers to puppet with sum c07d0aa2d43d58ea7b5c5307f532a0b1
notice: /Stage[main]/Admin::Sudoers/File[/etc/sudoers]/content:
content changed '{md5}c07d0aa2d43d58ea7b5c5307f532a0b1' to '{md5}0d218
c16bd31206e312c885884fa947d'
notice: Finished catalog run in 0.45 seconds

The part we're interested in is this line:

info: /Stage[main]/Admin::Sudoers/File[/etc/sudoers]: Filebucketed /
etc/sudoers to puppet with sum c07d0aa2d43d58ea7b5c5307f532a0b1

Puppet creates an MD5 hash of the file's contents and uses this to create a filebucket
path, based on the first few characters of the hash. The filebucket is where Puppet keeps
backup copies of any files it replaces, and it's located by default in /var/lib/puppet/
clientbucket:





Chapter 1

17

• root@cookbook:/etc/puppet# ls /var/lib/puppet/clientbucket/c/0/7/
d/0/a/a/2/c07d0aa2d43d58ea7b5c5307f532a0b1

contents paths

You will see two files in the bucket location: contents and paths. The contents file
contains, as you might expect, the original contents of the file. The paths file contains its
original path.

It's easy to find the file if you know its content hash (as we did in this case). If you don't, it's
helpful to create a table of contents of the whole filebucket by building an index file.

How to do it...
1. Create the index file using this command:

find /var/lib/puppet/clientbucket -name paths -execdir cat {} \;
-execdir pwd \; -execdir date -r {} +"%F %T" \; -exec echo \; >
bucket.txt

2. Search the index file to find the file you're looking for:
root@cookbook:/etc/puppet# cat bucket.txt

/etc/sudoers
/var/lib/puppet/clientbucket/c/0/7/d/0/a/a/2/c07d0aa2d43d58ea7b5c5
307f532a0b1
2010-12-27 07:13:21

/etc/sudoers
/var/lib/puppet/clientbucket/1/0/9/0/e/2/8/a/1090e28a70ebaae872c2e
c78894f49eb
2010-12-27 07:12:20

3. To retrieve the file once you know its bucket path, just copy the contents file to the
original filename:
cp /var/lib/puppet/clientbucket/1/0/9/0/e/2/8/a/1090e28a70ebaae872
c2ec78894f49eb/contents /etc/sudoers

How it works...
The script will create a complete list of files in the filebucket, showing the original name of the
file, the bucket path, and the modification date (in case you need to retrieve one of several
previous versions of the file). Once you know the bucket path, then you can copy the file back
into place.

Puppet Infrastructure

1

There's more...
You can have Puppet create backup copies of the file in its original location, rather than in the
filebucket. To do this, use the backup parameter in your manifest:

file { "/etc/sudoers":
 mode => "440",
 source => "puppet:///modules/admin/sudoers",
 backup => ".bak",
}

Now if Puppet replaces the file, it will create a backup version in the same location with the
extension .bak. To make this the default policy for all files, use:

File {
 backup => ".bak",
}

To disable backups altogether, use:

 backup => false,

Using autosign
In cryptography, as in life, you have to be careful what you sign. Normally, when you introduce
a new client to the Puppetmaster, you need to generate a certificate request on the client, and
then sign it on the master. However, you can skip this step by enabling autosigning.

How to do it...
1. Create the file /etc/puppet/autosign.conf on the Puppetmaster with the

following contents:
*.example.com

How it works...
Puppet checks any incoming certificate requests to see if they match a line in autosign.
conf. Any certificate requests from clients with a hostname matching *.example.com will
be automatically signed by the Puppetmaster.

Important: this is a potential security problem, since it amounts to trusting any client that
can connect to the Puppetmaster. For this reason, autosigning is not recommended. If you do
use it, make sure that the Puppetmaster is protected by a firewall which allows only approved
clients or IP ranges to connect. A more secure approach is pre-signing.

Chapter 1

1

There's more...
Nothing for this section.

See also
Pre-signing certificates

Pre-signing certificates
Here's one I signed earlier. In general, if you want to automate adding a large number of
clients, it's better to pre-generate the certificates on the Puppetmaster and then push them to
the client as part of the build process. You can use puppetca --generate <hostname>
to do this.

How to do it...
1. Generate a pre-signed certificate for client1.example.com:

puppetca --generate client1.example.com

Puppet will now generate and sign a client certificate in the name of client1.
example.com.

2. Transfer the required three files to the new client: the private key, the client certificate,
and the CA certificate. These are found in the following locations:
/etc/puppet/ssl/private_keys/client1.example.com.pem
/etc/puppet/ssl/certs/client1.example.com.pem
/etc/puppet/ssl/certs/ca.pem

Transfer these to the corresponding directories on the client, and it will then be authenticated
without the certificate request step.

How it works...
No explanation required.

There's more...
Nothing for this section



Puppet Infrastructure

20

See also
Using autosign to quickly deploy server instances

Scaling Puppet using Passenger
Ever had to fire an employee because they were just getting old and slow? Puppet ships with
a simple web server called Webrick to handle client connections to the Puppetmaster. This is
fine for small numbers of servers, but you may find that as the number of clients increases
(say 50-100+), the Puppetmaster becomes a performance bottleneck.

In order to scale Puppet to hundreds of servers, one approach is to switch to a high-
performance web server such as Apache using the Passenger (mod_rails) extension.
Puppet comes with the necessary configuration to run under Passenger, so all you need to do
is install Apache and Passenger, and add a suitable virtual host. The following example uses
Ubuntu 10.4; you can find instructions on the Puppet Labs website for how to do the same in
Red Hat Linux, CentOS and other distributions at http://projects.puppetlabs.com/
projects/1/wiki/Using_Passenger.

Getting ready
It will be helpful if you have available the source tarball for the version of Puppet you're
running, because it provides several template files and configuration snippets which you can
use to set up Passenger.

1. For example, if you're running Puppet 2.6.4, download this file:
http://puppetlabs.com/downloads/puppet/puppet-2.6.4.tar.gz

If you are using a different version, you will find a suitable download link at http://
puppetlabs.com.

2. Unpack the source tarball with:
tar xzf puppet-2.6.4.tar.gz

How to do it...
1. Install Apache and Passenger, plus associated dependencies:

apt-get install apache2 libapache2-mod-passenger rails librack-
ruby libmysql-ruby

gem install rack



Chapter 1

21

2. Create the necessary directories for Passenger to find the Puppet configuration:
/etc/puppet/rack
/etc/puppet/rack/public

These directories should be owned by root and set mode 0755.

3. Create the config.ru file which will tell Passenger how to start the Puppet
application. You can use the example file provided with the Puppet distribution:
cp /tmp/puppet-2.6.4/ext/rack/files/config.ru /etc/puppet/rack/

chown puppet /etc/puppet/rack/config.ru

For Puppet 2.6.4, it has the following contents:

a config.ru, for use with every rack-compatible webserver.
SSL needs to be handled outside this, though.

if puppet is not in your RUBYLIB:
$:.unshift('/opt/puppet/lib')

$0 = "master"

if you want debugging:
ARGV << "--debug"

ARGV << "--rack"
require 'puppet/application/master'
we're usually running inside a Rack::Builder.new {} block,
therefore we need to call run *here*.
run Puppet::Application[:master].run

4. You now need to create a virtual host for Apache to listen on the correct port and send
requests to the Puppet application. Again, you can use the example provided with the
Puppet distribution:
cp /tmp/puppet-2.6.4/ext/rack/files/apache2.conf /etc/apache2/
sites-available/puppetmasterd

a2ensite puppetmasterd

The file contents will look something like this:

you probably want to tune these settings
PassengerHighPerformance on
PassengerMaxPoolSize 12
PassengerPoolIdleTime 1500
PassengerMaxRequests 1000
PassengerStatThrottleRate 120

Puppet Infrastructure

22

RackAutoDetect Off
RailsAutoDetect Off

Listen 8140

<VirtualHost *:8140>
 SSLEngine on
 SSLProtocol -ALL +SSLv3 +TLSv1
 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP

 SSLCertificateFile /etc/puppet/ssl/certs/cookbook.
bitfieldconsulting.com.pem
 SSLCertificateKeyFile /etc/puppet/ssl/private_keys/cookbook.
bitfieldconsulting.com.pem
 SSLCertificateChainFile /etc/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /etc/puppet/ssl/ca/ca_crt.pem
 # If Apache complains about invalid signatures on the CRL, you
can try disabling
 # CRL checking by commenting the next line, but this is not
recommended.
 SSLCARevocationFile /etc/puppet/ssl/ca/ca_crl.pem
 SSLVerifyClient optional
 SSLVerifyDepth 1
 SSLOptions +StdEnvVars

 DocumentRoot /etc/puppet/rack/public/
 RackBaseURI /
 <Directory /etc/puppet/rack/>
 Options None
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
</VirtualHost>

5. Edit this file to set the values of SSLCertificateFile and
SSLCertificateKeyFile to your own certificates (it's easiest if you've already run
Puppet at least once, to create these certificates).

6. You will also need to enable Passenger and mod_ssl in Apache:
a2enmod passenger ssl

7. Add the following lines to your /etc/puppet/puppet.conf:
ssl_client_header = SSL_CLIENT_S_DN
ssl_client_verify_header = SSL_CLIENT_VERIFY

Chapter 1

23

8. Stop your existing Puppetmaster if it is running.

9. Start Apache:
/etc/init.d/apache2 restart

10. If everything has worked, you will be able to run Puppet as usual:
puppet agent --test

info: Caching catalog for cookbook.bitfieldconsulting.com
info: Applying configuration version '1294145142'
notice: Finished catalog run in 0.25 seconds

How it works...
Instead of using Puppet's built-in webserver, which is rather slow and can only handle one
connection at once, you're using the high-performance multi-threaded Apache webserver.
Puppet is embedded as an application using the Rack framework, which is much more
efficient. You should find that you can handle many more clients and more frequent Puppet
runs using the Apache + Passenger configuration, and that the impact on server memory and
performance is less than using the standard Puppetmaster daemon.

There's more...
Here is an example Puppet manifest which will implement the above steps for you
(on an Ubuntu system):

class puppet::passenger {
 package { ["apache2-mpm-worker",
 "libapache2-mod-passenger",
 "librack-ruby",
 "libmysql-ruby"]:
 ensure => installed,
 }

 service { "apache2":
 enable => true,
 ensure => running,
 require => Package["apache2-mpm-worker"],
 }

 package { "rack":
 provider => gem,
 ensure => installed,
 }

Puppet Infrastructure

24

 file { ["/etc/puppet/rack",
 "/etc/puppet/rack/public"]:
 ensure => directory,
 mode => "755",
 }

 file { "/etc/puppet/rack/config.ru":
 source => "puppet:///modules/puppet/config.ru",
 owner => "puppet",
 }

 file { "/etc/apache2/sites-available/puppetmasterd":
 source => "puppet:///modules/puppet/puppetmasterd.conf",
 }

 file { "/etc/apache2/sites-enabled/puppetmasterd":
 ensure => symlink,
 target => "/etc/apache2/sites-available/puppetmasterd",
 }

 exec { "/usr/sbin/a2enmod ssl":
 creates => "/etc/apache2/mods-enabled/ssl.load",
 }
}

For more details, or if you run into problems, consult the Puppet-on-Passenger documentation:
http://projects.puppetlabs.com/projects/1/wiki/Using_Passenger

See also
Creating a decentralized Puppet architecture

Creating a decentralized Puppet
architecture

Some systems - like the Mafia - run best when they're decentralized. The most common way
to use Puppet is to run a Puppetmaster server, which Puppet clients can then connect to and
receive their manifests. However, you can run Puppet directly on a manifest file to have it
executed (you'll normally want to use the -v switch to enable verbose mode, so you can see
what's happening):

puppet -v manifest.pp

info: Applying configuration version '1294313350'



Chapter 1

25

Or even supply a manifest directly on the command line:

puppet -e "file { '/tmp/test': ensure => present }"

notice: /Stage[main]//File[/tmp/test]/ensure: created

In other words, if you can arrange to distribute a suitable manifest file to a client machine, you
can have Puppet execute it directly without the need for a central Puppetmaster. This removes
the performance bottleneck of a single master server, and also eliminates a single point of
failure. It also avoids having to sign and exchange SSL certificates when provisioning a new
client machine.

There are many ways you could deliver the manifest file to the client, but Git (or another
version control system such as Mercurial or Subversion) does most of the work for you. You
can edit your manifests in a local working copy, commit them to Git and push them to a
central repo, and from there they can be automatically distributed to the client machines.

Getting ready
If your Puppet manifests aren't already in Git, follow the steps in:

Using version control for your Puppet manifests

How to do it...
1. Make a bare clone of your Puppet repo on the client:

git clone --bare ssh://git@repo.example.com/var/git/puppet

2. Copy the contents of this repo into your /etc/puppet/ directory using:
git archive --format=tar HEAD | (cd /etc/puppet && tar xf -)

3. Run Puppet on your site.pp file:
puppet -v /etc/puppet/manifests/site.pp

info: Applying configuration version '1294313353'

4. Once this is working, the next step is to have the configuration repo automatically push
out changes to the clients. With Git, you can do this using remotes, like so:
git remote add web ssh://git@web1.example.com/etc/puppet

If you have multiple client machines, you can add more URLs to the same remote:

git remote set-url --add webs ssh://git@web2.example.com/etc/puppet

git remote set-url --add webs ssh://git@web3.example.com/etc/puppet

...



mailto:git@web1.example.com

Puppet Infrastructure

26

or simply edit the Git config file (.git/config) like this:

[remote "web"]
 url = ssh://git@web1.example.com/etc/puppet
 url = ssh://git@web2.example.com/etc/puppet
 url = ssh://git@web3.example.com/etc/puppet
 ...

5. Now you can push to any client machine, or group of machines, from the repo server:
git push web

6. The final step is to have the client machine update its /etc/puppet directory
whenever it receives a push from the repo server. You can do this using a Git post-
receive hook. In your bare repo, create the file hooks/post-receive and make it
executable (mode 0755):
#!/bin/sh
git archive --format=tar HEAD | (cd /etc/puppet && tar xf -)

How it works...
Instead of contacting the Puppetmaster to receive their compiled manifest, each client
compiles its own from a local copy of the manifest source. This is updated every time you push
updates from the Git server (or from your working checkout). This is more efficient in network
bandwidth, as clients don't have to contact the Puppetmaster on every run. It also eliminates
a single point of failure, as clients can be updated from anywhere.

Using a decentralized Puppet architecture based on Git as outlined here gives you a great
deal of flexibility. You can configure access controls and permissions using SSH keys, and
allow each client machine or group only as much access as it needs. Manifests for a database
server group, for example, can be made available only to those machines which need it.

While it requires some extra work to set up, and is not necessary for most small organisations,
this way of deploying Puppet gives you extra flexibility and control for the most demanding
environments.

There's more...
If you want to have Puppet apply the changes every time they are pushed, you can edit the
post-receive script to do this, or take any other action you want. Alternatively, you could
run Puppet manually, or from cron as described earlier in this chapter - just remember to run
puppet rather than puppet agent.

You can find a more detailed discussion of this architecture in Stephen Nelson-Smith's
article: http://bitfieldconsulting.com/scaling-puppet-with-distributed-
version-control

Chapter 1

27

See also
Scaling Puppet using Passenger

Using version control





2
Monitoring, Reporting,

and Troubleshooting

“Found problem more than one. However, this does not mean that relevant part is thing
by mistake. Could be fertilized by special purpose in other application program.”

— Error message

In this chapter, we will cover:

Generating reports

Emailing log messages containing specific tags

Creating graphical reports

Producing automatic HTML documentation

Drawing dependency graphs

Testing your Puppet manifests

Doing a dry run

Detecting compilation errors

Using commit hooks

Understanding Puppet errors

Logging command output

Logging debug messages

Inspecting configuration settings

Using tags

Using run stages

Using environments

































Monitoring, Reporting, and Troubleshooting

30

Introduction
We’ve all had the experience of sitting in an exciting presentation about some new
technology, and rushing home to play with it. Of course, once you start experimenting with
it, you immediately run into problems. What’s going wrong? Why doesn’t it work? How can
I see what’s happening under the hood? This chapter will help you answer some of these
questions, and give you the tools to solve common Puppet problems. We’ll also see how to
generate useful reports on your Puppet infrastructure, and how Puppet can help you monitor
and troubleshoot your network as a whole.

Generating reports

“What the world really needs is more love and less paperwork.”

— Pearl Bailey

Truth is the first casualty of large infrastructures. If you’re managing a lot of machines,
Puppet’s reporting facility can give you some valuable information on what’s actually
happening out there.

How to do it…
1. To enable reports, just add this to a client’s puppet.conf:

report = true

How it works…
With reporting enabled, Puppet will generate a report file on the Puppetmaster, containing
data such as:

Time to fetch config from the Puppetmaster

Total time of the run

Log messages output during the run

List of all resources in the client's manifest

Whether Puppet changed each resource

Whether a resource was out of sync with the manifest













Chapter 2

31

By default, these reports are stored in /var/lib/puppet/reports, but you can specify a
different destination using the reportdir option. You can either create your own scripts to
process these reports (which are in the standard YAML format), or use a tool such as Puppet
Dashboard to get a graphical overview of your network.

There’s more…
Here are a couple more tips for getting the best from Puppet’s reports.

Enabling reports on the command line
If you just want one report, or you don’t want to enable reporting for all clients, you can add
the --report switch to the command line when you run Puppet manually:

puppet agent --test --report

You can also see some statistics about a Puppet run by supplying the --summarize switch:

puppet agent --test --summarize

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1306169315'

notice: Finished catalog run in 0.58 seconds

Changes:

Events:

Resources:

 Total: 7

Time:

 Config retrieval: 3.65

 Filebucket: 0.00

 Schedule: 0.00

Logging Puppet messages to syslog
Puppet can also send its log messages to the Puppetmaster’s syslog, so that you can analyze
them with standard syslog tools. To enable this, set the following option in the Puppetmaster’s
puppet.conf:

[master]
reports = store,log

store is the default report type (which writes the reports to /var/lib/puppet/reports),
and log tells Puppet to also send messages to the syslog.

Monitoring, Reporting, and Troubleshooting

32

See also
Creating graphical reports using RRD

Using 'notice' and 'notify' to print debug information

Seeing an overview of your network with Dashboard

Emailing log messages containing
specific tags

If, like most sysadmins, you don’t get enough email, you’ll be looking for a way to generate
more. Another type of Puppet report is called tagmail. This will email the log messages to
any address you specify.

How to do it…
1. Add tagmail to the comma-separated list of reports in puppet.conf:

[master]
reports = store,tagmail

2. Add some tags and associated e-mail addresses in the file /etc/puppet/
tagmail.conf. For example, this line will e-mail all log messages to me:
all: john@bitfieldconsulting.com

3. When Puppet runs, you will get an email that looks like this:
From: report@cookbook.bitfieldconsulting.com
Subject: Puppet Report for cookbook.bitfieldconsulting.com
To: john@bitfieldconsulting.com

Mon Jan 17 08:42:30 -0700 2011 //cookbook.bitfieldconsulting.com/
Puppet (info): Caching catalog for cookbook.bitfieldconsulting.com
Mon Jan 17 08:42:30 -0700 2011 //cookbook.bitfieldconsulting.com/
Puppet (info): Applying configuration version '1295278949'

How it works…
Puppet looks at each line in tagmail.conf and sends any messages matching the tag
to the email address specified. The special tag all matches all messages. The tag err
matches errors:

 err: john@bitfieldconsulting.com







Chapter 2

33

You can list as many rules as you like in the tagmail.conf file, and Puppet will send emails
for all rules that match. In this example, errors go to one address, and webserver-related
messages go to another:

err: puppetmaster@example.com
webserver: webteam@example.com

There’s more…
The tagmail reports are a powerful feature which you may need to experiment with a bit to
get the most out of them. Here are some tips.

What are tags?
Tags are more fully explained later in this book, but for reporting purposes, it’s enough to
know that a tag can be the name of a node or a class (so the tag webserver is matched
if a machine includes the class webserver), or you can add a tag explicitly using the tag
function like this:

class exim {
 tag("email")
 service { "exim4":
 ensure => running,
 enable => true,
 }
 }

Specifying multiple tags, or excluding tags
You can specify a list of comma-separated tags in tagmail.conf, and also exclude certain
tags by using an exclamation point (!):

 all, !webserver: puppetmaster@example.com

Sending reports to multiple email addresses
You can have rules send messages to multiple, comma-separated email addresses:

 err: puppetmaster@example.com, sysadmin@example.com

See also
Generating reports

Creating graphical reports

Using tags and defined







Monitoring, Reporting, and Troubleshooting

34

Creating graphical reports
Let’s face it, bosses like pretty pictures. Puppet can produce report data in a form suitable
for processing by the RRD graph library, to produce a graphical representation of the metrics
such as the run time on each client.

Getting ready
You will need to install the RRD tools and libraries for Ruby on your system. For Ubuntu, run:

 # apt-get install rrdtool librrd-ruby

How to do it…
5.Add the rrdgraph report type to your puppet.conf:
 reports = store,rrdgraph

How it works…
For each run, Puppet will record data in the client’s RRD directory (by default /var/lib/
puppet/rrd/<clientname>). It will create PNG-format graphs of events, resources, and
retrieval time, while the raw data is available to you in the .rrd files if you want to process it
further using third-party RRD tools.

There’s more…
For more detailed reporting and graphing, you can use Puppet Dashboard.

See also
Using Dashboard

Producing automatic HTML documentation
Like most engineers, I never read the manual, unless and until the product actually catches
fire. However, as your manifests get bigger and more complex, it can be helpful to create
HTML documentation for your nodes and classes using Puppet’s automatic documentation
tool, puppet doc.



Chapter 2

35

How to do it…
1. Run puppet doc over your manifest:

 puppet doc --all --outputdir=/var/www/html/puppet --mode rdoc --
manifestdir=/etc/puppet/manifests/

How it works…
puppet doc creates a structured HTML documentation tree in /var/www/html/puppet
similar to that produced by RDoc, the popular Ruby documentation generator. This makes it
easier to understand how different parts of the manifest relate to one another, as you can
click on an included class name and see its definition, for example.

There’s more…
puppet doc will generate basic documentation of your manifests as they stand, but
you can include more useful information by adding comments to your manifest files,
using the standard RDoc syntax. Here’s an example of some documentation comments
added to a class:

 class puppet {
 # This class sets up the Puppet client.
 #

Monitoring, Reporting, and Troubleshooting

36

 # ==Actions
 # Install a cron job to run Puppet.
 #
 # ==Requires
 # * Package["puppet"]
 #
 cron { "run-puppet":
 command => "/usr/sbin/puppet agent --test >/dev/null 2>&1",
 minute => inline_template("<%= hostname.hash.abs % 60 %>"),
 }
}

Your comments are added to the documentation for each class in the resulting HTML files,
like this:

Drawing dependency graphs
Dependencies can get complicated quickly, and it’s easy to end up with a circular
dependency (where A depends on B which depends on A) which will cause Puppet to
complain and stop work. Fortunately, Puppet’s --graph option makes it easy to generate a
diagram of your resources and the dependencies between them, which can be a big help in
fixing such problems.

Chapter 2

37

Getting ready…
1. nstall the graphviz package for viewing the diagram files:

apt-get install graphviz

How to do it…
1. Create the file /etc/puppet/modules/admin/manifests/ntp.pp with the

following code containing a circular dependency:
 class admin::ntp {
 package { "ntp":
 ensure => installed,
 require => File["/etc/ntp.conf"],
 }

 service { "ntp":
 ensure => running,
 require => Package["ntp"],
 }

 file { "/etc/ntp.conf":
 source => "puppet:///modules/admin/ntp.conf",
 notify => Service["ntp"],
 require => Package["ntp"],
 }
 }

2. Copy your existing ntp.conf file into Puppet:
 # cp /etc/ntp.conf /etc/puppet/modules/admin/files

3. Include this class on a node:
 node cookbook {
 include admin::ntp
 }

4. Run Puppet:
 # puppet agent --test

 info: Retrieving plugin

 info: Caching catalog for cookbook.bitfieldconsulting.com

 err: Could not apply complete catalog: Found dependency cycles in
the following relationships: File[/etc/ntp.conf] => Package[ntp],
Package[ntp] => File[/etc/ntp.conf], Package[ntp] => Service[ntp],
File[/etc/ntp.conf] => Service[ntp]; try using the '--graph'

Monitoring, Reporting, and Troubleshooting

3

option and open the '.dot' files in OmniGraffle or GraphViz

notice: Finished catalog run in 0.42 seconds

5. Check the graph files have been created:
 # ls /var/lib/puppet/state/graphs/

 expanded_relationships.dot relationships.dot resources.dot

13.Create a graphic of the relationships graph:
 # dot -Tpng -o relationships.png /var/lib/puppet/state/graphs/
relationships.dot

14.View the graphic:
 # eog relationships.png

How it works…
When you run puppet --graph (or enable the graph option in puppet.conf) Puppet will
generate three graphs in DOT format (a graphics language):

resources.dot - showing the hierarchical structure of your classes and resources,
but without dependencies

relationships.dot - showing the dependencies between resources as arrows, as
above

expanded_relationships.dot - a more detailed version of the relationships
graph

The dot tool (part of the graphviz package) will convert these to an image format such
as PNG for viewing.







Chapter 2

3

In the relationships graph, each resource in your manifest is shown as a balloon, with arrowed
lines connecting them to indicate the dependencies. You can see that in our example, the
dependencies between File[“/etc/ntp.conf”] and Package[“ntp”] form a circle.

To fix the circular dependency problem, all you need to do is remove one of the dependency
lines and so break the circle.

There’s more…
Resource and relationship graphs can be useful even when you don’t have a bug to find. If you
have a very complex network of classes and resources, for example, studying the resources
graph can help you see where to simplify things. Similarly, when dependencies become too
complicated to understand from reading the manifest, the graphs can be a much more useful
form of documentation.

Testing your Puppet manifests

“If all else fails, immortality can always be assured by spectacular error.”

— J.K. Galbraith

Trouble has a way of sneaking up on you like a windshield on a bug. The standard checks
provided by monitoring tools like Nagios don’t always cover everything you want to monitor.
While metrics such as load average and disk space can be useful problem indicators, I like
to be able to get higher-level information about the applications and services my machines
provide.

For example, if you are running a web application, it’s not enough to know that the web server
is listening to connections on port 80 and responding with an HTTP 200 OK status. It could
just be returning the default Apache welcome page.

If your web application is an online store, for example, you might want to check the following:

Do we see expected text in the returned page (for example, "Welcome to FooStore")?

Can we log in as a user (if the application supports sessions)?

Can we search for a product and see an expected result?

Is the response time satisfactory?

This kind of monitoring - focusing on the behaviour of the application, rather than operational
metrics about the server itself - is sometimes called behaviour-driven monitoring.









Monitoring, Reporting, and Troubleshooting

40

Just as developers often use behaviour-driven tests to verify that the application does what it
should when they make code changes, you can use behaviour-driven monitoring to monitor it
continuously in production.

In fact, thanks to a tool called cucumber-nagios, you can run the same tests the developers
use. Lindsay Holmwood’s wrapper for the popular Cucumber testing framework lets you run
Cucumber-based tests under Nagios as though they were standard Nagios metrics.

Getting ready
1. To install cucumber-nagios, you will need a few dependencies first. If you are

on Ubuntu or Debian, you will probably need to install RubyGems from source, as
cucumber-nagios needs RubyGems 1.3.6 or higher. Download the tarball from the
RubyGems site: http://rubygems.org/pages/download

2. Unpack it and run ruby setup.rb to build and install the package.

3. Next, you need to install a couple more dependencies:
 # apt-get install ruby1.8-dev libxml2-dev

4. Finally, you can install cucumber-nagios itself:
 # gem install cucumber-nagios

How to do it…
1. Once the gem and all its dependencies have been installed, you can start writing

Cucumber tests. To do this, first use cucumber-nagios to help create a project
directory with everything you will need:
 # cucumber-nagios-gen project mytest

 Generating with project generator:

 [ADDED] features/steps

 [ADDED] features/support

 [ADDED] .gitignore

 [ADDED] .bzrignore

 [ADDED] lib/generators/feature/%feature_name%.feature

 [ADDED] Gemfile

 [ADDED] bin/cucumber-nagios

 [ADDED] lib/generators/feature/%feature_name%_steps.rb

 [ADDED] README

 Your new cucumber-nagios project can be found in /root/mytest.

http://rubygems.org/pages/download

Chapter 2

41

 Next, install the necessary RubyGems with:

 bundle install

 Your project has been initialised as a git repository.

2. It’s a good idea to run bundle install inside the project directory, as cucumber-
nagios advises you. This will bundle all the dependencies for cucumber-nagios
inside the directory. Then you can move the project directory to any machine and it
will work.
 # cd mytest

 # bundle install

3. Now we can start writing a test. As an example, let’s test the home page on Google:
 # cucumber-nagios-gen feature www.google.com home

 Generating with feature generator:

 [ADDED] features/www.google.com/home.feature

 [ADDED] features/www.google.com/steps/home_steps.rb

4. If you edit the home.feature file, you will find that cucumber-nagios has
generated a basic first test for you:
 Feature: www.google.com
 It should be up

 Scenario: Visiting home page
 When I go to "http://www.google.com”
 Then the request should succeed

5. You can run this from the project directory with:
 # cucumber --require features features/www.google.com/home.
feature

 Feature: www.google.com

 It should be up

 Scenario: Visiting home page # features/www.google.
com/home.feature:4

 When I go to "http://www.google.com” # features/steps/http_
steps.rb:11

 Then the request should succeed # features/steps/http_
steps.rb:64

http://www.google.com
http://www.google.com/home.feature
http://www.google.com/steps/home_steps.rb
http://www.google.com
http://www.google.com
http://www.google.com/home.feature
http://www.google.com/home.feature
http://www.google.com
http://www.google.com/home.feature:4
http://www.google.com/home.feature:4
http://www.google.com

Monitoring, Reporting, and Troubleshooting

42

 1 scenario (1 passed)

 2 steps (2 passed)

 0m0.176s

6. Assuming this works (if it doesn’t, call Google), all you need to do to make this feature
a Nagios check is to run it with cucumber-nagios instead of cucumber:
 # bin/cucumber-nagios features/www.google.com/home.feature

 CUCUMBER OK - Critical: 0, Warning: 0, 2 okay | passed=2;
failed=0; nosteps=0; total=2; time=0

How it works…
Any script can be a Nagios monitoring plugin: it just has to return the appropriate exit status (0
for OK, 1 for warning, 2 for critical). cucumber-nagios wraps Cucumber tests to do this, and
also print out useful information which Nagios will report via the alert or the web interface.

There’s more…
By itself, this doesn’t do anything very useful. However, Cucumber lets you write quite
sophisticated interaction scripts with websites: you can fill in form fields, search, click buttons,
match text on the page, and so on. Whatever features of your web application or service you
want to monitor, figure out first what a user would do in a web browser, then automate those
steps with Cucumber to create the monitoring script.

You can find out more about how to write tests for cucumber-nagios on the Cucumber
website: http://cukes.info/

Doing a dry run

“No alarms and no surprises.”

—Radiohead

I hate surprises. Sometimes your Puppet manifest doesn’t do exactly what you expected, or
perhaps someone else has checked in changes you didn’t know about. Either way, it’s good to
know exactly what Puppet is going to do before it does it.

If it would update a config file and restart a production service, for example, this could result
in unplanned downtime. Also, sometimes manual configuration changes are made on a server
which Puppet would overwrite.

To avoid these problems, you can use Puppet’s dry run mode (also called noop mode,
for ‘no operation’).

http://www.google.com/home.feature

Chapter 2

43

How to do it…
1. Run Puppet with the --noop switch:

 # puppet agent --test --noop

 info: Connecting to sqlite3 database: /var/lib/puppet/state/
clientconfigs.sqlite3

 info: Caching catalog for cookbook.bitfieldconsulting.com

 info: Applying configuration version '1296492323'

 --- /etc/exim4/exim4.conf 2011-01-17 08:13:34.349716342 -0700

 +++ /tmp/puppet-file20110131-20189-127zyug-0 2011-01-31
09:45:27.792843709 -0700

 @@ -1,4 +1,5 @@

 #########

 +# allow spammers to use our host as a relay

 #########

 notice: /Stage[main]/Admin::Exim/File[/etc/exim4/exim4.conf]/
content: is {md5}02798714adc9c7bf82bf18892199971a, should be {md5}
6f46256716c0937f3b6ffd6776ed059b (noop)

 info: /Stage[main]/Admin::Exim/File[/etc/exim4/exim4.conf]:
Scheduling refresh of Service[exim4]

 notice: /Stage[main]/Admin::Exim/Service[exim4]: Would have
triggered 'refresh' from 1 events

 notice: Finished catalog run in 0.90 seconds

How it works…
In noop mode, Puppet does everything it would normally, with the exception of actually
making any changes to the machine. It tells you what it would have done, and you can
compare this with what you expected to happen. If there are any differences, double-check
the manifest or the current state of the machine.

Note that Puppet warns us it would have restarted the exim service, due to a config file
update. This may or may not be what we want, but it’s useful to know in advance. I make it
a rule, when applying any non-trivial changes on production servers, to run Puppet in noop
mode first, and verify what’s going to happen.

Monitoring, Reporting, and Troubleshooting

44

There’s more…
You can also use dry run mode as a simple auditing tool. It will tell you if any changes have
been made to the machine since Puppet last applied its manifest. Some organisations require
all config changes to be made with Puppet, which is one way of implementing a change
control process. Unauthorized changes can be detected using Puppet in dry run mode and you
can then decide whether to merge the changes back into the Puppet manifest, or undo them.

See also
Auditing resources

Detecting compilation errors
Normally, when running in daemon mode, Puppet will ignore any compilation errors in the
manifest and just apply the last known working version from its cache. This behaviour is
governed by the usecacheonfailure config setting, and it defaults to true:

 # puppet --genconfig |grep usecacheonfailure

 # usecacheonfailure = true

It’s worth noting that when you apply manifests by hand using puppet agent --test,
this doesn’t happen: Puppet will complain and refuse to do anything if there is an error in the
manifest. That’s because the --test switch is shorthand for the following options:

 # puppet agent --onetime --verbose --ignorecache --no-daemonize --no-
usecacheonfailure

Because usecacheonfailure is on when Puppet runs as a daemon, sometimes you won’t
notice mistakes in a manifest for a while, as Puppet keeps on silently running an old version
of the manifest instead of complaining.

How to do it…
1. If you want to change this behaviour, set the following value in puppet.conf:

 usecacheonfailure = false

How it works…
With this option set, Puppet will immediately complain about errors and refuse to run until
they are corrected.



Chapter 2

45

There’s more…
Nothing for this section.

Understanding Puppet errors
Puppet’s error messages can be confusing, and sometimes don’t contain much helpful
information about how to actually resolve the problem.

Often the first step is simply to search the web for the error message text and see what
explanations you can find for the error, along with any helpful advice about fixing it. Here are
some of the most common puzzling errors, with possible explanations:

Could not evaluate: Could not retrieve information from
source(s)

You specified a source parameter for a file and Puppet couldn’t find this source. Check the
file is present and has been checked in, and also that the source path is correct.

change from absent to file failed: Could not set ‘file
on ensure: No such file or directory

This is often caused by Puppet trying to write a file to a directory that doesn’t exist. Check that
the directory either exists already or is defined in Puppet, and that the file resource requires
the directory (so that the directory is always created first).

undefined method `closed?’ for nil:NilClass
This unhelpful error message is roughly translated as “something went wrong”. It tends to be
a catch-all error caused by many different problems, but you may be able to determine what
is wrong from the name of the resource, the class, or the module. One trick is to add the --
debug switch, to get more useful information:

 # puppet agent --test --debug

If you check your Git history to see what was touched in the most recent change, this may be
another way to identify what’s upsetting Puppet.

Monitoring, Reporting, and Troubleshooting

46

Could not parse for environment --- “--- production”: S
yntax error at end of file at line 1

This can be caused by mistyping command line options: for example, if you type puppet -
verbose instead of puppet --verbose. That kind of error can be hard to see.

Could not request certificate: Retrieved certificate
does not match private key; please remove
certificate from server and regenerate it with the
current key

Either the node’s SSL host key has changed, or Puppet’s SSL directory has been deleted,
or you are trying to request a certificate for a machine with the same name as an existing
node. Generally the simplest way to fix this is to remove Puppet’s SSL directory on the client
(usually this is /etc/puppet/ssl) and run puppet cert --clean <nodename> on the
Puppetmaster. Then run Puppet again, and it should generate a certificate request correctly.

Duplicate definition: X is already defined in [file] at line
 Y; cannot redefine at [file] line Y

This one has caused me a bit of puzzlement in the past. Puppet’s complaining about a
duplicate definition, and normally if you have two resources with the same name, Puppet will
helpfully tell you where they are both defined. But in this case, it’s indicating the same file and
line number for both. How can one resource be a duplicate of itself?

The answer is if it’s a define. If you create two instances of a define, you’ll also have two
instances of all the resources contained within the define, and they need to have distinct
names. For example:

 define check_process() {
 exec { "is-process-running?":
 command => "/bin/ps ax |/bin/grep ${name} >/tmp/
pslist.${name}.txt",
 }
 }

 check_process { "exim": }
 check_process { "nagios": }

 # puppet agent --test
 info: Retrieving plugin
 err: Could not retrieve catalog from remote server: Error 400 on

Chapter 2

47

ERVER: Duplicate definition: Exec[is-process-running?] is already
defined in file /etc/puppet/manifests/nodes.pp at line 22; cannot
redefine at /etc/puppet/manifests/nodes.pp:22 on node cookbook.
bitfieldconsulting.com
 warning: Not using cache on failed catalog
 err: Could not retrieve catalog; skipping run

Because the exec resource is named is-process-running? and this is the same
whatever you pass to the define, Puppet will refuse to create two instances of it. The
solution is to include the name of the instance in the title of each resource:

 exec { "is-process-${name}-running?":
 command => "/bin/ps ax |/bin/grep ${name} >/tmp/
pslist.${name}.txt",
 }

Logging command output
When you use exec resources to run commands on the node, it’s not always easy to find out
why they haven’t worked. Puppet will give you an error message like this if a command returns
a non-zero exit status:

 err: /Stage[main]//Node[cookbook]/Exec[this-will-fail]/returns:
change from notrun to 0 failed: /bin/ls file-that-doesnt-exist
returned 2 instead of one of [0] at /etc/puppet/manifests/nodes.pp:10

Often we would like to see the actual output from the command that failed, rather than just
the numerical exit status. You can do this with the logoutput parameter.

How to do it…
1. Define an exec resource with the logoutput parameter like this:

 exec { "this-will-fail":
 command => "/bin/ls file-that-doesnt-exist",
 logoutput => on_failure,
 }

How it works…
Now if the command fails, Puppet will also print its output:

 notice: /Stage[main]//Node[cookbook]/Exec[this-will-fail]/returns: /bin/
ls: cannot access file-that-doesnt-exist: No such file or directory

 err: /Stage[main]//Node[cookbook]/Exec[this-will-fail]/returns: change
from notrun to 0 failed: /bin/ls file-that-doesnt-exist returned 2

Monitoring, Reporting, and Troubleshooting

4

instead of one of [0] at /etc/puppet/manifests/nodes.pp:11

There’s more…
You can set this to be the default for all exec resources by defining:

 Exec {
 logoutput => on_failure,
 }

If you always want to see the command output, whether it succeeds or fails, use:

 logoutput => true,

Logging debug messages
It can be very helpful when debugging problems if you can print out information at a certain
point in the manifest. This is a good way to tell, for example, if a variable isn’t defined or has
an unexpected value. Sometimes it’s useful just to know that a particular piece of code has
been run. Puppet’s notify resource lets you print out such messages.

How to do it…
1. Define a notify resource in your manifest at the point you want to investigate:
 notify { "Got this far!": }

How it works…
When this resource is compiled Puppet will print out the message:

 notice: Got this far!

There’s more…
If you’re the kind of brave soul who likes experimenting, and I hope you are, you’ll probably
find yourself using debug messages a lot to figure out why your code doesn’t work. So knowing
how to get the most out of Puppet’s debugging features can be a great help.

Printing out variable values
You can reference variables in the message:

 notify { "operatingsystem is $operatingsystem": }

Chapter 2

4

And Puppet will interpolate the values in the printout:

 notice: operatingsystem is Ubuntu

Printing the full resource path
For more advanced debugging, you may want to use the withpath parameter to see in which
class the notify was executed:

 notify { "operatingsystem is $operatingsystem":
 withpath => true,
 }

Now the notify message will be prefixed with the complete resource path:

 notice: /Stage[main]/Nagios::Target/Notify[operatingsystem is Ubuntu]/
message: operatingsystem is Ubuntu

Logging messages on the Puppetmaster
Sometimes you just want to log a message on the Puppetmaster, without generating extra
output on the client. You can use the notice function to do this:

 notice("I am running on node $fqdn")

Now when you run Puppet, you will not see any output on the client, but on the Puppetmaster
a message like this will be sent to the syslog:

 Jan 31 11:51:38 cookbook puppet-master[22640]: (Scope(Node[cookbook])) I
am running on node cookbook.bitfieldconsulting.com

Inspecting configuration settings
You already know that Puppet’s configuration settings are stored in puppet.conf, but any
parameter not mentioned in that file will take a default value. How can you see the value of
any configuration parameter, regardless of whether or not it’s explicitly set in puppet.conf?
The answer is to use Puppet’s --genconfig switch.

How to do it…
1. Run

 # puppet --genconfig

Monitoring, Reporting, and Troubleshooting

50

How it works…
This will output every configuration parameter and its value (and there are lots of them). It
does, however, include helpful comments explaining what each parameter does.

To find the specific value you’re interested in, you can use grep like this:

 # puppet --genconfig |grep "reportdir ="

 reportdir = /var/lib/puppet/reports

Using tags
Sometimes one Puppet class needs to know about another - or, at least, to know whether or
not it’s present. For example, a class that manages the firewall may need to know whether the
node is a web server.

Puppet’s tagged function will tell you whether a named class or resource is present in the
manifest for this node. You can also apply arbitrary tags to a node or class and check for the
presence of these tags.

1. To help you find out if you’re running on a particular node or class of node, all nodes
are automatically tagged with the node name and the names of any parent nodes it
inherits from.
 node bitfield_server {
 include bitfield
 }

 node cookbook inherits bitfield_server {
 if tagged("cookbook") {
 notify { "this will succeed": }
 }
 if tagged("bitfield_server") {
 notify { "so will this": }
 }
 }

2. So that you can tell whether a particular class is included on this node, all nodes
are automatically tagged with the names of all the classes they include, and their
parent classes.
 include apache::port8000

 if tagged("apache::port8000") {
 notify { "this will succeed": }
 }

Chapter 2

51

 if tagged("apache") {
 notify { "so will this": }
 }

3. If you want to set an arbitrary tag on a node, use the tag function:
 tag("old-slow-server")
 if tagged("old-slow-server") {
 notify { "this will succeed": }
 }

4. If you want to set a tag on a particular resource, use the tag metaparameter:
 file { "/etc/ssh/sshd_config":
 source => "puppet:///modules/admin/sshd_config",
 notify => Service["ssh"],
 tag => "security",
 }

5. You can also use tags to determine which parts of the manifest to apply. If you use
the --tags option on the Puppet command line, only those classes or resources
tagged with specific tags will be applied. For example, if you want to update only the
Exim configuration, but not run any other parts of the manifest:
 # puppet agent --test --tags exim

There’s more…
You can use tags to create a collection of resources, for example if some service depends on
a large number of file snippets:

 class firewall::service {
 service { “firewall”:
 ….
 }

 File <| tag == “firewall-snippet” |> ~> Service[“firewall”]
 }

 class myapp {
 file { “/etc/firewall.d/myapp.conf”:
 tag => “firewall-snippet”,
 ….
 }
 }

Monitoring, Reporting, and Troubleshooting

52

Here, we’ve specified that the firewall service should be notified if any file resource
tagged firewall-snippet is updated. All we need to do to add a firewall config snippet for
any particular app or service is to tag it firewall-snippet, and Puppet will do the rest.

Although we could add a notify => Service[“firewall”] to each snippet resource, if
our definition of the firewall service were ever to change we would have to hunt down and
update all the snippets accordingly. The tag lets us encapsulate the logic in one place, making
future maintenance and refactoring much easier.

Using run stages
A common requirement is to apply a certain resource before all others (for example, installing
a package repository), or after all others (for example, deploying an application once its
dependencies are installed). Puppet’s run stages allow you to do this.

How to do it…
1. Add the following to your manifest:
class install_repos {
 notify { "This will be done first": }
 }

 class deploy_app {
 notify { "This will be done last": }
 }

 stage { "first": before => Stage["main"] }
 stage { "last": require => Stage["main"] }

 class { "install_repos": stage => "first" }
 class { "deploy_app": stage => "last" }

36.Run Puppet:
 # puppet agent --test

 info: Retrieving plugin

 info: Caching catalog for cookbook.bitfieldconsulting.com

 info: Applying configuration version '1303127505'

 notice: This will be done first

 notice: /Stage[first]/Beginning/Notify[This will be done first]/message:
defined 'message' as 'This will be done first'

 notice: This will be done last

Chapter 2

53

 notice: /Stage[last]/End/Notify[This will be done last]/message: ��������defined
'message' as 'This will be done last'

 notice: Finished catalog run in 0.59 seconds

How it works…
1. We declared the classes for the things we want done first and last:

 class install_repos {
 notify { "This will be done first": }
 }

 class deploy_app {
 notify { "This will be done last": }
 }

2. Then we created a run stage named first:
 stage { "first": before => Stage["main"] }

The before parameter specifies that everything in stage first must be done before
anything in stage main (the default stage).

3. Then we created a run stage named last:
 stage { "last": require => Stage["main"] }

The require parameter specifies that stage main must be completed before any resource in
stage last.

4. Finally, we included the two classes install_repos and deploy_app, specifying
that they should be part of stages first and last respectively:
 class { "install_repos": stage => "first" }
 class { "deploy_app": stage => "last" }

Note that we used the class keyword, rather than include, just like when we were passing
parameters to classes. You can think of stage as a parameter that can always be passed to
any class.

Puppet will now apply the stages in the following order:

first

main

last







Monitoring, Reporting, and Troubleshooting

54

There’s more…
In fact, you can define as many run stages as you like, and set up any ordering for them. This
can greatly simplify a complicated manifest which otherwise would require lots of explicit
dependencies between resources. If you can divide all the resources into groups A and B, and
everything in A must be done before B, it’s a prime candidate for using run stages.

Gary Larizza has written a helpful introduction to using run stages, with some real-world
examples, at http://glarizza.posterous.com/using-run-stages-with-puppet

Using environments
Are your manifests environmentally friendly? If you want to test Puppet manifests before
putting them into production, you can use Puppet’s environment feature to do this. This lets
you apply a different manifest depending on the environment setting of the client machine.
For example, you might define the following environments:

development

staging

production

You can set up environments in your puppet.conf file. In this example, we’ll add a
development environment, pointing to a different set of manifests.

How to do it…
1. Add the following lines to puppet.conf:

[development]
manifest = /etc/puppet/env/development/manifests/site.pp
modulepath = /etc/puppet/env/development/modules:/etc/puppet/
modules

How it works…
You can put your environment manifests anywhere you like, so long as you set the manifest
parameter to point to the top-level site.pp file. In this example we’ve put the manifests
for this environment in /etc/puppet/env/development. Similarly, you need to set
modulepath to the location of your modules directory for that environment.

In the example above, the modulepath also includes /etc/puppet/modules; this is so
that if Puppet doesn’t find a module in your development environment, it will also look for it
in the default environment. This means you only need to put the modules you’re working on
into the development environment.







Chapter 2

55

The default environment is production, so if you run Puppet without specifying an
environment, that’s what you’ll get.

There’s more…
If you are using a version control system such as Git, your environments can be Git branches.
Once you have finished testing and staging a new module, you can merge it into the Git master
branch for use in production. You can read more about this strategy for using environments
in R.I. Pienaar’s article: http://www.devco.net/archives/2009/10/10/puppet_
environments.php

You can specify the environment of a client machine in several ways. You can use the --
environment switch when running Puppet:

 # puppet agent --test --environment=development

Alternatively, you can specify it in the client’s puppet.conf:

 [main]
 environment=development

If you are using an external node classifier script (described elsewhere in this book), this can
also specify the client’s environment.

You can also have a different fileserver.conf for each environment (see the section on
configuring Puppet’s file server). To do this, set the variable fileserverconfig for each
environment in the Puppetmaster’s puppet.conf file:

 [development]
 fileserverconfig = /etc/puppet/fileserver.conf.development

 [production]
 fileserverconfig = /etc/puppet/fileserver.conf.production

For more information, see the Puppet Labs page on using environments: http://
projects.puppetlabs.com/projects/1/wiki/Using_Multiple_Environments

See also
Using version control

Using modules

Using an external node classifier







3
Puppet Language and

Style

"Elegance is not a dispensable luxury but a factor that decides between success
and failure."

— Edsger Dijkstra

In this chapter we will cover:

Using modules

Using standard naming conventions

Using community Puppet style

Using embedded Ruby

Writing manifests in pure Ruby

Iterating over multiple items

Writing powerful conditional statements

Using regular expressions in if statements

Using selectors and case statements

Checking if values are contained in strings

Using regular expression substitutions























Puppet Language and Style

5

Using modules
One of the most important things you can do to make your Puppet manifests clearer and
more maintainable is to organize them into modules. A module is simply a way of grouping
related things: for example, a webserver module might include everything necessary to be a
webserver: Apache configuration files, virtual host templates, and the Puppet code necessary
to deploy these.

Separating things into modules makes it easier to re-use and share code; it's also the most
logical way to organize your manifests. In this example we'll create a module to manage
memcached, a memory caching system commonly used with web applications.

How to do it…
1. Find your modulepath; this is set in puppet.conf but the default value is /etc/

puppet/modules. If you are using version control for your Puppet manifests, as
I recommend you do, then use the directory in your working copy which will be
deployed to /etc/puppet/modules instead.
puppet --genconfig |grep modulepath

modulepath = /etc/puppet/modules:/usr/share/puppet/modules

cd /etc/puppet/modules

2. Create a directory memcached:
mkdir memcached

3. Inside this, create manifests and files directories:
cd memcached

mkdir manifests files

4. In the manifests directory, create the file init.pp with the following contents:
import "*"

5. In the same directory, create another file memcached.pp with the following contents:
class memcached {
 package { "memcached":
 ensure => installed,
 }

 file { "/etc/memcached.conf":
 source => "puppet:///modules/memcached/memcached.conf",
 }

 service { "memcached":

Chapter 3

5

 ensure => running,
 enable => true,
 require => [Package["memcached"],
 File["/etc/memcached.conf"]],
 }
}

6. Changing to the files directory, create the file memcached.conf with the following
contents:
-m 64
-p 11211
-u nobody
-l 127.0.0.1

7. To use your new module, add this to your node definition:
node cookbook {
 include memcached
}

8. Run Puppet to test the new configuration:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1300361964'

notice: /Stage[main]/Memcached/Package[memcached]/ensure: ensure
changed 'purged' to 'present'

...

info: /Stage[main]/Memcached/File[/etc/memcached.conf]:
Filebucketed /etc/memcached.conf to puppet with sum a977521922a151
c959ac953712840803

notice: /Stage[main]/Memcached/File[/etc/memcached.conf]/content:
content changed '{md5}a977521922a151c959ac953712840803' to '{md5}f
5c0bb01a24a5b3b86926c7b067ea6ba'

notice: Finished catalog run in 20.68 seconds

service memcached status

 * memcached is running

Puppet Language and Style

60

How it works…
Modules have a specific directory structure. Not all of these directories need to be present,
but if they are, this is how they should be organized:

MODULEPATH/
 MODULE_NAME/
 files/
 templates/
 manifests/
 init.pp
 ...
 README

Puppet will find and load the init.pp file automatically. This should import all the classes
necessary for the module, as in our example:

import "*"

The memcached class is defined in the file memcached.pp, which will be imported by init.
pp. Now we can include it on nodes:

include memcached

Inside the memcached class, we refer to the memcached.conf file:

file { "/etc/memcached.conf":
 source => "puppet:///modules/memcached/memcached.conf",
}

As we saw in the section on Puppet's file server and custom mount points, the source
parameter above tells Puppet to look for the file in:

MODULEPATH/
 memcached/
 files/
 memcached.conf

There's more
Learn to love modules, because they'll make your Puppet life a lot easier. They're not
complicated. However, practice and experience will help you judge when things should be
grouped into modules, and how best to arrange your module structure. Here are a few tips
which may help you on the way.

Chapter 3

61

Templates
If you need to use a template as part of the module, place it in the MODULE_NAME/
templates directory and refer to it like this:

file { "/etc/memcached.conf":
 content => template("memcached/memcached.conf"),
}

Puppet will look for the file in:

MODULEPATH/
 memcached/
 templates/
 memcached.conf

Facts, functions, types, and providers
Modules can also contain custom facts, custom functions, and custom types and providers.
For more information about these, see the chapter on external tools and the Puppet
ecosystem.

Third-party modules
You can download modules provided by other people and use them in your own manifests
just like the modules you create. For more on this, see the section on using public modules
available from Puppet Forge.

Module organization
For more details on how to organize your modules, see the Puppet Labs site: http://
projects.puppetlabs.com/projects/1/wiki/Puppet_Modules

See also
Configuring Puppet's file server

Creating custom Facter facts

Using public modules

Creating your own resource types

Creating your own providers

Using standard naming conventions
Choosing appropriate and informative names for your modules and classes will be a big help
when it comes to maintaining your code. This is even more true if other people need to read
and work on your manifests.











Puppet Language and Style

62

How to do it…
1. Name modules after the software or service they manage: for example, apache or

haproxy.

2. Name classes within modules after the function or service they provide to the
module: for example, apache::vhosts or rails::dependencies.

3. If a class within a module disables the service provided by that module, name it
disabled. For example, a class which disables Apache should be named apache::
disabled.

4. If a node provides multiple services, have the node definition include one module or
class named for each service. For example:
node server014 inherits server {
 include puppet::server
 include mail::server
 include repo::gem
 include repo::apt
 include zabbix
}

5. The module that manages users should be named user.

6. Within the user module, declare your virtual users within the class user::
virtual.

7. Within the user module, subclasses for particular groups of users should be named
after the group - for example, user::sysadmins, or user::contractors.

8. Where you need to override a class for some specific node or service, inherit that
class and prefix the name of the subclass with the node - for example, if your node
cartman needs a special SSH configuration, and you want to override the ssh class,
do it like this:
class cartman_ssh inherits ssh {
 [override config here]
}

9. When using Puppet to deploy config files for different services, name the file after the
service, but with a suffix indicating what kind of file it is. For example:

Apache init script: apache.init

Log rotate config snippet for Rails: rails.logrotate

Nginx vhost file for mywizzoapp: mywizzoapp.vhost.nginx

MySQL config for standalone server: standalone.mysql









Chapter 3

63

10.If you need to manage, for example, different Ruby versions, name the class after the
version it is responsible for, e.g. ruby192 or ruby186.

How it works…
No explanation needed.

There's more…
The Puppet community maintains a set of best practice guidelines for your Puppet
infrastructure which includes some hints on naming: http://projects.puppetlabs.
com/projects/1/wiki/Puppet_Best_Practice

Using community Puppet style
If other people need to read or maintain your manifests, or if you want to share code with the
community, it's a good idea to follow the existing style conventions as closely as possible.

How to do it…
1. Always quote your resource names - for example:

package { "exim4":

not

package { exim4:

Some characters like hyphens and spaces can confuse Puppet's parser, and to be on the safe
side it's wise to put all names consistently in double quotes.

2. Always quote parameter values which are not reserved words in Puppet - for example:
name => "Nucky Thompson",

mode => "0700",

owner => "deploy",

but

ensure => installed,

enable => true,

ensure => running,w

Puppet Language and Style

64

3. Always include curly braces ({}) around variable names when referring to them in
strings. For example:
 source => "puppet:///modules/webserver/${brand}.conf",

Otherwise Puppet's parser has to guess which characters should be part of the variable name
and which belong to the surrounding string. Curly braces make it explicit.

4. Always end lines that declare parameters with a comma, even if it is the last
parameter:
service { "memcached":
 ensure => running,
 enable => true,
}

Very often you'll edit the file later and want to add an extra parameter after the last one, and
forget to add the necessary comma!

5. When declaring a resource with a single parameter, make the declaration all on one
line and with no trailing comma:
package { "puppet": ensure => installed }
16.Where there is more than one parameter, give each parameter its
own line:
package { "rake":
 ensure => installed,
 provider => gem,
 require => Package["rubygems"],
}

6. When declaring symlinks, use ensure => link like this:
file { "/etc/php5/cli/php.ini":
 ensure => link,
 target => "/etc/php.ini",
}

7. To make the code easier to read, line up the parameter arrows in line with the longest
parameter, like this:
file { "/var/www/${app}/shared/config/rvmrc":
 owner => "deploy",
 group => "deploy",
 content => template("rails/rvmrc"),
 require => File["/var/www/${app}/shared/config"],
}

The arrows should be aligned per resource, but not across the whole file - otherwise it can
make it difficult for you to cut and paste code from one file to another.

Chapter 3

65

How it works…
No explanation necessary.

There's more…
The Puppet community maintains a style guide document on the Puppet Labs site: http://
projects.puppetlabs.com/projects/puppet/wiki/Style_Guide

Using embedded Ruby
Templates are a powerful way of using embedded Ruby to help build config files dynamically
and iterate over arrays, for example. But you can embed Ruby in your manifests directly
without having to use a separate file, by calling the inline_template function.

How to do it…
1. Pass your Ruby code to inline_template within the Puppet manifest like this:

cron { "nightly-job":
 command => "/usr/local/bin/nightly-job",
 hour => "0",
 minute => inline_template("<%= hostname.hash.abs % 60 %>"),
}

How it works…
Anything inside the string passed to inline_template is executed as if it were an ERB
template. That is, anything inside <%= and %> delimiters will be executed as Ruby code, and
the rest will be treated as a string.

See also
Using ERB templates

Generating template files using array iteration

Writing manifests in pure Ruby
Puppet has sometimes been criticized for requiring you to write manifests in its own dedicated
configuration language, rather than an existing general-purpose language such as Ruby. Not
everyone considers this a drawback: the computer scientist Dennis Ritchie remarked,





Puppet Language and Style

66

"A language that doesn't have everything is actually easier to program in than some
that do."

Whatever your views, this criticism no longer applies: Puppet has experimental support for
writing manifests in Ruby, which is quite usable in production even though it is still at a fairly
early stage. You can mix and match Ruby and Puppet files within your manifests - Puppet will
determine the language based on the file extension: .rb for Ruby files, .pp for Puppet files.

The domain-specific language (DSL) for writing manifests in Ruby looks very similar to the
standard Puppet language. In this worked example I'll show you how to turn a typical Puppet
manifest into Ruby. Here's the original manifest in Puppet's language:

class admin::exim {
 package { "exim4": ensure => installed }

 service { "exim4":
 ensure => running,
 require => Package["exim4"],
 }

 file { "/etc/exim4/exim4.conf":
 content => template("admin/exim4.conf"),
 notify => Service["exim4"],
 require => Package["exim4"],
 }
}

How to do it…
1. Create the file /etc/puppet/modules/admin/manifests/exim.rb with the

following contents:
hostclass "admin::exim" do
 package "exim4", :ensure => :installed

 service "exim4",
 :ensure => :running,
 :require => "Package[exim4]"

 file "/etc/exim4/exim4.conf",
 :content => template(["admin/exim4.conf"]),
 :notify => "Service[exim4]",
 :require => "Package[exim4]"
end

Chapter 3

67

2. Include this class on a node and run Puppet.

How it works…
1. The keyword hostclass declares a class, just like class in Puppet:

hostclass "admin::exim" do

2. We then have a do … end block which is the equivalent of curly braces in Puppet.

3. Resources are declared by calling a function named after the resource type: for
example, package or service.
 package "exim4", :ensure => :installed

4. Parameters are passed to the function as a comma-separated list, with the
parameter names quoted or given a leading colon to make them a Ruby symbol:
 :ensure => :running,

Again built-in Puppet names such as :installed or :running are Ruby symbols.

5. When we need to refer to resources to indicate a relationship, as with :require,
the resource identifier is given as a string with the resource type capitalized and the
name in square brackets:
 :require => "Package[exim4]"

6. We can call a function like template by just using its name and round brackets, and
passing its arguments as an array delimited by square brackets:
 :content => template(["admin/exim4.conf"]),

There's more…
I feel duty-bound to say that I don't actually advise you to use the Ruby DSL for your Puppet
manifests. It's fun to experiment with, but unless there are really compelling reasons for using
Ruby, I'd stick to the standard Puppet language for now. It's quite possible that in the future
the Ruby DSL will become widely used; however, I doubt it. If you do want to use it, however,
here are a couple of handy hints.

Variables
While you can use Ruby variables just as you normally would in a Ruby program, you can
access your Puppet variables by using scope.lookupvar like this:

notify (["I am running on node %s" % scope.lookupvar("fqdn")])

gives:

notice: I am running on node cookbook.bitfieldconsulting.com

Puppet Language and Style

6

To set a variable so that it is in scope within your Puppet manifest, use scope.setvar:

require 'time'
scope.setvar("now", Time.now)
notify (["At the third stroke, the time sponsored by Bitfield
Consulting will be: %s" % scope.lookupvar("now")])

gives:

notice: At the third stroke, the time sponsored by Bitfield Consulting
will be: Wed Mar 23 05:58:16 -0600 2011

Documentation
You can find more about how to use the Ruby DSL, including more advanced topics such
as virtual resources and collections, on the Puppet Labs site: http://projects.
puppetlabs.com/projects/1/wiki/Ruby_Dsl

Ken Barber has supplied some syntax examples giving a direct comparison between Puppet
and Ruby DSL constructs: https://github.com/bobsh/puppet-rubydsl-examples

Finally, James Turnbull has written a blog post showing a more advanced use of Ruby to
connect to a MySQL server: http://www.puppetlabs.com/blog/using-ruby-in-
the-puppet-ruby-dsl/

Iterating over multiple items
Arrays are a powerful feature in Puppet; wherever you want to perform the same operation on
a list of things, an array may able to help. You can create an array just by putting its contents
in square brackets:

$lunch = ["eggs", "beans", "chips"]

How to do it…
1. Add the following code to your manifest:

$packages = ["ruby1.8-dev",
 "ruby1.8",
 "ri1.8",
 "rdoc1.8",
 "irb1.8",
 "libreadline-ruby1.8",
 "libruby1.8",
 "libopenssl-ruby"]

package { $packages: ensure => installed }

Chapter 3

6

2. Run Puppet and note that each package should now be installed.

How it works…
Where Puppet encounters an array as the name of a resource, it creates a resource for each
element in the array. In the example, a new package resource is created for each of the
packages in the $packages array, with the same parameters (ensure => installed).
This is a very compact way of instantiating lots of similar resources.

There's more…
If you thought arrays were exciting, wait till you hear about hashes.

Hashes
A hash is like an array, but each of the elements can be stored and looked up by name.
For example:

$interface = { name => 'eth0',
 address => '192.168.0.1' }
notice("Interface ${interface[name]} has address
${interface[address]}")

Interface eth0 has address 192.168.0.1

Hash values can be anything that you can assign to a variable: strings, function calls,
expressions, even other hashes or arrays.

Creating arrays with split
You can declare literal arrays using square brackets, like this:

define lunchprint() {
 notify { "Lunch included $name": }
}

$lunch = ["egg", "beans", "chips"]
lunchprint { $items: }

Lunch included egg
Lunch included beans
Lunch included chips

Puppet Language and Style

70

But Puppet can also create arrays for you from strings, using the split function, like this:

$menu = "egg beans chips"
$items = split($menu, ' ')
lunchprint { $items: }

Lunch included egg
Lunch included beans
Lunch included chips

Note that split takes two arguments: the first is the string to split. The second is the
character to split on - in this example, a single space. As Puppet works its way through the
string, when it encounters a space, it will interpret it as the end of one item and the beginning
of the next. So, given the string "egg beans chips", this will be split into three items.

The character to split on can be any character, or a string:

$menu = "egg and beans and chips"
$items = split($menu, ' and ')

It can also be a regular expression: for example, a set of alternatives separated by a | (pipe)
character:

$lunch = "egg:beans,chips"
$items = split($lunch, ':|,')

Writing powerful conditional statements
Puppet's if statement allows you to change the manifest based on the value of a variable
or an expression. With it, you can apply different resources or parameter values depending
on certain facts about the node - for example, the operating system, or the memory size. You
can also set variables within the manifest which can change the behavior of included classes.
For example, nodes in data center A might need to use different DNS servers than nodes in
data center B, or you might need to include one set of classes for an Ubuntu system, and a
different set for other systems.

How to do it…
1. Add the following code to your manifest:

if $lsbdistid == "Ubuntu" {
 notice("Running on Ubuntu")
} else {
 notice("Non-Ubuntu system detected. Please upgrade to Ubuntu
immediately.")
}

Chapter 3

71

How it works…
Puppet treats whatever follows the if keyword as an expression and evaluates it. If the
expression evaluates to true, Puppet will execute the code within the curly braces.

Optionally, you can add an else branch, which will be executed if the expression evaluates
to false.

There's more…
You can write very complicated if statements in Puppet, but I recommend you don't. Very
often, it's better to change your design (for example, using a template) rather than use if.
While looking through some of my production setups for examples, I was surprised to find that
I haven't used if at all in many thousands of lines of code. Still, your mileage may vary, so
here are some more tips on using if.

elsif
You can add further tests using the elsif keyword, like this:

if $lsbdistid == "Ubuntu" {
 notice("Running on Ubuntu")
elsif $lsbdistid == "Debian" {
 notice("Close enough…")
} else {
 notice("Non-Ubuntu system detected. Please upgrade to Ubuntu
immediately.")
}

Comparisons
You can check if two values are equal using the == syntax, as in our example:

if $lsbdistid == "Ubuntu" {
 ...
}

Or you can check if they are not equal using !=:

if $lsbdistid != "CentOS" {
 ...
}

You can also compare numeric values using < and >:

if $uptime_days > 365 {
 notice("Woohoo!")
}

Puppet Language and Style

72

To test if a value is greater (or less) than or equal to another value, use <= or >=:

if $lsbmajdistrelease <= 9 {
 ...
}

Combining expressions
You can put together the kind of simple expressions described above into more complex
logical expressions, using and, or, and not:

if ($uptime_days > 365) and ($lsbdistid == "Ubuntu") {
 ...
}

if ($role == "webserver") and (($datacenter == "A") or ($datacenter
== "B")) {
 ...
}

See also
Using regular expressions in if statements

Checking if values are contained in strings

Using selectors and case statements

Using regular expressions in if statements
Another kind of expression you can test in if statements and other conditionals is
the regular expression. A regular expression is a powerful way of comparing strings using
pattern matching.

How to do it…
1. Add the following to your manifest:

if $lsbdistdescription =~ /LTS/ {
 notice("Looks like you are using a Long Term Support version
of Ubuntu.")
} else {
 notice("You might want to upgrade to a Long Term Support
version of Ubuntu...")
}







Chapter 3

73

How it works…
Puppet treats the text supplied between the forward slashes as a regular expression
specifying the text to be matched. If the match as a whole succeeds, the if expression will be
true and so the code between the first set of curly braces will be executed.

If you wanted instead to do something if the text does not match, use !~ rather than =~:

if $lsbdistdescription !~ /LTS/ {

There's more…
Arch-hacker Jamie Zawinski once remarked:

Some people, when confronted with a problem, think "I know, I'll use regular
expressions." Now they have two problems.

Regular expressions are very powerful, but can be difficult to understand and debug. If you
find yourself using a regular expression so complex that you can't see at a glance what it does,
think about simplifying your design to make it easier. However, one particularly useful feature
of regular expressions is the ability to capture patterns.

Capturing patterns
You can not only match text using a regular expression, but also capture the matched text and
store it in a variable:

$input = "Puppet is better than manual configuration"
if $input =~ /(.*) is better than (.*)/ {
 notice("You said '$0'. Looks like you're comparing $1 to $2!")
}

You said 'Puppet is better than manual configuration'. Looks like you're
comparing Puppet to manual configuration!

The variable $0 stores the whole matched text (assuming the overall match succeeded). If you
put brackets around any part of the regular expression, that creates a group and any matched
groups will also be stored in variables. The first matched group will be $1, the second $2, and
so on, as in the example above.

Regular expression syntax
Puppet uses a subset of Ruby regular expression syntax, so this link may be helpful if
you're not already familiar with regular expressions: http://gnosis.cx/publish/
programming/regular_expressions.html

Puppet Language and Style

74

See also
Using regular expression substitutions

Using selectors and case statements
Although you could write any conditional statement using if, Puppet provides a
couple of extra forms to help you express conditionals more easily: the selector and
the case statement.

How to do it…
1. Add the following to your manifest:

$systemtype = $operatingsystem ? {
 "Ubuntu" => "debianlike",
 "Debian" => "debianlike",
 "RedHat" => "redhatlike",
 "Fedora" => "redhatlike",
 "CentOS" => "redhatlike",
}

notify { "You have a ${systemtype} system": }

2. Add the following to your manifest:
class debianlike {
 notify { "Special manifest for Debian-like systems": }
}

class redhatlike {
 notify { "Special manifest for RedHat-like systems": }
}

case $operatingsystem {
 "Ubuntu",
 "Debian": {
 include debianlike
 }
 "RedHat",
 "Fedora",
 "CentOS": {
 include redhatlike
 }
}



Chapter 3

75

How it works…
Our example demonstrates both the selector and the case statement, so let's see in detail
how each of them works.

Selector
In the first example, we used a selector (the ? operator) to choose a value for the
$systemtype variable depending on the value of $operatingsystem. This is similar to the
ternary operator in C or Ruby, but instead of choosing between two possible values, you can
have as many values as you like.

Puppet will compare the value of $operatingsystem to each of the possible values we have
supplied: "Ubuntu", "Debian", and so on. These values could be regular expressions (for
a partial string match, or to use wildcards, for example), but in our case we have just used
literal strings. As soon as it finds a match, the selector expression returns whatever value is
associated with the matching string. If the value of $operatingsystem is "Fedora", for
example, the selector expression will return the string "redhatlike" and so this will be
assigned to the variable $systemtype.

case statement
Unlike selectors, the case statement does not return a value. case statements are handy
where you want to execute different code depending on the value of some expression. In our
second example, we used the case statement to include either the class debianlike, or the
class redhatlike, depending on the value of $operatingsystem.

Again, Puppet compares the value of $operatingsystem to a list of potential matches.
These could be regular expressions, or strings, or as in our example, comma-separated lists
of strings. When it finds a match, the associated code between curly braces is executed. So if
the value of $operatingsystem is "Ubuntu", then the code include debianlike will
be executed.

There's more…
Once you've got to grips with basic use of selectors and case statements, you may find the
following tips useful.

Regular expressions
As with if statements, you can use regular expressions with selectors and case statements,
and you can also capture the values of matched groups and refer to them using $1, $2, etc:

case $lsbdistdescription {
 /Ubuntu (.+)/: {
 notify { "You have Ubuntu version $1": }
 }

Puppet Language and Style

76

 /CentOS (.+)/: {
 notify { "You have CentOS version $1": }
 }
}

Defaults
Both selectors and case statements let you specify a default value, which is chosen if
none of the other options match:

$lunch = "Sausage and chips"
$lunchtype = $lunch ? {
 /chips/ => "unhealthy",
 /salad/ => "healthy",
 default => "unknown",
}

notify { "Your lunch was ${lunchtype}": }

Your lunch was unhealthy

Checking if values are contained in strings
Puppet 2.6 introduced a new kind of expression, using the in keyword, like this:

"foo" in $bar

This is true if the string foo is a substring of $bar. If $bar is an array, the expression is true
if foo is an element of the array. If $bar is a hash, the expression is true if foo is one of the
keys of $bar.

How to do it…
1. Add the following code to your manifest:

if $operatingsystem in ["Ubuntu", "Debian"] {
 notify { "Debian-type operating system detected": }
} elsif $operatingsystem in ["RedHat", "Fedora", "SuSE", "CentOS"
] {
 notify { "RedHat-type operating system detected": }
} else {
 notify { "Some other operating system detected": }
}

Chapter 3

77

2. Run Puppet:
#puppet agent --test

Debian-type operating system detected

How it works…
No explanation necessary.

There's more…
in expressions can be used not just for if statements or other conditionals, but anywhere an
expression can be used - so, for example, you can assign the result to a variable:

$debianlike = $operatingsystem in ["Debian", "Ubuntu"]

if $debianlike {
 $ntpservice = "ntp"
} else {
 $ntpservice = "ntpd"
}

Using regular expression substitutions
Puppet's regsubst function provides an easy way to manipulate text, search and replace
within strings, or extract patterns from strings. We commonly need to do this with data
obtained from a fact, for example, or from external programs.

In this example we'll see how to use regsubst to extract the first three octets of an IP
address (the network part, assuming it's a Class C address).

How to do it…
1. Add the following to your manifest:

$class_c = regsubst($ipaddress, "(.*)\..*", "\1.0")
notify { $ipaddress: }
notify { $class_c: }

2. Run Puppet:
notice: 10.0.2.15

notice: 10.0.2.0

Puppet Language and Style

7

How it works…
regsubst takes at least three parameters: source, pattern, and replacement. In our
example, we specified the source string as $ipaddress, which happens to be:

10.0.2.15

the pattern as:

(.*)\..*

and the replacement as:

\1.0

The pattern will match the whole IP address, capturing the first three octets in round
brackets. The captured text will be available as \1 for use in the replacement string.

The whole of the matched text (in this case the whole string) is replaced with replacement.
This is \1 (the captured text from the source string) followed by the string .0, which
evaluates to:

10.0.2.0

There's more
pattern can be any regular expression, using the same (Ruby) syntax as regular expressions
in if statements.

See also
Importing dynamic information with generate

Getting information about the environment

Using regular expressions in if statements







4
Writing Better

Manifests

"An expert is someone who is one page ahead of you in the manual."

— David Knight

In this chapter we will cover:

Using arrays of resources

Using defines

Using dependencies

Using node inheritance

Using class inheritance and overriding

Passing parameters to classes

Writing reusable, cross-platform manifests

Getting information from the environment

Importing dynamic information with generate

Importing data from CSV files

Passing arguments to shell commands























Writing Better Manifests

0

Introduction
Your Puppet manifest is the living documentation for your entire infrastructure. Keeping it tidy
and well-organized is a great way to make it easier to maintain and understand. Puppet gives
you a number of tools to do this, including:

Arrays

defines

Dependencies

Inheritance

Tags

Class parameters

Run stages

We'll see how to use all of these and more. As you read through the chapter, try out the
examples, and look through your own manifests to see where these features might help you
simplify and improve your Puppet code.

Using arrays of resources

"If we wish to count lines of code, we should not regard them as lines produced but
as lines spent."

— Edsger Dijkstra

Anything you can do to a resource, you can do to an array of resources. Use this idea to
refactor your manifests to make them shorter and clearer.

How to do it…
1 Identify a class in your manifest where you have several instances of the same kind

of resource - for example, packages:
package { "sudo" : ensure => installed }
package { "unzip" : ensure => installed }
package { "locate" : ensure => installed }
package { "lsof" : ensure => installed }
package { "cron" : ensure => installed }
package { "rubygems" : ensure => installed }















Chapter 4

1

2. Group them together and replace them with a single package resource using an
array:
 package { ["cron",
 "locate",
 "lsof",
 "rubygems"
 "screen",
 "sudo"
 "unzip"]:
 ensure => installed,
 }

How it works…
Most of Puppet's resource types can accept an array instead of a single name, and will
create one instance for each of the elements in the array. All the parameters you provide for
the resource (for example, ensure => installed) will be assigned to each of the new
resource instances.

See also
 Iterating over multiple items

Using defines
In the previous example, we saw how to reduce redundant code by grouping identical
resources into arrays. However, this technique is limited to resources where all the parameters
are the same. When you have a set of resources which have some parameters in common
and some different, you need to use a define to group them together.

How to do it…
1. Add the following to your manifest:

 define tmpfile() {
 file { "/tmp/$name":
 content => "Hello, world",
 }
 }

 tmpfile { ["a", "b", "c"]: }



Writing Better Manifests

2

2. Run Puppet:
 notice: /Stage[main]//Node[cookbook]/Tmpfile[a]/File[/tmp/a]/
ensure: defined content as '{md5}bc6e6f16b8a077ef5fbc8d59d0b931b9'

 notice: /Stage[main]//Node[cookbook]/Tmpfile[b]/File[/tmp/b]/
ensure: defined content as '{md5}bc6e6f16b8a077ef5fbc8d59d0b931b9'

 notice: /Stage[main]//Node[cookbook]/Tmpfile[c]/File[/tmp/c]/
ensure: defined content as '{md5}bc6e6f16b8a077ef5fbc8d59d0b931b9'

How it works…
You can think of a define as being like a cookie-cutter. It describes a pattern which Puppet
can use to create lots of similar resources. Any time you declare a tmpfile instance in your
manifest, Puppet will insert all the resources contained in the tmpfile definition.

In our example, the definition of tmpfile contains a single file resource, whose content
is "Hello, world", and whose path is /tmp/${name}. If you declared an instance of
tmpfile with the name foo like this:

 tmpfile { "foo": }

then Puppet would create a file with the path /tmp/foo. In other words, ${name} in the
definition will be replaced by the name of any actual instance that Puppet is asked to
create. It's almost as though we created a new kind of resource: a tmpfile, which has one
parameter: its name.

Just like with regular resources, we don't have to pass just one name: we can provide an array
of names and Puppet will create a number of tmpfiles, as in the example.

There's more…
In the example, we created a define where the only parameter that varies between
instances is the name. But we can add whatever parameters we want, so long as we declare
them in the definition:

 define tmpfile($greeting) {
 file { "/tmp/$name":
 content => $greeting,
 }
 }

and pass values to them when we declare an instance of the resource:

 tmpfile{ "foo": greeting => "Hello, world" }

Chapter 4

3

You can declare multiple parameters as a comma-separated list:

 define webapp($domain, $path, $platform) {
 ...
 }

 webapp { "mywizzoapp":
 domain => "mywizzoapp.com",
 path => "/var/www/apps/mywizzoapp",
 platform => "Rails",
 }

This is a powerful technique for abstracting out everything that's common to certain
resources, and keeping it in one place so that you Don't Repeat Yourself. In the example
above, there might be many individual resources contained within webapp: packages, config
files, source code checkouts, virtual hosts, and so on. But all of them are the same for every
instance of webapp except the parameters we provide. These might be referenced in a
template, for example, to set the domain for a virtual host.

Using dependencies
To make sure things happen in the right order, you can specify in Puppet that one resource
depends on another - for example, you need to install package X before you can start the
service it provides, so you would mark the service as dependent on the package. Puppet will
sort out the required order to meet all the dependencies.

In some configuration management systems, resources are simply applied in the order you
write them - in other words, the ordering is implicit. That's not the case with Puppet, where
resources are applied in a more or less random order unless you state an explicit ordering
using dependencies. Some people prefer the implicit approach, because you can write the
resource definitions in the order that they need to be done, and that's the way they'll
be executed.

On the other hand, in many cases the ordering of resources doesn't matter. With an implicit-
style system, you can't tell whether resource A is listed before resource B because of a
dependency, or because it just happens to have been listed first. That makes refactoring more
difficult, as moving resources around may break some implicit dependency.

Puppet makes you do a little more work by specifying the dependencies up front, but the
resulting code is clearer and easier to maintain. Let's look at an example.

Writing Better Manifests

4

How to do it…
1. Create a new file /etc/puppet/modules/admin/manifests/ntp.pp with the

following contents:
 class admin::ntp {
 package { "ntp":
 ensure => installed,
 }

 service { "ntp":
 ensure => running,
 require => Package["ntp"],
 }

 file { "/etc/ntp.conf":
 source => "puppet:///modules/admin/ntp.conf",
 notify => Service["ntp"],
 require => Package["ntp"],
 }
 }

2. Copy your existing ntp.conf file into Puppet:
 # cp /etc/ntp.conf /etc/puppet/modules/admin/files

3. Add the admin::ntp class to your server in nodes.pp:
 node cookbook {
 include admin::ntp
 }

4. Now remove the existing ntp.conf file:
 # rm /etc/ntp.conf

5. Run Puppet:
 # puppet agent --test

 info: Retrieving plugin

 info: Caching catalog for cookbook.bitfieldconsulting.com

 info: Applying configuration version '1302960655'

 notice: /Stage[main]/Admin::Ntp/File[/etc/ntp.conf]/ensure:
defined content as '{md5}3386aaad98dd5e0b28428966dac9e1f5'

 info: /Stage[main]/Admin::Ntp/File[/etc/ntp.conf]: Scheduling
refresh of Service[ntp]

 notice: /Stage[main]/Admin::Ntp/Service[ntp]: Triggered 'refresh'
from 1 events

Chapter 4

5

 notice: Finished catalog run in 2.36 seconds

How it works…
This example demonstrates two kinds of dependency: require, and notify. In the first
case, the ntp service requires the ntp package to be applied first:

 service { "ntp":
 ensure => running,
 require => Package["ntp"],
 }

In the second case, the NTP config file is set to notify the ntp service; in other words, if the
file changes, Puppet should restart the ntp service to pick up its new configuration.

 file { "/etc/ntp.conf":
 source => "puppet:///modules/admin/ntp.conf",
 notify => Service["ntp"],
 require => Package["ntp"],
 }

This implies that the service depends on the file as well as on the package, and so Puppet will
be able to apply all three resources in the correct order:

 Package["ntp"] -> File["/etc/ntp.conf"] ~> Service["ntp"]

In fact, this is another way to specify the same dependency chain. Adding the line above
to your manifest will have the same effect as they require and notify parameters in
our example (the -> means require, while ~> means notify. However, I prefer to use
require and notify because the dependencies are defined as part of the resource, so it's
easier to see what's going on. For complex chains of dependencies, though, you may want to
use the -> notation instead.

There's more…
You can also specify that a resource depends on a certain class:

 require => Class["my-apt-repo"]

You can specify dependencies not just between resources and classes, but between
collections:

 Yumrepo <| |> -> Package <| provider == yum |>

is a powerful way to express that all yumrepo resources should be applied before all
package resources whose provider is yum.

Writing Better Manifests

6

Using node inheritance
Let's say you have dedicated servers hosted with three different providers: WreckSpace,
GoDodgy, and VerySlow. They have different data centers and geographical locations, so you
will need to make small modifications to your config for servers hosted with each provider.
You have several different types of servers, but they are distributed randomly across the
 three providers.

One way to implement this in Puppet would be to set a variable in the node definition which
tells the node where it is:

 node webserver127 {
 $provider = "VerySlow"
 include admin::basics
 include admin::ssh
 include admin::ntp
 include puppet::client
 include backup::client
 include webserver
 }

 node loadbalancer5 {
 $provider = "WreckSpace"
 include admin::basics
 include admin::ssh
 include admin::ntp
 include puppet::client
 include backup::client
 include loadbalancer
 }

As you can see, this results in a lot of duplication. It would be much easier if we simply
defined a kind of node that is a "WreckSpace server", for example, and then we could create
nodes which inherit from that node, including only the classes that determine what it does:
loadbalancer or webserver.

How to do it…
1. Create a base class for all your nodes, which contains only the classes that every

node has:
 node server {
 include admin::basics
 include admin::ssh
 include admin::ntp

Chapter 4

7

 include puppet::client
 include backup::client
 }

2. Create three different subclasses of this server node, each with the appropriate
provider variable:
 node wreckspace_server inherits server {
 $provider = "WreckSpace"
 }

 node gododgy_server inherits server {
 $provider = "GoDodgy"
 }

 node veryslow_server inherits server {
 $provider = "VerySlow"

3. Now let's say you need to create a new web server in VerySlow. To do this, just inherit
from veryslow_server:
 node webserver904 inherits veryslow_server {
 include webserver
 }

How it works…
When one node inherits from another, it picks up all the configuration that the parent node
had. You can then add anything which makes this particular node different.

You can have a node inherit from a node that inherits from another node, and so on. You can't
inherit from more than one node, though - so you can't have, for example:

 node movable_server inherits gododgy_server, veryslow_server,
wreckspace_server {
 # This won't work
 }

There's more…
Just as with a normal node definition, you can specify a list of node names which will all
inherit the same definition:

 node webserver1, webserver2, webserver3 inherits wreckspace_server {
 ...
 }

Writing Better Manifests

Or a regular expression which will match multiple servers:

 node /webserver\d+.veryslow.com/ inherits veryslow_server {
 ...
 }

See also
Using class inheritance and overriding

Using class inheritance and overriding
Just as nodes can inherit from other nodes, to save you duplicating lots of stuff for nodes
which are very similar, the same idea works for classes.

For example, imagine you have a class apache which manages the Apache web server, and
you want to set up a new Apache machine but with a slightly different config file - perhaps
listening on a different port.

You could duplicate the whole of the apache class, except for the config file. Alternatively, you
could take the config file out of the apache class and create two new classes, each of which
includes the base apache class and adds a different version of the config file.

A cleaner way is to inherit from the apache class, but override just the config file.

Getting ready…
1. Create the directory structure for a new apache module:

 # mkdir /etc/puppet/modules/apache

 # mkdir /etc/puppet/modules/apache/manifests

2. Create the file /etc/puppet/modules/apache/manifests/init.pp with the
following contents:
 import "*"

3. Create the file /etc/puppet/modules/apache/manifests/apache.pp with the
following contents:
 class apache {
 package { "apache2-mpm-worker": ensure => installed }

 service { "apache2":
 enable => true,
 ensure => running,
 require => Package["apache2-mpm-worker"],



Chapter 4

 }

 file { "/etc/apache2/ports.conf":
 source => "puppet:///modules/apache/port80.conf.apache",
 notify => Service["apache2"],
 }
 }

4. Install the Apache package, if it's not already present, and copy the included ports.
conf file into Puppet:
 # apt-get install apache2-mpm-worker

 # cp /etc/apache2/ports.conf /etc/puppet/modules/apache/files/
port80.conf.apache

5. Add the apache class to a node:
 node cookbook {
 include apache
 }

6. Run Puppet to verify that the manifest works.

How to do it…
1. Create a new version of port80.conf.apache named port8000.conf.apache

with the following changes:
 NameVirtualHost *:8000
 Listen 8000

2. Now add a new file /etc/puppet/modules/apache/manifests/port8000.pp
with the following contents:
 class apache::port8000 inherits apache {
 File["/etc/apache2/ports.conf"] {
 source => "puppet:///modules/apache/port8000.conf.apache",
 }

3. Change your node to include the apache::port8000 class instead of apache:
 node cookbook {
 include apache::port8000
 }

4. Run Puppet to check that it makes the required changes:
 # puppet agent --test

 info: Retrieving plugin

 info: Caching catalog for cookbook.bitfieldconsulting.com

Writing Better Manifests

0

 info: Applying configuration version '1302970905'

 --- /etc/apache2/ports.conf 2010-11-18 14:16:23.000000000 -0700

 +++ /tmp/puppet-file20110416-6165-pzeivi-0 2011-04-16
10:21:47.204294334 -0600

 @@ -5,8 +5,8 @@

 # Debian etch). See /usr/share/doc/apache2.2-common/NEWS.Debian.
gz and

 # README.Debian.gz

 -NameVirtualHost *:80

 -Listen 80

 +NameVirtualHost *:8000

 +Listen 8000

 <IfModule mod_ssl.c>

 # If you add NameVirtualHost *:443 here, you will also have
to change

 info: FileBucket adding /etc/apache2/ports.conf as {md5}38b31d203
26f3640a8dfbe1ff5d1c4ad

 info: /Stage[main]/Apache/File[/etc/apache2/ports.conf]:
Filebucketed /etc/apache2/ports.conf to puppet with sum 38b31d2032
6f3640a8dfbe1ff5d1c4ad

 notice: /Stage[main]/Apache/File[/etc/apache2/ports.conf]/
content: content changed '{md5}38b31d20326f3640a8dfbe1ff5d1c4ad'
to '{md5}41d9d446f779c55f13c5fe5a7477d943'

 info: /Stage[main]/Apache/File[/etc/apache2/ports.conf]:
Scheduling refresh of Service[apache2]

 notice: /Stage[main]/Apache/Service[apache2]: Triggered 'refresh'
from 1 events

 notice: Finished catalog run in 4.85 seconds

How it works…
Let's take another look at the new class:

 class apache::port8000 inherits apache {
 File["/etc/apache2/ports.conf"] {
 source => "puppet:///modules/apache/port8000.conf.apache",
 }
 }

Chapter 4

1

You can see that after the class name we have inherits apache. This will make the class
an exact copy of apache, except for the changes that follow.

The line:

 File["/etc/apache2/ports.conf"] {

specifies that we want to make changes to the file resource named /etc/apache2/
ports.conf in the parent class (note that File is capitalized, meaning that we're referring
to an existing resource rather than defining a new one).

The line:

 source => "puppet:///modules/apache/port8000.conf.apache",

means that we are going to override the source parameter of the parent class's resource
with a new value. The result will be exactly the same as if we had copied the whole class
definition from apache but changed the value of source:

 class apache {
 package { "apache2-mpm-worker": ensure => installed }

 service { "apache2":
 enable => true,
 ensure => running,
 require => Package["apache2-mpm-worker"],
 }

 file { "/etc/apache2/ports.conf":
 source => "puppet:///modules/apache/port8000.conf.apache",
 notify => Service["apache2"],
 }
 }

There's more…
Overriding inherited classes may seem complicated at first. Once you get the idea, though,
it's actually quite simple. It's a great way to make your manifests more readable because it
removes lots of duplication, and focuses only on the parts which differ. Here are some more
ways to use overriding.

Undefining parameters
Sometimes you don't want to change the value of a parameter, you just want to remove it
altogether. To do this, use the value undef:

 class apache::norestart inherits apache {

Writing Better Manifests

2

 File["/etc/apache2/ports.conf"] {
 notify => undef,
 }
 }

Adding extra values using +>
Similarly, instead of replacing a value, you may want to add more values to those defined in
the parent class. The plusignment operator +> will do this:

 class apache::ssl inherits apache {
 file { "/etc/ssl/certs/cookbook.pem":
 source => "puppet:///modules/apache/cookbook.pem",
 }

 Service["apache2"] {
 require +> File["/etc/ssl/certs/cookbook.pem"],
 }
 }

The +> operator adds a value (or an array of values surrounded by square brackets) to the
value defined in the parent class. In this case, what we end up with is the equivalent of this:

 service { "apache2":
 enable => true,
 ensure => running,
 require => [Package["apache2-mpm-worker"], File["/etc/ssl/certs/
cookbook.pem"]],
 }

Disabling resources
One of the most common uses for inheritance and overrides is to disable services or other
resources:

 class apache::disabled inherits apache {
 Service["apache2"] {
 enable => false,
 ensure => stopped,
 }
 }

See also
 Using node inheritance

 Passing parameters to classes





Chapter 4

3

 Using standard naming conventions

Passing parameters to classes

"It should be noted that no ethically-trained software engineer would ever consent
to write a DestroyBaghdad procedure. Basic professional ethics would instead
require him to write a DestroyCity procedure, to which Baghdad could be given
as a parameter."

— Nathaniel S Borenstein

Sometimes it's very useful to parameterize some aspect of a class. For example, you might
need to manage different versions of a gem package, and rather than making separate
classes for each which differ only in the version number, or using inheritance and overrides,
you can pass in the version number as a parameter.

How to do it…
1. Declare the parameter as part of the class definition:

 class eventmachine($version) {
 package { "eventmachine":
 provider => gem,
 ensure => $version,
 }
 }

2. Then use the following syntax to include the class on a node:
 class { "eventmachine": version => "0.12.8" }

How it works…
The class definition:

 class eventmachine($version) {

is just like a normal class definition except it specifies that the class takes one parameter:
$version. Inside the class, we've defined a package resource:

 package { "eventmachine":
 provider => gem,
 ensure => $version,
 }



Writing Better Manifests

4

This is a gem package, and we're requesting to install version $version.

When you include the class on a node, instead of the usual syntax:

 include eventmachine

there's a class statement:

 class { "eventmachine": version => "0.12.8" }

which has the same effect, but also sets a value for the parameter $version.

There's more…
You can specify multiple parameters for a class:

 class mysql($package, $socket, $port) {

and supply them in the same way:

 class { "mysql":
 package => "percona-sql-server-5.0",
 socket => "/var/run/mysqld/mysqld.sock",
 port => "3306",
 }

You can also give default values for some of your parameters:

 class mysql($package, $socket, $port = "3306") {

or all:

 class mysql(
 package = "percona-sql-server-5.0",
 socket = "/var/run/mysqld/mysqld.sock",
 port = "3306") {

Unlike a define, only one instance of a parameterized class can exist on a node. So where
you need to have several different instances of the resource, use a define instead.

See also
Using node inheritance

Using class inheritance and overriding





Chapter 4

5

Writing reusable, cross-platform manifests

"The pessimist complains about the wind; the optimist expects it to change; the
realist adjusts the sails."

— William Arthur Ward

Every system administrator dreams of a unified, homogeneous infrastructure, of identical
machines all running the same version of the same OS. As in other areas of life, however, the
reality is often messy and doesn't conform to the plan.

You are probably responsible for a bunch of assorted servers of varying age and architecture,
running different kernels from different OS distributions, often scattered across different data
centers and ISPs.

This situation should strike terror into the hearts of sysadmins of the "SSH in a for loop"
persuasion, because executing the same commands on every server can have different,
unpredictable, and even dangerous results.

We should certainly strive to bring older servers up to date and get everything as far as
possible working on a single reference platform to make administration simpler, cheaper, and
more reliable. But until we get there, Puppet makes coping with heterogeneous environments
slightly easier.

How to do it…
1. If you have servers in different data centers which need slightly different network

configuration, for example, use the node inheritance technique to encapsulate the
differences:
 node wreckspace_server inherits server {
 include admin::wreckspace_specific
 }

2. Where you need to apply the same manifest to servers with different OS distributions,
the main differences will probably be the names of packages and services, and the
location of config files. Try to capture all these differences into a single class, using
selectors to set global variables:
 $ssh_service = $operatingsystem? {
 /Ubuntu|Debian/ => "ssh",
 default => "sshd",
 }

Writing Better Manifests

6

Then you needn't worry about the differences in any other part of the manifest; when you
refer to something, use the variable in confidence that it will point to the right thing in each
environment:

 service { $ssh_service:
 ensure => running,
 }

3. Often we need to cope with mixed architectures; this can affect the paths to
shared libraries, and also may require different versions of packages. Again, try to
encapsulate all the required settings in a single architecture class which sets
global variables:
 $libdir = $architecture ? {
 x86_64 => "/usr/lib64",
 default => "/usr/lib",
 }

Then you can use these wherever an architecture-dependent value is required, in your
manifests or even in templates:

 ; php.ini
 [PHP]
 ; Directory in which the loadable extensions (modules) reside.
 extension_dir = <%= libdir %>/php/modules

How it works...
The advantage of this approach (which could be called "top-down") is that you only need to
make your choices once. The alternative, bottom-up approach, would be to have a selector or
case statement everywhere a setting is used:

 service { $operatingsystem? {
 /Ubuntu|Debian/ => "ssh",
 default => "sshd" }:
 ensure => running,
 }

This not only results in lots of duplication, but makes the code harder to read. And when a
new operating system is added to the mix, you'll need to make changes throughout the whole
manifest, instead of just in one place.

Chapter 4

7

There's more…
If you are writing a module for public distribution (for example on Puppet Forge), you can make
it much more valuable by making it as cross-platform as possible. As far as you can, test it on
lots of different distributions, platforms, and architectures, and add the appropriate variables
so it works everywhere.

If you use a public module and adapt it to your own environment, consider updating the public
version with your changes if you think they might be helpful to other people.

Even if you are not thinking of publishing a module, bear in mind that it may be in production
use for a long time and may have to adapt to many changes in the environment. If it's
designed to cope with this from the start, it'll make life easier for you - or whoever ends up
maintaining your code.

"Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live."

— Dave Carhart

See also
Using node inheritance

Using class inheritance and overriding

Using public modules

Getting information about the environment
Often in a Puppet manifest, you need to know some local information about the machine
you're on. Facter is the tool that accompanies Puppet to provide a standard way of getting
information ('facts') from the environment about things like:

operating system

memory size

architecture

processor count

To see a complete list of the facts available on your system, run:

 # facter

While it can be handy to get this information from the command line, the real power of Facter
lies in being able to access these facts in your Puppet manifests.















Writing Better Manifests

How to do it…
1. Reference a Facter fact in your manifest like any other variable:

 notify { "This is $operatingsystem version
$operatingsystemrelease, on $architecture architecture, kernel
version $kernelversion": }

When Puppet runs, it will fill in the appropriate values for the current node:

 notice: This is Ubuntu version 10.04, on i386 architecture, kernel
version 2.6.32

How it works…
Facter provides an abstraction layer for Puppet, and a standard way for manifests to get
information about their environment. When you refer to a fact in a manifest, Puppet will query
Facter to get the current value, and insert it into the manifest.

There's more…
You can also use facts in ERB templates. For example, you might want to insert the node's
hostname into a file, or change a config setting for an application based on the memory size
of the node. When you use fact names in templates, remember that they don't need a dollar
sign, because this is Ruby, not Puppet:

 $KLogPath <%= case kernelversion when "2.6.31" then "/var/run/
rsyslog/kmsg" else "/proc/kmsg" end %>

See also
Creating custom Facter facts

Importing dynamic information with
generate

Even though system administrators like to wall themselves off from the rest of the office using
piles of old printers, they sometimes need to exchange information with other departments.
For example, you may need to insert data into your Puppet manifests which is derived from
some outside source. The generate function is very useful for this.



Chapter 4

Getting ready…
1. Create the script /usr/local/bin/latest-puppet.rb on the Puppetmaster with

the following contents:
#!/usr/bin/ruby

require 'open-uri'

page = open("http://www.puppetlabs.com/misc/download-options/").
read
print page.match(/stable version is ([\d\.]*)/)[1]

How to do it…
1. .Add the following to your manifest:

 $latestversion = generate("/usr/local/bin/latest-puppet.rb")
 notify { "The latest stable Puppet version is ${latestversion}.
You're using ${puppetversion}.": }

2. Run Puppet:
puppet agent --test

notice: The latest stable Puppet version is 2.6.7. You're using
2.6.4.

How it works…
The generate function runs the specified script or program on the Puppetmaster (not the
client) and returns the result - in this case, the version number of the latest stable Puppet
release.

I don't recommend you run this script in production, as Puppet Labs have a habit of
rearranging their web site, but you get the idea. Anything a script can do, print, fetch, or
calculate - for example the results of a database query - can be brought into your manifest
using generate.

It's worth remembering that, just as with embedded Ruby calls in templates, the generate
is run on the Puppetmaster and not on the node which is running Puppet. I once made this
mistake by calling /bin/hostname in a template and finding to my surprise that all my nodes
were apparently named puppet.

When you need to get information specifically about the node, this is best done with a
custom fact.

Writing Better Manifests

100

There's more…
If you need to pass arguments to the executable called by generate, add them as extra
arguments to the function call:

 $latestpuppet = generate("/usr/local/bin/latest-version.rb",
"puppet")
 $latestmc = generate("/usr/local/bin/latest-version.rb",
"mcollective")

Puppet will try to protect you from malicious shell calls by restricting the characters you can
use in a call to generate, so shell pipelines aren't allowed, for example. The simplest and
safest thing to do is to put all your logic into a script and then call that script.

See also
Creating custom Facter facts

Importing data from CSV files

Importing data from CSV files
When you need to look up some value in a table, you could do it with lengthy case statements
or selectors, but a neater way is to use the extlookup function. This queries an external CSV
file on the Puppetmaster and returns the matching piece of data.

Grouping all such data into a single file and moving it outside the Puppet manifests makes
it easier to maintain, as well as easier to share with other people: a development team can
manage the things Puppet needs to know about their application, for example, by deploying a
suitable CSV file as part of the release. Puppet just needs to know where to find the file, and
extlookup will do the rest.

Getting ready…
1. Create the file /var/www/apps/common.csv with the following contents:

 path,/var/www/apps/%{name}
 railsversion,3
 domain,www.%{name}.com

2. Create the file /var/www/apps/myapp.csv with the following contents:
 railsversion,2





Chapter 4

101

How to do it…
1. Add the following to your manifest:

 $extlookup_datadir = "/var/www/apps/"
 $extlookup_precedence = ["%{name}", "common"]

 class app($name) {
 $railsversion = extlookup("railsversion")
 $path = extlookup("path")
 $domain = extlookup("domain")
 notify { "App data: Path ${path}, Rails version
${railsversion}, domain ${domain}": }
 }

 class { "app": name => "myapp" }

2. Run Puppet:
 # puppet agent --test

 info: Retrieving plugin

 info: Caching catalog for cookbook.bitfieldconsulting.com

 info: Applying configuration version '1303129760'

 notice: App data: Path /var/www/apps/myapp, Rails version 2,
domain www.myapp.com

 notice: /Stage[main]/App/Notify[App data: Path /var/www/apps/
myapp, Rails version 2, domain www.myapp.com]/message: defined
'message' as 'App data: Path /var/www/apps/myapp, Rails version 2,
domain www.myapp.com'

 notice: Finished catalog run in 0.58 seconds

How it works…
1. The first thing we do is define the variable $extlookup_datadir, which tells

extlookup what directory to look for data files in. You would normally set this in
site.pp or wherever you define global variables.
 $extlookup_datadir = "/var/www/apps/"

2. Then we tell extlookup what data files to look at, in order of precedence:
 $extlookup_precedence = ["%{name}", "common"]

Writing Better Manifests

102

This can be an array of any length, and when we make an extlookup query, Puppet will try
each of the files in order until it finds one that has the requested value. The file names can
contain variables. In this example, we've used %{name}, so we're expecting a variable called
$name to be set when we call extlookup and Puppet will use its value as the first filename
to look for.

1. Next, inside the app class, we call extlookup to get a value:
 $railsversion = extlookup("railsversion")

The extlookup machinery now looks for a CSV file to read the data from. It looks in the
$extlookup_datadir directory (in this case /var/www/apps) for a file named %{name}.
csv (in this case myapp.csv). So it reads the file /var/www/apps/myapp.csv which
contains:

 railsversion,2

We've found the required value (2), so extlookup returns it.

1. The next extlookup call isn't so lucky:
 $path = extlookup("path")

Again, extlookup looks first in myapp.csv, but it doesn't find a value matching path. So it
moves on to the next file listed in $extlookup_precedence, which is common.csv:

 path,/var/www/apps/%{name}
 railsversion,3
 domain,www.%{name}.com

Thankfully, this does match, so Puppet returns the value /var/www/apps/%{name}, which
in this case evaluates to /var/www/apps/myapp.

You can see that this allows us to have a set of default values in common.csv which each
app may choose to override in its own myapp.csv file. extlookup will keep on querying the
files listed in $extlookup_precedence until it finds the value requested. As myapp.csv is
listed first, any setting in it will take precedence over settings in common.csv.

There's more…
You can also specify default values in the extlookup call, to be used if no suitable data is
found in the CSV files:

 $path = extlookup("path", "/var/www/misc")

You can also specify a CSV file to be consulted first, before anything in $extlookup_
precedence:

 $path = extlookup("path", "/var/www/misc", "paths")

Chapter 4

103

This will look in paths.csv for the data, and if it doesn't find it, will move on to the files listed
in $extlookup_precedence as usual.

The values in your CSV files can also refer to variables, as we did here:

 domain,www.%{name}.com

You can use any variable that's in scope, including Facter facts:

 domain,%{fqdn}

R.I. Pienaar's article "Complex data and Puppet" is an excellent introduction to extlookup:
http://www.devco.net/archives/2009/08/31/complex_data_and_puppet.php

Jordan Sissel has written about configuring your whole infrastructure using extlookup:
http://sysadvent.blogspot.com/2010/12/day-12-scaling-operability-
with-truth.html

See also
 Importing dynamic information

 Creating custom Facter facts

Passing arguments to shell commands
If you need to insert values into a command line, they often need to be quoted, especially if
they contain spaces. The shellquote function will take any number of arguments, including
arrays, and quote each of the arguments and return them all as a space-separated string
which you can pass to commands.

In this example, we would like to set up an exec resource which will rename a file, but both
the source and the target name contain spaces, so they need to be correctly quoted in the
command line.

How to do it…
1. Add the following to your manifest:

 $source = "Hello Jerry"
 $target = "Hello... Newman"
 $argstring = shellquote($source, $target)
 $command = "/bin/mv ${argstring}"
 notify { $command: }

2. Run Puppet:
 notice: /bin/mv "Hello Jerry" "Hello... Newman"





Writing Better Manifests

104

How it works…
1. First we define the $source and $target variables, which are the two filenames we

want to use in the command line.
 $source = "Hello Jerry"
 $target = "Hello... Newman"

2. Then we call shellquote to concatenate these variables into a quoted, space-
separated string.
 $argstring = shellquote($source, $target)

3. Then we put together the final command line:
 $command = "/bin/mv ${argstring}"

4. The result is:
 /bin/mv "Hello Jerry" "Hello... Newman"

5. This command line can now be run with an exec resource.

What would happen if we didn't use shellquote?

 $source = "Hello Jerry"
 $target = "Hello... Newman"
 $command = "/bin/mv ${source} ${target}"
 notify { $command: }

 notice: /bin/mv Hello Jerry Hello... Newman

This won't work because mv expects space-separated arguments, so will interpret this as a
request to move three files Hello, Jerry, and Hello.. . into a directory named Newman,
which probably isn't what we want.

5
Working with Files

and Packages

"If builders built buildings the way programmers wrote programs, then the first woodpecker
that came along would destroy civilization."

— Gerald Weinberg

In this chapter we will cover:

Making quick edits to config files

Using Augeas to automatically edit config files

Using dependencies

Building config files using snippets

Using ERB templates

Using array iteration in templates

Installing packages from a third-party repository

Setting up an APT package repository

Setting up a gem repository

Building packages automatically from source

Comparing package versions























Working with Files and Packages

106

Making quick edits to config files
Did you know Puppet can do keyhole surgery? Often we don't want to have to put a whole
config file into Puppet just to add one setting - especially if the file is managed by someone
else and we can't overwrite it. What would be useful is a simple recipe to add a line to a config
file if it's not already present.

You can use an exec resource to do jobs like this: this example, from the Puppet Labs wiki,
shows how to use exec to append a line to a text file.

How to do it…
1. Create the file /etc/puppet/manifests/utils.pp with the following contents:

define append_if_no_such_line($file, $line) {
 exec { "/bin/echo '$line' >> '$file'":
 unless => "/bin/grep -Fx '$line' '$file'"
 }
}

2. Add this line to /etc/puppet/manifests/site.pp:
import "utils.pp"

3. Now add this to your manifest:
append_if_no_such_line { "enable-ip-conntrack":
 file => "/etc/modules",
 line => "ip_conntrack",
}

4. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303649606'

notice: /Stage[main]//Node[cookbook]/Append_if_no_such_
line[enable-ip-conntrack]/Exec[/bin/echo 'ip_conntrack' >> '/etc/
modules']/returns: executed successfully

notice: Finished catalog run in 1.22 seconds

Chapter 5

107

How it works…
The exec resource will append the specified text in $line to the file $file:

 exec { "/bin/echo '$line' >> '$file'":

unless it's already present:

 unless => "/bin/grep -Fx '$line' '$file'"

This append_if_no_such_line resource is now available for you to use in your manifest.
In this example, we've used it to ensure that the /etc/modules file (which specifies kernel
modules to load at boot time) contains the line:

ip_conntrack

There's more…
You can use similar defines to perform other minor operations on text files. For example, this
will enable you to search and replace within a file:

define replace_matching_line($match, $replace) {
 exec { "/usr/bin/ruby -i -p -e 'sub(%r{$match}, \"$replace\")'
$name":
 onlyif => "/bin/grep -E '$match' $name",
 logoutput => on_failure,
 }
}

replace_matching_line { "/etc/apache2/apache2.conf":
 match => "LogLevel .*",
 replace => "LogLevel debug",
}

See also
Using Augeas to automatically edit config files

Using Augeas to automatically edit
config files

Of course, the great thing about standards is that there are so many of them. Sometimes it
seems like every application has its own subtly different config file format, and writing regular
expressions to parse and modify all of them can be a tiresome business.



Working with Files and Packages

10

Thankfully, Augeas is here to help. Augeas is a tool which aims to simplify working with
different config file formats, by presenting them all as a simple tree of values. Puppet's Augeas
support allows you to create augeas resources which can make the required config changes
intelligently and automatically.

Getting ready…
1. Create the file /etc/puppet/modules/admin/manifests/augeas.pp with the

following contents:
class admin::augeas {
 package { ["augeas-lenses",
 "augeas-tools",
 "libaugeas0",
 "libaugeas-ruby1.8"]:
 ensure => "present"
 }
}

2. Include this class on a node:
node cookbook {
 include admin::augeas
}

3. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303657095'

notice: /Stage[main]/Admin::Augeas/Package[augeas-tools]/ensure:
ensure changed 'purged' to 'present'

notice: Finished catalog run in 21.96 seconds

How to do it…
1. Create the file /etc/puppet/modules/admin/manifests/ipforward.pp with

the following contents:
class admin::ipforward {
 augeas { "enable-ip-forwarding":
 context => "/files/etc/sysctl.conf",
 changes => [
 "set net.ipv4.ip_forward 1",
],

Chapter 5

10

 }
}

2. Include this class on a node:
node cookbook {
 include admin::augeas
 include admin::ipforward
}

3. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303729376'

notice: /Stage[main]/Admin::Ipforward/Augeas[enable-ip-
forwarding]/returns: executed successfully

notice: Finished catalog run in 3.53 seconds

4. Check that the setting has been correctly applied:
sysctl -p |grep forward

net.ipv4.ip_forward = 1

How it works…
1. We declare an augeas resource named enable-ip-forwarding:

 augeas { "enable-ip-forwarding":

2. We specify that we want to make changes in the context of the file /etc/sysctl.
conf:
 context => "/files/etc/sysctl.conf",

3. The parameter changes is passed an array of settings that we want to make (in this
case only one):
 changes => [
 "set net.ipv4.ip_forward 1",
],

In general Augeas changes take the form:

set <parameter> <value>

Working with Files and Packages

110

Augeas uses a set of translation files called lenses to enable it to write these settings in the
appropriate format for the given config file. In this case, the setting will be translated into a
line like this in /etc/sysctl.conf:

net.ipv4.ip_forward=1

There's more…
I've chosen /etc/sysctl.conf as the example because it can contain a wide variety of
kernel settings and you may want to change these settings for all sorts of different purposes
and in different Puppet classes. You might want to enable IP forwarding, as in the example, for
a router class, but you might also want to tune the value of net.core.somaxconn for a load-
balancer class.

This means that simply Puppetising the /etc/sysctl.conf file and distributing it as a text
file won't work, because you might have several different and conflicting versions, depending
on the setting you want to modify. Augeas is the right solution here because you can define
augeas resources in different places which modify the same file, and they won't conflict.

Augeas is a powerful tool which ships with lenses for most of the standard Linux config files,
and you can write your own for rare or proprietary config formats if you need to manage these.
For more about using Puppet and Augeas, see the page on the Puppet Labs wiki: http://
projects.puppetlabs.com/projects/1/wiki/Puppet_Augeas

Building config files using snippets
How do you eat an elephant? One bite at a time. Sometimes you have a situation where you
want to build up a single config file from various snippets managed by different classes. For
example, you might have two or three services which require rsync modules to be configured,
so you can't distribute a single rsyncd.conf. Although you could use Augeas, there's a
simple way to concatenate config snippets together into a single file using an exec.

How to do it…
1. Create the file /etc/puppet/modules/admin/manifests/rsyncdconf.pp

with the following contents:
class admin::rsyncdconf {
 file { "/etc/rsyncd.d":
 ensure => directory,
 }

 exec { "update-rsyncd.conf":
 command => "/bin/cat /etc/rsyncd.d/*.conf > /etc/
rsyncd.conf",

Chapter 5

111

 refreshonly => true,
 }
}

2. Add the following to your manifest:
class myapp::rsync {
 include admin::rsyncdconf

 file { "/etc/rsyncd.d/myapp.conf":
 ensure => present,
 source => "puppet:///modules/myapp/myapp.rsync",
 require => File["/etc/rsyncd.d"],
 notify => Exec["update-rsyncd.conf"],
 }
}

include myapp::rsync

3. Create the file /etc/puppet/modules/myapp/files/myapp.rsync with the
following contents:
[myapp]
 uid = myappuser
 gid = myappuser
 path = /opt/myapp/shared/data
 comment = Data for myapp
 list = no
 read only = no
 auth users = myappuser

4. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303731804'

notice: /Stage[main]/Admin::Rsyncdconf/File[/etc/rsyncd.d]/ensure:
created

notice: /Stage[main]/Myapp::Rsync/File[/etc/rsyncd.d/myapp.conf]/
ensure: defined content as '{md5}e1e57cf38bb88a7b4f2fd6eb1ea2823a'

info: /Stage[main]/Myapp::Rsync/File[/etc/rsyncd.d/myapp.conf]:
Scheduling refresh of Exec[update-rsyncd.conf]

notice: /Stage[main]/Admin::Rsyncdconf/Exec[update-rsyncd.conf]:
Triggered 'refresh' from 1 events

notice: Finished catalog run in 1.01 seconds

Working with Files and Packages

112

How it works…
The admin::rsyncdconf class creates a directory for rsync config snippets to be placed
into:

file { "/etc/rsyncd.d":
 ensure => directory,
}

When you create a config snippet (such as in myapp::rsync), all you need to do is require
the directory:

require => File["/etc/rsyncd.d"],

and notify the exec that updates the main config file:

notify => Exec["update-rsyncd.conf"],

This exec will then be run every time one of these snippets is updated:

exec { "update-rsyncd.conf":
 command => "/bin/cat /etc/rsyncd.d/*.conf > /etc/rsyncd.conf",
 refreshonly => true,
}

which will concatenate all the snippets in /etc/rsyncd.d into rsyncd.conf.

There's more…
This is a useful pattern whenever you have a service like rsync that has a single config file
which may contain distinct snippets. In effect, it gives you the functionality of Apache's conf.
d or PHP's php-ini.d directories.

See also
Using tags

Using ERB templates
A template is a text file with a college degree. Anywhere you might deploy a text file using
Puppet, you can use a template instead. In the simplest case, a template can just be a static
text file. More usefully, you can insert variables into it using ERB (embedded Ruby) syntax.
For example:

<%= name %>, this is a very large drink.



Chapter 5

113

If the template is used in a context where the variable $name contains Zaphod
Beeblebrox, the template will evaluate to:

Zaphod Beeblebrox, this is a very large drink.

This simple technique is very useful for generating lots of files which only differ in the values
of one or two variables: for example, virtual host files. In this example, we'll use an ERB
template to generate an Apache virtual host definition.

Getting ready…
1. Create an Apache module, if you don't have one:

mkdir /etc/puppet/modules/apache

mkdir /etc/puppet/modules/apache/templates

mkdir /etc/puppet/modules/apache/manifests

2. Create the file /etc/puppet/modules/apache/manifests/init.pp with the
following contents:
import "*"

3. Create the file /etc/puppet/modules/apache/manifests/apache.pp with the
following contents:
class apache {
 package { "apache2-mpm-worker": ensure => installed }

 service { "apache2":
 enable => true,
 ensure => running,
 require => Package["apache2-mpm-worker"],
 }
}

How to do it…
1. Create the file /etc/puppet/modules/apache/manifests/site.pp with the

following contents:
class apache::site($sitedomain) {
 include apache

 file { "/etc/apache2/sites-available/${sitedomain}.conf":
 content => template("apache/vhost.erb"),
 require => Package["apache2-mpm-worker"],
 }

Working with Files and Packages

114

 file { "/etc/apache2/sites-enabled/${sitedomain}.conf":
 ensure => symlink,
 target => "/etc/apache2/sites-available/${sitedomain}.
conf",
 require => Package["apache2-mpm-worker"],
 notify => Service["apache2"],
 }
}

2. Create the file /etc/puppet/modules/apache/templates/vhost.erb with the
following contents:
<VirtualHost *:80>
 ServerName <%= sitedomain %>
 ServerAdmin admin@<%= sitedomain %>
 DocumentRoot /var/www/<%= sitedomain %>
 ErrorLog logs/<%= sitedomain %>-error_log
 CustomLog logs/<%= sitedomain %>-access_log common

 <Directory /var/www/<%= sitedomain %>>
 Allow from all
 Options +Includes +Indexes +FollowSymLinks
 AllowOverride all
 </Directory>
</VirtualHost>

<VirtualHost *:80>
 ServerName www.<%= sitedomain %>
 Redirect 301 / http://<%= sitedomain %>/
</VirtualHost>

3. Add this to a node:
class { "apache::site": sitedomain => "keithlard.com" }

4. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304761207'

notice: /Stage[main]/Apache::Site/File[/etc/apache2/sites-
available/keithlard.com.conf]/ensure: defined content as '{md5}f2a
558c02beeaed4beb7da250821b663'

notice: /Stage[main]/Apache::Site/File[/etc/apache2/sites-enabled/
keithlard.com.conf]/ensure: created

Chapter 5

115

info: /Stage[main]/Apache::Site/File[/etc/apache2/sites-enabled/
keithlard.com.conf]: Scheduling refresh of Service[apache2]

notice: /Stage[main]/Apache/Service[apache2]: Triggered 'refresh'
from 1 events

notice: Finished catalog run in 8.06 seconds

How it works…
The apache::site class takes a parameter sitedomain which is the domain name for the
virtual host we want to create: in this case, keithlard.com.

It then uses the vhost.erb template to generate an appropriate Apache virtual host
definition. Wherever the variable $sitedomain is referenced in the template, for example:

ServerName <%= sitedomain %>

Puppet will replace it with the corresponding value:

ServerName keithlard.com

The beauty of the template system is that you could create multiple sites, all using the same
virtual host template:

class { "apache::site": sitedomain => "bitfieldconsulting.com" }
class { "apache::site": sitedomain => "cribbagecorner.com" }
class { "apache::site": sitedomain => "cornishceremonies.com" }
class { "apache::site": sitedomain => "mosquito-mojito.com" }

and if you want to make a slight change to the configuration for all sites (for example,
changing the admin email address) you can do it once in the template and Puppet will update
all virtual hosts accordingly.

There's more…
In the example, we only used one variable in the template, but you can have as many as you
like. These can also be facts:

ServerName <%= fqdn %>

or Ruby expressions:

MAILTO=<%= emails.join(',') %>

or any Ruby code you want:

ServerAdmin <%= sitedomain == 'coldcomfort.com' ? 'seth@coldcomfort.
com' : 'flora@poste.com' %>

Working with Files and Packages

116

See also
Using array iteration in templates

Using array iteration in templates
In the previous example we saw that you can use Ruby to interpolate different values in
templates depending on the result of an expression. You can also use a loop to generate
content based on, for example, the elements of an array:

How to do it…
1. Add the following to your manifest:

$ipaddresses = ['192.168.0.1',
 '158.43.128.1',
 '10.0.75.207']

file { "/tmp/addresslist.txt":
 content => template("admin/addresslist.erb")
}

2. Create the file /etc/puppet/modules/admin/templates/addresslist.erb
with the following contents:
<% ipaddresses.each do |ip| -%>
IP address <%= ip %> is present.
<% end -%>

3. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304766335'

notice: /Stage[main]//Node[cookbook]/File[/tmp/addresslist.txt]/
ensure: defined content as '{md5}7ad1264ebdae101bb5ea0afef474b3ed'

notice: Finished catalog run in 0.64 seconds

4. Check the contents of the generated file:
cat /tmp/addresslist.txt

IP address 192.168.0.1 is present.

IP address 158.43.128.1 is present.

IP address 10.0.75.207 is present.



Chapter 5

117

How it works…
1. In the first line of the template, we reference the array ipaddresses, and call its

each method:
<% ipaddresses.each do |ip| -%>

2. In Ruby, this creates a loop which will execute once for each element of the array.
Each time round the loop, the variable ip will be set to the value of the current
element.

3. In our example, the ipaddresses array contains three elements, so the following
line will be executed three times, once for each element:
IP address <%= ip %> is present.

4. This will result in three output lines:
IP address 192.168.0.1 is present.
IP address 158.43.128.1 is present.
IP address 10.0.75.207 is present.

5. The final line ends the loop:
<% end -%>

6. Note that the first and last lines end with -%>, instead of just %> as we saw before.
The effect of the - is to suppress the newline that would otherwise be generated,
giving us an unwanted blank line in the file.

There's more…
Templates can also iterate over hashes, or arrays of hashes:

$interfaces = [{ name => 'eth0',
 ip => '192.168.0.1' },
 { name => 'eth1',
 ip => '158.43.128.1' },
 { name => 'eth2',
 ip => '10.0.75.207' }]

<% interfaces.each do |interface| -%>
Interface <%= interface['name'] %> has the address <%= interface['ip']
%>.
<% end -%>

Interface eth0 has the address 192.168.0.1.
Interface eth1 has the address 158.43.128.1.
Interface eth2 has the address 10.0.75.207.

Working with Files and Packages

11

See also
Using ERB templates

Installing packages from a third-party
repository

Most often you will want to install packages from the main distribution repo, so a simple
package resource will do:

package { "exim4": ensure => installed }

Sometimes, though, you need a package which is only found in a third-party repository (an
Ubuntu PPA, for example). Or it might be that you need a more recent version of a package
than that provided by the distribution, which is available from a third party.

On a manually administered machine, you would normally do this by adding the repo source
configuration to /etc/apt/sources.list.d (and, if necessary, a GPG key for the repo)
before installing the package. We can automate this process easily with Puppet.

How to do it…
1. Add the following to your manifest:

package { "python-software-properties": ensure => installed }

exec { "/usr/bin/add-apt-repository ppa:mathiaz/puppet-backports":
 creates => "/etc/apt/sources.list.d/mathiaz-puppet-backports-
lucid.list",
 require => Package["python-software-properties"],
}

2. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304773240'

notice: /Stage[main]//Node[cookbook]/Exec[/usr/bin/add-apt-
repository ppa:mathiaz/puppet-backports]/returns: executed
successfully

notice: Finished catalog run in 5.97 seconds



Chapter 5

11

How it works…
1. The python-software-properties package provides the command add-apt-

repository, which simplifies the process of adding extra repos:
package { "python-software-properties": ensure => installed }

2. We then call this command in the exec to add the required configuration:
exec { "/usr/bin/add-apt-repository ppa:mathiaz/puppet-backports":

3. So that the exec is not run every time Puppet runs, we specify a file that the
command creates, so that Puppet will skip the exec if this file already exists:
 creates => "/etc/apt/sources.list.d/mathiaz-puppet-backports-
lucid.list",

You might want to combine this with purging unwanted repo definitions in /etc/apt/
sources.list.d, as described in the section on recursive file resources.

See also
Distributing directory trees using recursive file resources

Setting up an APT package repository

"We will control the horizontal. We will control the vertical."

- The Outer Limits

Running your own package repository has several advantages. You can distribute your own
packages with it. You can control the versions of upstream or third-party packages that you
put into it. And you can locate it close to where your servers are, to avoid the problem of slow
or unreliable mirror sites.

Even if you don't need to create your own packages, you may want to download the required
versions of your critical dependency packages and store them in your own repo, thus
preventing any surprises when things change upstream (for example, your distro version could
reach end-of-life and the repos turned off).

It also makes it easier to auto-update packages within Puppet. You may occasionally need
to update a package (for example, when a security update is available), so it's convenient to
specify ensure => latest in the package definition. But when you don't control the repo,
this puts you at risk of an unexpected upgrade which breaks something in your system.



Working with Files and Packages

120

Your own repo gives you the best of both worlds: you can auto-update the package in Puppet,
but since it comes from your repo, a new version will only be available when you put one there.
You can test the version from upstream before making it available in your production repo.

Getting ready…
You will need the apache module from the section on 'Using ERB templates', so create this if
you don't already have it.

In the example, I've called the repo packages.bitfieldconsulting.com, because that's
what mine is called. You'll probably want to use a different name, so replace it throughout the
example with the name of your repo.

How to do it…
1. Create a new repo module:

mkdir /etc/puppet/modules/repo

mkdir /etc/puppet/modules/repo/manifests

mkdir /etc/puppet/modules/repo/files

2. Create the file /etc/puppet/modules/repo/manifests/init.pp with the
following contents:
import "*"

3. Create the file /etc/puppet/modules/repo/manifests/bitfield-server.
pp with the following contents:
class repo::bitfield-server {
 include apache

 package { "reprepro": ensure => installed }

 file { ["/var/apt",
 "/var/apt/conf"]:
 ensure => directory,
 }

 file { "/var/apt/conf/distributions":
 source => "puppet:///modules/repo/distributions",
 require => File["/var/apt/conf"],
 }

 file { "/etc/apache2/sites-available/apt-repo":
 source => "puppet:///modules/repo/apt-repo.conf",

Chapter 5

121

 require => Package["apache2-mpm-worker"],
 }

 file { "/etc/apache2/sites-enabled/apt-repo":
 ensure => symlink,
 target => "/etc/apache2/sites-available/apt-repo",
 require => File["/etc/apache2/sites-available/apt-repo"],
 notify => Service["apache2"],
 }
}

4. Create the file /etc/puppet/modules/repo/files/distributions with the
following contents:
Origin: Bitfield Consulting
Label: bitfield
Suite: stable
Codename: lucid
Architectures: amd64 i386
Components: main non-free contrib
Description: Custom and cached packages for Bitfield Consulting

45.Create the file /etc/puppet/modules/repo/files/apt-repo.conf
with the following contents:
<VirtualHost *:80>
 DocumentRoot /var/apt
 ServerName packages.bitfieldconsulting.com
 ErrorLog /var/log/apache2/packages.bitfieldconsulting.com.
error.log

 LogLevel warn

 CustomLog /var/log/apache2/packages.bitfieldconsulting.com.
access.log combined
 ServerSignature On

 # Allow directory listings so that people can browse the
repository from their browser too
 <Directory "/var/apt">
 Options Indexes FollowSymLinks MultiViews
 DirectoryIndex index.html
 AllowOverride Options
 Order allow,deny
 allow from all
 </Directory>

 # Hide the conf/ directory for all repositories

Working with Files and Packages

122

 <Directory "/var/apt/conf">
 Order allow,deny
 Deny from all
 Satisfy all
 </Directory>

 # Hide the db/ directory for all repositories
 <Directory "/var/apt/db">
 Order allow,deny
 Deny from all
 Satisfy all
 </Directory>
</VirtualHost>

5. Add the following to the manifest for a node:
include repo::bitfield-server

6. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304775601'

notice: /Stage[main]/Repo::Bitfield-server/File[/var/apt]/ensure:
created

notice: /Stage[main]/Repo::Bitfield-server/File[/var/apt/conf]/
ensure: created

notice: /Stage[main]/Repo::Bitfield-server/File[/var/apt/conf/
distributions]/ensure: defined content as '{md5}65dc791b876f53318a
35fcc42c770283'

notice: /Stage[main]/Repo::Bitfield-server/Package[reprepro]/
ensure: created

notice: /Stage[main]/Repo::Bitfield-server/File[/etc/apache2/
sites-enabled/apt-repo]/ensure: created

notice: /Stage[main]/Repo::Bitfield-server/File[/etc/apache2/
sites-available/apt-repo]/ensure: defined content as '{md5}2da4686
957e5acf49220047fe6f6e6e1'

info: /Stage[main]/Repo::Bitfield-server/File[/etc/apache2/sites-
enabled/apt-repo]: Scheduling refresh of Service[apache2]

notice: /Stage[main]/Apache/Service[apache2]: Triggered 'refresh'
from 1 events

notice: Finished catalog run in 16.32 seconds

Chapter 5

123

How it works…
Actually, you don't need very much to be an APT repository. It works over HTTP, so you just
need an Apache virtual host. You can put the actual package files anywhere you like, as long
as there is a conf/distributions file which will give APT information about the repo.

1. The first part of the bitfield-server class makes sure we have Apache set up:
class repo::bitfield-server {
 include apache

2. The reprepro tool is useful for managing the repo itself (for example, adding new
packages):
 package { "reprepro": ensure => installed }

3. We create the root directory of the repo in /var/apt, along with the conf/
distributions file:
 file { ["/var/apt",
 "/var/apt/conf"]:
 ensure => directory,
 }

 file { "/var/apt/conf/distributions":
 source => "puppet:///modules/repo/distributions",
 require => File["/var/apt/conf"],
 }

4. The remainder of the class deploys the Apache virtual host file to enable it to serve
requests on packages.bitfieldconsulting.com:
file { "/etc/apache2/sites-available/apt-repo":
 source => "puppet:///modules/repo/apt-repo.conf",
 require => Package["apache2-mpm-worker"],
}

file { "/etc/apache2/sites-enabled/apt-repo":
 ensure => symlink,
 target => "/etc/apache2/sites-available/apt-repo",
 require => File["/etc/apache2/sites-available/apt-repo"],
 notify => Service["apache2"],
}

Working with Files and Packages

124

There's more…
Of course, a repo isn't much good without any packages in it. In this section we'll see how to
add packages, and also how to configure machines to download packages from your repo.

Adding packages
To add a package to your repo, download it and then use reprepro to add it to the repo:

cd /tmp

wget http://archive.ubuntu.com/ubuntu/pool/main/n/ntp/ntp_4.2.4p8+dfsg-
1ubuntu2.1_i386.deb

cd /var/apt

reprepro includedeb lucid /tmp/ntp_4.2.4p8+dfsg-1ubuntu2.1_i386.deb

Exporting indices...

Configuring nodes to use the repo
1. Create the file /etc/puppet/modules/repo/manifests/bitfield.pp with the

following contents (replacing the IP address with that of your repo server):
class repo::bitfield {
 host { "packages.bitfieldconsulting.com":
 ip => "10.0.2.15",
 ensure => present,
 target => "/etc/hosts",
 }

 file { "/etc/apt/sources.list.d/bitfield.list":
 content => "deb http://packages.bitfieldconsulting.com/
lucid main\n",
 require => Host["packages.bitfieldconsulting.com"],
 notify => Exec["bitfield-update"],
 }

 exec { "bitfield-update":
 command => "/usr/bin/apt-get update",
 require => File["/etc/apt/sources.list.d/bitfield.
list"],
 refreshonly => true,
 }
}

If you have a DNS server or control of your DNS zone, you can skip the host entry.

Chapter 5

125

2. Apply this class to a node:
node cookbook {
 include repo::bitfield
}

3. Test whether the ntp package shows up as available from your repo:
apt-cache madison ntp

 ntp | 1:4.2.4p8+dfsg-1ubuntu2.1 | http://us.archive.ubuntu.
com/ubuntu/ lucid-updates/main Packages

 ntp | 1:4.2.4p8+dfsg-1ubuntu2.1 | http://packages.
bitfieldconsulting.com/ lucid/main Packages

 ntp | 1:4.2.4p8+dfsg-1ubuntu2 | http://us.archive.ubuntu.
com/ubuntu/ lucid/main Packages

 ntp | 1:4.2.4p8+dfsg-1ubuntu2 | http://us.archive.ubuntu.
com/ubuntu/ lucid/main Sources

 ntp | 1:4.2.4p8+dfsg-1ubuntu2.1 | http://us.archive.ubuntu.
com/ubuntu/ lucid-updates/main Sources

Signing your packages
For production use, you should sign your packages and repo with a GPG key; for information
about how to set this up, see Sander Marechal's useful article on setting up and managing
APT repositories: http://www.jejik.com/articles/2006/09/setting_up_and_
managing_an_apt_repository_with_reprepro/

Setting up a gem repository
It's every system administrator's dream: yet another incompatible packaging system. If you
manage Ruby or Rails applications, you'll need to deal with Rubygems. Maintaining your own
gem repository has many of the same advantages as having an APT repo: you can control
availability and package versions, and you can also use it to distribute your own gems if you
need to.

How to do it…
1. Create the file /etc/puppet/modules/repo/manifests/gem-server.pp with

the following contents:
class repo::gem-server {
 include apache

 file { "/etc/apache2/sites-available/gemrepo":
 source => "puppet:///modules/repo/gemrepo.conf",

Working with Files and Packages

126

 require => Package["apache2-mpm-worker"],
 notify => Service["apache2"],
 }

 file { "/etc/apache2/sites-enabled/gemrepo":
 ensure => symlink,
 target => "/etc/apache2/sites-available/gemrepo",
 require => File["/etc/apache2/sites-available/gemrepo"],
 notify => Service["apache2"],
 }

 file { "/var/gemrepo":
 ensure => directory,
 }
}

2. Create the file /etc/puppet/modules/repo/files/gemrepo.conf with the
following contents:
<VirtualHost *:80>
 ServerAdmin john@bitfieldconsulting.com
 ServerName gems.bitfieldconsulting.com
 ErrorLog logs/gems.bitfieldconsulting.com-error_log
 CustomLog logs/gems.bitfieldconsulting.com-access_log common

 Alias / /var/gemrepo/
 <Location />
 Options Indexes
 </Location>
</VirtualHost>
57.Add the following to your manifest:
node cookbook {
 include repo::gem-server
}

3. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304949279'

notice: /Stage[main]/Repo::Gem-server/File[/etc/apache2/sites-
available/gemrepo]/ensure: defined content as '{md5}ae1fd948098f14
503de02441d02a825d'

info: /Stage[main]/Repo::Gem-server/File[/etc/apache2/sites-

Chapter 5

127

available/gemrepo]: Scheduling refresh of Service[apache2]

notice: /Stage[main]/Repo::Gem-server/File[/etc/apache2/sites-
enabled/gemrepo]/ensure: created

info: /Stage[main]/Repo::Gem-server/File[/etc/apache2/sites-
enabled/gemrepo]: Scheduling refresh of Service[apache2]

notice: /Stage[main]/Apache/Service[apache2]: Triggered 'refresh'
from 2 events

notice: /Stage[main]/Repo::Gem-server/File[/var/gemrepo]/ensure:
created

notice: Finished catalog run in 6.52 seconds

How it works…
The principle is exactly the same as in the APT repo example. We define a directory where the
gem repository will live, and a virtual host definition in Apache to enable it to serve requests
for gems.bitfieldconsulting.com.

There's more…
Again, your gem repo will be more useful if you put something in it. We'll find out how to do
that below, and also how to configure your nodes to access the gem repo.

Adding gems
Adding new gems to your repo is simple. Put the gem file in /var/gemrepo/gems and run
this command in the /var/gemrepo directory:

gem generate_index

Using the gem repo
As with the APT repo, make sure that your nodes know about the hostname gems.
bitfieldconsulting.com, either by deploying a host entry with Puppet, or configuring
it in DNS.

Then you can specify a package in Puppet as follows:

package { "json":
 provider => "gem",
 source => "http://gems.bitfieldconsulting.com",
}

Working with Files and Packages

12

Building packages automatically
from source

Tarballs can seriously damage your health. While using a distro or third-party package, or
rolling your own package, is always preferable to building software from source, sometimes it
has to be done. Creating Debian packages (or any other flavor of packages) can be a lengthy
and error-prone process, and there may not always be time or budget available to do this.

If you have to build a program from source, Puppet can at least help with this process. The
general procedure is to automate what you would otherwise do manually:

Download the source tarball

Unpack the tarball

Configure and build the program

Install the program

In this example we'll build OpenSSL from source (though for production you should use the
distro package, but it makes a useful demonstration).

How to do it…
1. Add the following to your manifest:

exec { "build-openssl":
 cwd => "/root",
 command => "/usr/bin/wget ftp://ftp.openssl.org/source/
openssl-0.9.8p.tar.gz && /bin/tar xvzf openssl-0.9.8p.tar.gz && cd
openssl-0.9.8p && ./Configure linux-generic32 && make install",
 creates => "/usr/local/ssl/bin/openssl",
 logoutput => on_failure,
 timeout => 0,
}

2. Run Puppet (it may take a while):
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304954159'

notice: /Stage[main]//Node[cookbook]/Exec[build-openssl]/returns:
executed successfully

notice: Finished catalog run in 554.00 seconds









Chapter 5

12

How it works…
The exec command is in five separate stages, delimited by && operators. This means that
should any subcommand fail, the whole command will stop and fail. It's a useful construct
where you want to make sure each subcommand has succeeded before going on to the next.

1. The first stage downloads the source tarball:
/usr/bin/wget ftp://ftp.openssl.org/source/openssl-0.9.8p.tar.gz

2. The second stage unpacks it:
/bin/tar xvzf openssl-0.9.8p.tar.gz

3. The third stage changes working directory to the source tree:
cd openssl-0.9.8p

4. The fourth stage runs the configure script (this is usually where you will need to
specify any options or customisations):
./Configure linux-generic32

5. The final stage builds and installs the software:
make install

6. So that this lengthy process isn't run every time Puppet runs, we specify a file that the
build creates:
creates => "/usr/local/ssl/bin/openssl",

If you need to force a rebuild for whatever reason, remove this file.

1. Things don't always compile first time; in case of problems, we specify the
logoutput parameter which will show us what the build process is complaining
about:
 logoutput => on_failure,

2. Finally, because the compilation may take a while, we set a zero timeout parameter
(Puppet times out exec commands after 5 minutes by default):
 timeout => 0,

There's more…
If you have to build quite a few packages from source, it may be worth converting the recipe
above into a define, so that you can use more or less the same code to build each package.

Working with Files and Packages

130

Comparing package versions
Package version numbers are odd things. They look like decimal numbers, but they're not - a
version number is often in the form 2.6.4, for example. If you need to compare one version
number with another, you can't do a straightforward string comparison: 2.6.4 would be
interpreted as greater than 2.6.12. And a numeric comparison won't work because they're
not valid numbers.

Puppet's versioncmp function comes to the rescue. If you pass it two things that look like
version numbers, it will compare them and return a value indicating which is the greater:

versioncmp(A, B)

returns:

0 if A and B are equal

Greater than 1 if A is higher than B

Less than 0 if A is less than B

How to do it…
1. Add the following to your manifest:

$app_version = "1.2.2"
$min_version = "1.2.10"

if versioncmp($app_version, $min_version) >= 0 {
 notify { "Version OK": }
} else {
 notify { "Upgrade needed": }
}

2. Run Puppet:
notice: Upgrade needed

3. Now change the value of $app_version:
$app_version = "1.2.14"

4. Run Puppet again:
notice: Version OK







Chapter 5

131

How it works…
We've specified that the minimum acceptable version ($min_version) is 1.2.10. So in the
first example, we want to compare it with an $app_version of 1.2.2. A simple alphabetic
comparison of these two strings (in Ruby, for example) would give the wrong result, but
versioncmp correctly determines that 1.2.2 is less than 1.2.10 and alerts us that we
need to upgrade.

In the second example, $app_version is now 1.2.14 which versioncmp correctly
recognises as greater than $min_version and so we get the message Version OK.

6
Users and Other

Resources

"How good the design is doesn't matter near as much as whether the design is getting better
or worse. If it is getting better, day by day, I can live with it forever. If it is getting worse, I will
die."

— Kent Beck

In this chapter we will cover:

Using virtual resources

Managing users with virtual resources

Managing users' SSH access

Managing users' customization files

Efficiently distributing cron jobs

Running a command when a file is updated

Using host resources

Using multiple file sources

Distributing directory trees using recursive file resources

Cleaning up old files

Using schedules with resources

Auditing resources

Temporarily disabling resources

Managing timezones





























Users and Other Resources

134

Using virtual resources
What are virtual resources and why do we need them? Let's look at a typical situation where
virtual resources might come in useful.

You are responsible for two applications, FaceSquare and Twitstagram. Both are web apps
running on Apache. The definition for FaceSquare might look something like this:

class app::facesquare {
 package { "apache2-mpm-worker": ensure => installed }

 ...
}

The definition for Twitstagram might look like this:

class app::twitstagram {
 package { "apache2-mpm-worker": ensure => installed }

 ...
}

All is well until you need to consolidate both apps onto a single server:

node micawber {
 include app::facesquare
 include app::twitstagram
}

Now Puppet will complain because you tried to define two resources with the same name:
apache2-mpm-worker.

err: Could not retrieve catalog from remote server: Error 400 on SERVER:
Duplicate definition: Package[apache2-mpm-worker] is already defined in
file /etc/puppet/modules/app/manifests/facesquare.pp at line 2; cannot
redefine at /etc/puppet/modules/app/manifests/twitstagram.pp:2 on node
cookbook.bitfieldconsulting.com

You could remove the duplicate package definition from one of the classes, but then it would
fail if you tried to include the app class on another server that didn't already have Apache.

You can get round this problem by putting the Apache package in its own class and then using
include apache; Puppet doesn't mind you including the same class multiple times. But this
has the disadvantage that every potentially conflicting resource must have its own class.

Virtual resources to the rescue. A virtual resource is just like a normal resource, except that it
starts with an @ character:

@package { "apache2-mpm-worker": ensure => installed }

Chapter 6

135

You can think of it as being like an 'FYI' resource: I'm just telling you about this resource, and
I don't actually want you to do anything about it yet. Puppet will read and remember virtual
resource definitions, but won't actually create the resource until you say so.

To create the resource, use the realize function

realize(Package["apache2-mpm-worker"])

You can call realize as many times as you want on the resource and it won't result in a
conflict. So virtual resources are the way to go when several different classes all require the
same resource and they may need to co-exist on the same node.

How to do it…
1. Create a new module app:

mkdir -p /etc/puppet/modules/app/manifests

2. Create the file /etc/puppet/modules/app/manifests/init.pp with the
following contents:
import "*"

3. Create the file /etc/puppet/modules/app/manifests/facesquare.pp with
the following contents:
class app::facesquare {
 realize(Package["apache2-mpm-worker"])
}

4. Create the file /etc/puppet/modules/app/manifests/twitstagram.pp with
the following contents:
class app::twitstagram {
 realize(Package["apache2-mpm-worker"])
}

5. Create the file /etc/puppet/modules/admin/manifests/virtual-
packages.pp with the following contents:
class admin::virtual-packages {
 @package { "apache2-mpm-worker": ensure => installed }
}

6. Include the following on the node:
node cookbook {
 include admin::virtual-packages
 include app::facesquare
 include app::twitstagram
}

Users and Other Resources

136

7. Run Puppet.

How it works…
You define the package as a virtual resource in one place, the admin::virtual-packages
class. All nodes can include this class and you can put all your virtual packages in it. None of
them will actually be installed on a node until you call realize.

class admin::virtual-packages {
 @package { "apache2-mpm-worker": ensure => installed }
}

Every class that needs the Apache package can call realize on this virtual resource:

class app::twitstagram {
 realize(Package["apache2-mpm-worker"])
}

Puppet knows, because you made the resource virtual, that you intended multiple references
to the same package, and didn't just accidentally create two resources with the same name.
So it does the right thing.

There's more…
To realize virtual resources you can also use the collection syntax:

Package <| title = "apache2-mpm-worker" |>

The advantage of this syntax is that you're not restricted to the resource name; you could also
use a tag, for example:

Package <| tag = "security" |>

Or you can just specify all instances of the resource type, by leaving the query section blank:

Package <| |>

See also
Managing users with virtual resources

Managing users with virtual resources
Users are an excellent example of where virtual resources can come in handy. Consider the
following setup. You have three users: John, Graham, and Steven. To simplify administration of
a large number of machines, you have defined classes for two kinds of users: developers and



Chapter 6

137

sysadmins. All machines need to include sysadmins, but only some machines need
developer access.

node server {
 include user::sysadmins
}

node webserver inherits server {
 include user::developers
}

John is a sysadmin, and Steven a developer, but Graham is both, so needs to be in both
groups. This will cause a conflict on a webserver as we end up with two definitions of the
user graham.

To avoid this situation, the Puppet community has adopted the practice of making all users
virtual, defined in a single class user::virtual which every machine includes, and then
realizing the users where they are needed.

How to do it…
1. Create a user module:

mkdir -p /etc/puppet/modules/user/manifests

2. Create the file /etc/puppet/modules/user/manifests/init.pp with the
following contents:
import "*"

3. Create the file /etc/puppet/modules/app/manifests/virtual.pp with the
following contents:
class user::virtual {
 @user { "john": }
 @user { "graham": }
 @user { "steven": }
}

4. Create the file /etc/puppet/modules/app/manifests/developers.pp with
the following contents:
class user::developers {
 realize(User["graham"],
 User["steven"])
}

Users and Other Resources

13

5. Create the file /etc/puppet/modules/app/manifests/sysadmins.pp with the
following contents:
class user::sysadmins {
 realize(User["john"],
 User["graham"])
}
6.Add the following to a node:
include user::virtual
include user::sysadmins
include user::developers

6. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305554239'

notice: /Stage[main]/User::Virtual/User[john]/ensure: created

notice: /Stage[main]/User::Virtual/User[steven]/ensure: created

notice: /Stage[main]/User::Virtual/User[graham]/ensure: created

notice: Finished catalog run in 2.36 seconds

How it works…
Every node should include the user::virtual class, as part of your basic housekeeping
configuration which is inherited by all servers. This class will define all users in your
organization or site. This should also include any users who exist only to run applications or
services (such as apache or git, for example).

You can then organize your users into groups (not in the sense of UNIX groups, but perhaps as
different teams or job roles) - developers and sysadmins is a typical example. The class
for a group will realize whichever users are included in it:

class user::sysadmins {
 realize(User["john"],
 User["graham"])
}

You can then include these groups wherever they are needed, without worrying about conflicts
caused by multiple definitions of the same user.

Chapter 6

13

See also
Using virtual resources

Managing users' customization files

Managing users' SSH access
Commonly-accepted best practice for access control to servers is to use named accounts with
passphrase-protected SSH keys. Puppet makes this easy to manage thanks to the built-in
ssh_authorized_key type.

To combine this with virtual users, as described in the previous section, you can create a
define which includes both the user and the ssh_authorized_key. This will also come in
useful for adding customization files and other per-user resources.

How to do it…
1. Change the user::virtual class that you created in the section on managing

users with virtual resources, to the following:
class user::virtual {
 define ssh_user($key) {
 user { $name:
 ensure => present,
 managehome => true,
 }

 ssh_authorized_key { "${name}_key":
 key => $key,
 type => "ssh-rsa",
 user => $name,
 }
 }

 @ssh_user { "phil":
 key =>





Users and Other Resources

140

aC1yc2EAAAABIwAAAIEA3ATqENg+GWACa2BzeqTdGnJhNoBer8x6pfWkzNzeM8Zx7/
2Tf2pl7kHdbsiTXEUawqzXZQtZzt/j3Oya+PZjcRpWNRzprSmd2UxEEPTqDw9LqY5S
2B8og/NyzWaIYPsKoatcgC7VgYHplcTbzEhGu8BsoEVBGYu3IRy5RkAcZik=",

 }

}

2. Include the following on a node:
realize(User::Virtual::Ssh_user["phil"])

3. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305561740'

notice: /Stage[main]/User::Virtual/User::Virtual::Ssh_user[phil]/
User[phil]/ensure: created

notice: /Stage[main]/User::Virtual/User::Virtual::Ssh_user[phil]/
Ssh_authorized_key[phil_key]/ensure: created

notice: Finished catalog run in 1.04 seconds

How it works…
We've created a new define called ssh_user which includes both the user resource itself,
and the associated ssh_authorized_key.

define ssh_user($key) {
 user { $name:
 ensure => present,
 managehome => true,
 }

 ssh_authorized_key { "${name}_key":
 key => $key,
 type => "ssh-rsa",
 user => $name,
 }
}

Then we create a virtual instance of ssh_user for the user phil:

@ssh_user { "phil":
 key =>
B3NzaC1yc2EAAAABIwAAAIEA3ATqENg+GWACa2BzeqTdGnJhNoBer8x6pfWkzNzeM8Zx7/

Chapter 6

141

2Tf2pl7kHdbsiTXEUawqzXZQtZzt/j3Oya+PZjcRpWNRzprSmd2UxEEPTqDw9LqY5S2B8o
g/NyzWaIYPsKoatcgC7VgYHplcTbzEhGu8BsoEVBGYu3IRy5RkAcZik=",
}

Recall that because the resource is virtual, Puppet will take note of it but won't actually create
anything until realize is called.

Finally, we added this to the node:

realize(User::Virtual::Ssh_user["phil"])

This actually creates the user and the authorized_keys file containing the user's
public key.

There's more…
To use this idea with the organization of users into group classes that we saw in the previous
section, modify the classes like this:

class user::sysadmins {
 search User::Virtual

 realize(Ssh_user["john"],
 Ssh_user["graham"])
}

The search User::Virtual is just to save on clutter; it allows you to refer to Ssh_user
directly without prefixing it with User::Virtual:: every time.

If you get an error like:

err: /Stage[main]/User::Virtual/User::Virtual::Ssh_user[graham]/Ssh_
authorized_key[graham_key]: Could not evaluate: No such file or directory
- /home/graham/.ssh

it may be because you previously created the graham user without having Puppet manage the
home directory; in this situation Puppet will not automatically create the .ssh directory for the
authorized_keys file. Run:

userdel graham

and run Puppet again to fix the problem.

Users and Other Resources

142

Managing users' customization files
Users, like cats, often feel the need to mark their territory. Unlike cats, users tend to
customize their shell environments, terminal colours, aliases, and so forth. This is usually
achieved by a number of dotfiles in their home directory: for example, .bash_profile.

You can add this to your Puppet-based user management by modifying the user::
virtual::ssh_user class so that it can optionally include any dotfiles which are present in
the Puppet repo.

How to do it…
1. Modify the user::virtual class as follows:

class user::virtual {
 define user_dotfile($username) {
 file { "/home/${username}/.${name}":
 source => "puppet:///modules/user/${username}-
${name}",
 owner => $username,
 group => $username,
 }
 }

 define ssh_user($key, $dotfile = false) {
 user { $name:
 ensure => present,
 managehome => true,
 }

 ssh_authorized_key { "${name}_key":
 key => $key,
 type => "ssh-rsa",
 user => $name,
 }

 if $dotfile {
 user_dotfile { $dotfile:
 username => $name,
 }
 }
 }

 @ssh_user { "john":
 key =>

Chapter 6

143

aC1yc2EAAAABIwAAAIEA3ATqENg+GWACa2BzeqTdGnJhNoBer8x6pfWkzNzeM8Zx7/
2Tf2pl7kHdbsiTXEUawqzXZQtZzt/j3Oya+PZjcRpWNRzprSmd2UxEEPTqDw9LqY5S
2B8og/NyzWaIYPsKoatcgC7VgYHplcTbzEhGu8BsoEVBGYu3IRy5RkAcZik=",
 dotfile => ["bashrc", "bash_profile"],
 }
}

2. Create the file /etc/puppet/modules/user/files/john-bashrc with the
following contents:
export PATH=$PATH:/var/lib/gems/1.8/bin

3. Create the file /etc/puppet/modules/user/files/john-bash_profile with
the following contents:
. ~/.bashrc

4. Run Puppet.

How it works…
We've added a new define, user_dotfile. This will be called once for each dotfile the user
wants to have. In the example, john has two dotfiles: .bashrc and .bash_profile. These
are declared as follows:

@ssh_user { "john":
 key => ...
 dotfile => ["bashrc", "bash_profile"],
}

You can supply either a single dotfile, or a list of them in array form, as above.

For each dotfile, user_dotfile will look for a corresponding source file in the modules/
user/files directory. For example, with the bashrc dotfile, Puppet will look for:

modules/user/files/john-bashrc

This will be copied to the node as:

/home/john/.bashrc

See also
Managing users with virtual resources

Users and Other Resources

144

Efficiently distributing cron jobs
When you have many servers executing the same cron job, it's usually a good idea not to run
them all at the same time. If the jobs all access a common server, it may put too much load
on that server, and even if they don't, all the servers will be busy at once, which may affect
their capacity to provide other services.

Puppet's inline_template function allows us to use some Ruby logic to set different
runtimes for the job depending on the hostname.

How to do it…
1. Add the following to a node:

define cron_random($command, $hour) {
 cron { $name:
 command => $command,
 minute => inline_template("<%= (hostname+name).hash.abs %
60 %>"),
 hour => $hour,
 ensure => "present",
 }
}

cron_random { "hello-world":
 command => "/bin/echo 'Hello world'",
 hour => 2,
}

cron_random { "hello-world-2":
 command => "/bin/echo 'Hello world'",
 hour => 1,
}

2. .Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305713506'

notice: /Stage[main]//Node[cookbook]/Cron_random[hello-world]/
Cron[hello-world]/ensure: created

notice: /Stage[main]//Node[cookbook]/Cron_random[hello-world-2]/
Cron[hello-world-2]/ensure: created

notice: Finished catalog run in 1.07 seconds

Chapter 6

145

How it works…
We want to choose a 'random' minute for each cron job; that is, not genuinely random (or it
would change every time Puppet runs), but more or less guaranteed to be different for each
cron job on each host.

We can do this by using Ruby's hash method which computes a numerical value from any
object, in this case a string. The value will be the same each time, so although the value looks
random, it will not change when Puppet runs again.

hash will generate a large integer, and we want values between 0 and 59, so we use the Ruby
% (modulus) operator to restrict the result to this range. Although there are only 60 possible
values, the hash function is designed to produce as uniform an output as possible, so there
should be very few collisions and the minute values should be well-distributed.

We want the value to be different for identical jobs on different machines, so we use the
hostname in computing the hash value. However, we also want the value to be different for
different jobs on the same machine, so we combine the hostname with the name variable,
which will be the name of the cron job (hello-world, for example).

There's more…
In this example we only randomized the minute of the cron job, and supplied the hour as part
of the definition. If you sometimes need to specify the day of the week as well, you could add it
as an optional parameter for cron_random with a default value:

define cron_random($command, $hour, $weekday = "*") {

If you wanted to also randomize the hour (for example, for jobs which could run at any time of
day and need to be distributed across all 24 hours evenly) you could modify cron_random as
follows:

hour => inline_template("<%= (hostname+name).hash.abs % 24 %>"),

See also
Running Puppet from cron

Running a command when a file is updated
It's a very common pattern to have Puppet take some action whenever a particular file is
updated. For example, in the rsync config snippet example, each snippet file called an exec
to update the main rsyncd.conf file when it changed.



Users and Other Resources

146

An exec resource will normally be run every time Puppet runs, unless you specify one of the
following parameters:

creates

onlyif

unless

refreshonly => true

The refreshonly parameter means that the exec should only be run if it receives a
notify from another resource (such as a file, for example).

Getting ready…
1. Install the nginx package:

apt-get install nginx

How to do it…
1. Create a new module nginx with the usual directory structure:

mkdir /etc/puppet/modules/nginx

mkdir /etc/puppet/modules/nginx/files

mkdir /etc/puppet/modules/nginx/manifests

2. Create the file /etc/puppet/modules/nginx/manifests/init.pp with the
following contents:
import "*"

3. Create the file /etc/puppet/modules/nginx/manifests/nginx.pp with the
following contents:
class nginx {
 package { "nginx": ensure => installed }

 service { "nginx":
 enable => true,
 ensure => running,
 }

 exec { "reload nginx":
 command => "/usr/sbin/service nginx reload",
 require => Package["nginx"],
 refreshonly => true,
 }









Chapter 6

147

 file { "/etc/nginx/nginx.conf":
 source => "puppet:///modules/nginx/nginx.conf",
 notify => Exec["reload nginx"],
 }
}

4. Copy the nginx.conf file into the new module:
cp /etc/nginx/nginx.conf /etc/puppet/modules/nginx/files

5. Add the following to your manifest:
include nginx

6. Make a test change to Puppet's copy of the nginx.conf file:
echo \# >>/etc/puppet/modules/nginx/files/nginx.conf

7. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1303745502'

--- /etc/nginx/nginx.conf 2010-02-15 00:16:47.000000000 -0700

+++ /tmp/puppet-file20110425-31239-158xcst-0 2011-04-25
09:39:49.586322042 -0600

@@ -48,3 +48,4 @@

 # proxy on;

 # }

 # }

+#

info: FileBucket adding /etc/nginx/nginx.conf as {md5}7bf139588b5e
cd5956f986c9c1442d44

info: /Stage[main]/Nginx/File[/etc/nginx/nginx.conf]: Filebucketed
/etc/nginx/nginx.conf to puppet with sum 7bf139588b5ecd5956f986c9c
1442d44

notice: /Stage[main]/Nginx/File[/etc/nginx/nginx.conf]/content:
content changed '{md5}7bf139588b5ecd5956f986c9c1442d44' to '{md5}d
28d08925174c3f6917a78797c4cd3cc'

info: /Stage[main]/Nginx/File[/etc/nginx/nginx.conf]: Scheduling
refresh of Exec[reload nginx]

notice: /Stage[main]/Nginx/Exec[reload nginx]: Triggered 'refresh'
from 1 events

notice: Finished catalog run in 1.69 seconds

Users and Other Resources

14

How it works…
With most services, you'd simply define a service resource which gets a notify from the
config file. This causes Puppet to restart the service in order that it can pick up the changes.

However, Nginx sometimes doesn't restart properly, especially when restarted by Puppet, and
so I cooked up this remedy for one site to have Puppet run /etc/init.d/nginx reload
instead of restarting it. Here's how it works.

The exec resource has the refreshonly parameter set to true:

exec { "reload nginx":
 command => "/usr/sbin/service nginx reload",
 require => Package["nginx"],
 refreshonly => true,
}

so it will only run if it receives a notify.

The config file resource supplies the necessary notify if it's changed:

file { "/etc/nginx/nginx.conf":
 source => "puppet:///modules/nginx/nginx.conf",
 notify => Exec["reload nginx"],
}

Whenever Puppet needs to update this file, it will also run the exec, which will call:

/usr/sbin/service nginx reload

to pick up the changes.

There's more…
You can use a similar pattern anywhere some action needs to be taken every time a resource
is updated. Possible uses might include:

triggering service reloads

running a syntax check before restarting a service

concatenating config snippets

running tests

chaining execs

If you have several commands which all need to be run when a single file is updated, it might
be easier to have the commands all subscribe to the file, rather than have the file notify
the commands. The effect is the same.











Chapter 6

14

Using host resources
It's common practice to move machines around, especially on cloud infrastructure, so the IP
of a particular machine may change quite often. Because of this, it's obviously a bad idea to
hard-code IP addresses into your configuration. Where one machine needs to access another
- for example, an app server accessing a database server - it's better to use a hostname than
an IP address.

But how to map names to IP addresses? This is often done with DNS, but small organizations
may not have a DNS server, and large organizations may make it so time-consuming and
bureaucratic to implement DNS changes that no-one bothers. Also, DNS information can
propagate to machines at different times, so to ensure quick and consistent address updates
one approach is to use local /etc/hosts entries controlled by Puppet.

How to do it…
1. .Add the following to your manifest:

host { "www.bitfieldconsulting.com":
 ip => "109.74.195.241",
 target => "/etc/hosts",
 ensure => present,
}

2. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305716418'

notice: /Stage[main]//Node[cookbook]/Host[www.bitfieldconsulting.
com]/ensure: created

info: FileBucket adding /etc/hosts as {md5}977bf5811de978b7f041301
9e77b4abe

notice: Finished catalog run in 0.21 seconds

How it works…
No explanation necessary.

Users and Other Resources

150

There's more...
Organizing your host resources into classes can be helpful. For example, you could put the
host resources for all your DB servers into one class called admin::dbhosts which is
included by all web servers.

Where machines may need to be defined in multiple classes (for example, a database server
might also be a repository server), virtual resources can solve this problem. For example, you
could define all your hosts as virtual in a single class:

class admin::allhosts {
 @host { "db1.bitfieldconsulting.com":
 ...
 }
}

and then realize the hosts you need in the various classes:

class admin::dbhosts {
 realize(Host["db1.bitfieldconsulting.com"])
}

class admin::repohosts {
 realize(Host["db1.bitfieldconsulting.com"])
}

Using multiple file sources
A neat feature of Puppet's file resource is that you can specify multiple sources for the file.
Puppet will look for each of them in order. If the first isn't found, it moves on to the next, and
so on. You can use this to specify a default substitute if the particular file isn't present, or even
a series of increasingly generic substitutes.

How to do it…
1. Add this class to your manifest:

class mysql::app-config($app) {
 file { "/etc/my.cnf":
 source => ["puppet:///modules/admin/${app}.my.cnf",
 "puppet:///modules/admin/generic.my.cnf",],
 }
}

Chapter 6

151

2. Create the file /etc/puppet/modules/admin/files/minutespace.my.cnf
with the following contents:
MinuteSpace config file

3. Create the file /etc/puppet/modules/admin/files/generic.my.cnf with the
following contents:
Generic config file

4. Add the following to a node:
class { "mysql::app-config": app => "minutespace" }

5. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305897071'

notice: /Stage[main]/Mysql::App-config/File[/etc/my.cnf]/ensure:
defined content as '{md5}24f04b960f4d33c70449fbc4d9f708b6'

notice: Finished catalog run in 0.35 seconds

6. Check that Puppet has deployed the app-specific config file:
cat /etc/my.cnf

MinuteSpace config file

7. Now change the node definition to:
 class { "mysql::app-config": app => "shreddit" }

8. Run Puppet again:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1305897864'

--- /etc/my.cnf 2011-05-20 13:17:56.006239489 +0000

+++ /tmp/puppet-file20110520-15575-1icobgs-0 2011-05-20
13:24:25.030296062 +0000

@@ -1 +1 @@

-# MinuteSpace config file

+# Generic config file

info: FileBucket adding /etc/my.cnf as {md5}24f04b960f4d33c70449fb
c4d9f708b6

info: /Stage[main]/Mysql::App-config/File[/etc/my.cnf]:

Users and Other Resources

152

Filebucketed /etc/my.cnf to puppet with sum 24f04b960f4d33c70449fb
c4d9f708b6

notice: /Stage[main]/Mysql::App-config/File[/etc/my.cnf]/content:
content changed '{md5}24f04b960f4d33c70449fbc4d9f708b6' to '{md5}b
3a6e744c3ab78dfb20e46ff55f6c33c'

notice: Finished catalog run in 0.93 seconds

How it works…
We've defined the /etc/my.cnf file as having two sources:

file { "/etc/my.cnf":
 source => ["puppet:///modules/admin/${app}.my.cnf",
 "puppet:///modules/admin/generic.my.cnf",],
}

The value of $app will be passed in by anyone using the class. So in the first example, we
passed in a value of minutespace:

class { "mysql::app-config": app => "minutespace" }

So Puppet will look first of all for modules/admin/files/minutespace.my.cnf. This file
exists, so it will be used. So far, so normal.

Then we change the value of app to shreddit. Puppet now looks for modules/admin/
files/shreddit.my.cnf. This doesn't exist, so Puppet tries the next listed source:
modules/admin/files/generic.my.cnf. This does exist, so it will be deployed.

There's more...
You can use this trick anywhere you have a file resource. For example, some nodes might
need machine-specific config, but not others, so you could do something like:

file { "/etc/stuff.cfg":
 source => ["puppet:///modules/stuff/${hostname}.cfg",
 "puppet:///modules/stuff/generic.cfg"],
}

Then you put the normal configuration in generic.cfg. If machine cartman needs a special
config, just put it in the file cartman.cfg. This will be used in preference to the generic file
because it is listed first in the array of sources.

Chapter 6

153

See also
Passing parameters to classes

Distributing directory trees using
recursive file resources

"To understand recursion, you must first understand recursion."

— Saying

When you find yourself deploying several files with Puppet, all to the same directory, it might
be worth considering a recursive file resource instead. If you set the recurse parameter
on a directory, Puppet will copy the directory to the node along with its contents and all its
subdirectories:

file { "/usr/lib/nagios/plugins/custom":
 source => "puppet:///modules/nagios/plugins",
 require => Package["nagios-plugins"],
 recurse => true,
}

How to do it…
1. Create a suitable directory tree in the Puppet repo:

mkdir /etc/puppet/modules/admin/files/tree

mkdir /etc/puppet/modules/admin/files/tree/a

mkdir /etc/puppet/modules/admin/files/tree/b

mkdir /etc/puppet/modules/admin/files/tree/c

mkdir /etc/puppet/modules/admin/files/tree/a/1

2. Add the following to your manifest:
file { "/tmp/tree":
 source => "puppet:///modules/admin/tree",
 recurse => true,
}

3. Run Puppet:
puppet agent --test

info: Retrieving plugin



Users and Other Resources

154

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304768523'

notice: /Stage[main]//Node[cookbook]/File[/tmp/tree]/ensure:
created

notice: /File[/tmp/tree/a]/ensure: created

notice: /File[/tmp/tree/a/1]/ensure: created

notice: /File[/tmp/tree/b]/ensure: created

notice: /File[/tmp/tree/c]/ensure: created

notice: Finished catalog run in 1.25 seconds

How it works…
If a file resource has the recurse parameter set on it, and it is a directory, Puppet will
deploy not only the directory itself, but all its contents (including subdirectories and their
contents). This is a great way to put a whole tree of files onto a node, or to quickly create a
large number of paths using a single resource.

There's more…
Sometimes you want to deploy files to an existing directory, but remove any files which aren't
managed by Puppet. For example, in Ubuntu's /etc/apt/sources.list.d directory, you
might want to make sure there are no files present which don't come from Puppet.

The purge parameter will do this for you. Define the directory as a resource in Puppet:

file { "/etc/apt/sources.list.d":
 ensure => directory,
 recurse => true,
 purge => true,
}

The combination of recurse and purge will remove all files and subdirectories in /etc/
apt/sources.list.d which are not deployed by Puppet. You can then deploy your own files
to that location using a separate resource:

file { "/etc/apt/sources.list.d/bitfield.list":
 content => "deb http://packages.bitfieldconsulting.com/ lucid
main\n",
}

Chapter 6

155

If there are subdirectories which contain files you don't want to purge, just define the
subdirectory as a Puppet resource, and it will be left alone:

file { "/etc/exim4/conf.d/acl":
 ensure => directory,
}

Cleaning up old files
Puppet's tidy resource will help you clean up old or out-of-date files, reducing disk usage.
For example, if you have Puppet reporting enabled as described in the section on generating
reports, you might want to regularly delete old report files.

How to do it…
1. Add the following to your manifest:

tidy { "/var/lib/puppet/reports":
 age => "1w",
 recurse => true,
}

2. Run Puppet:
puppet agent -–test

info: Retrieving plugin info: Caching catalog for cookbook.
bitfieldconsulting.com

notice: /Stage[main]//Node[cookbook]/Tidy[/var/lib/puppet/
reports]: Tidying File[/var/lib/puppet/reports/cookbook.
bitfieldconsulting.com/201102241546.yaml]

notice: /Stage[main]//Node[cookbook]/Tidy[/var/lib/puppet/
reports]: Tidying File[/var/lib/puppet/reports/cookbook.
bitfieldconsulting.com/20110214727.yaml]

…

info: Applying configuration version '1306149187'

notice: /File[/var/lib/puppet/reports/cookbook.bitfieldconsulting.
com/201102241546.yaml]/ensure: removed

notice: /File[/var/lib/puppet/reports/cookbook.bitfieldconsulting.
com/201102141727.yaml]/ensure: removed …

notice: Finished catalog run in 1.48 seconds

Users and Other Resources

156

How it works…
Puppet searches the specified path for any files matching the age parameter: in this case, 1w
(one week). It also searches subdirectories (recurse => true).

Any files matching your criteria will be deleted.

There's more…
You can specify file ages in seconds, minutes, hours, days, or weeks by using a single
character to specify the time unit, like this:

60s
180m
24h
30d
4w

You can specify that files greater than a given size should be removed, like this:

size => "100m",

removes files of 100 megabytes and over. For kilobytes, use k, and for bytes, use b.

Note that if you specify both age and size parameters, they are treated as independent
criteria. For example, if you specify:

age => "1d",
size => "512k",

Puppet will remove all files of 512KB or above, regardless of age, and all files older than one
day, regardless of size.

Using schedules with resources
Using a schedule resource, you can control when other resources get applied. For example,
the built-in daily schedule does what you'd expect: if you specify a resource like this:

exec { "/usr/bin/apt-get update":
 schedule => daily,
}

it'll be applied once a day.

The slightly tricky thing about schedule is that it doesn't guarantee that the resource will be
applied once a day. It's just a limit: the resource won't be applied more than once a day. When
or whether the resource is applied at all will depend on when and whether Puppet runs.

Chapter 6

157

That being so, schedule is best used to restrict other resources: for example, you might want
to make sure that apt-get update isn't run more than once an hour, or that a maintenance
job doesn't run during daytime production hours.

For this you'll need to create your own schedule resources.

How to do it…
1. Add the following to your manifest:

schedule { "not-in-office-hours":
 period => daily,
 range => ["17:00-23:59", "00:00-09:00"],
 repeat => 1,
}

exec { "/bin/echo Doing maintenance!":
 schedule => "not-in-office-hours",
}

2. Run Puppet.

How it works…
We've created a schedule called not-in-office-hours which specifies the repetition
period as daily, and the allowable time range as after 5pm, or before 9am:

period => daily,
range => ["17:00-23:59", "00:00-09:00"],

We've also said that the maximum number of times a resource can be applied in one period
as 1:

 repeat => 1,

Now we apply that schedule to an exec resource:

exec { "/bin/echo Doing maintenance!":
 schedule => "not-in-office-hours",
}

Without the schedule parameter, this resource would be run every time Puppet runs. Now
Puppet will check the not-in-office-hours schedule to see:

whether the time is in the permitted range

whether the resource has been run the maximum permitted number of times in
this period





Users and Other Resources

15

For example, let's consider what happens if Puppet runs every hour, on the hour:

4pm: it's outside the permitted time range, so Puppet will do nothing

5pm: it's inside the permitted time range, and the resource hasn't been run yet in this
period, so Puppet will apply the resource

6pm: it's inside the permitted time range, but the resource has already been run
once, so it's reached its maximum repeat count. Puppet will do nothing.

And so on until the next day.

There's more…
You can increase the repeat parameter if you want to, for example, run a job no more than 6
times an hour:

period => hourly,
repeat => 6,

Remember that this won't guarantee that the job is run 6 times an hour. It just sets an upper
limit: no matter how often Puppet runs or anything else happens, the job won't be run if it has
already run 6 times this hour. If Puppet only runs once a day, the job will just be run once. So
schedule is best used for making sure things don't happen at certain times (or don't exceed
a given frequency).

Auditing resources
I once had to diagnose a server which was failing to respond to `ping`, SSH, or console
connections. The mystery was solved when I called the site where the machine was located.
They informed me that two unidentified men had arrived earlier and simply carried the server
out of the front door and into a truck. The message here is that it's good to know who's doing
what to your servers.

Dry run mode, using the --noop switch, is a simple way to audit any changes to a machine
under Puppet's control. However, Puppet also has a dedicated audit feature, which can report
changes to resources or specific attributes.

How to do it…
1. Define a resource with the audit metaparameter:

file { "/etc/passwd":
 audit => [owner, mode],
}







Chapter 6

15

How it works…
The audit metaparameter (a metaparameter is a parameter which can be applied to any
resource, not just to specific types) tells Puppet that you want to record and monitor certain
things about the resource. The value can be a list of the parameters which you want to audit.

In this case, when Puppet runs, it will now record the owner and mode of the /etc/passwd
file. If either of these should change - for example, if you run:

chmod 666 /etc/passwd

Puppet will pick up this change and log it on the next run:

notice: /Stage[main]//Node[cookbook]/File[/etc/passwd]/mode: audit
change: previously recorded value 644 has been changed to 666

There's more…
This feature is very useful for auditing large networks for any changes to machines, either
malicious or accidental. You can use the tagmail reports feature to automatically send
audit change notices by email. It's also very handy for keeping an eye on things which aren't
managed by Puppet, for example application code on production servers. You can read more
about Puppet's auditing capability here: http://www.puppetlabs.com/blog/all-
about-auditing-with-puppet/

If you just want to audit everything about a resource, use all:

file { "/etc/passwd":
 audit => all,
}

See also
Dry-running your Puppet manifests to avoid surprises

E-mailing log messages containing specific tags

Temporarily disabling resources
Sometimes you want to disable a resource for the time being, so that it doesn't interfere with
other work. For example, you might want to tweak a configuration file on the server until you
have the exact settings you want, before checking it into Puppet. You don't want Puppet to
overwrite it with an old version in the meantime, so you can set the noop metaparameter on
the resource:

noop => true,





Users and Other Resources

160

How to do it…
1. .Add the following to your manifest:

file { "/tmp/test.cfg":
 content => "Hello, world!\n",
 noop => true,
}

2. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1306159566'

notice: /Stage[main]//Node[cookbook]/File[/tmp/test.cfg]/ensure:
is absent, should be file (noop)

notice: Finished catalog run in 0.53 seconds

3. Now remove the noop parameter:
file { "/tmp/test.cfg":
 content => "Hello, world!\n",
}

4. Run Puppet again:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1306159705'

notice: /Stage[main]//Node[cookbook]/File[/tmp/test.cfg]/ensure:
defined content as '{md5}746308829575e17c3331bbcb00c0898b'

notice: Finished catalog run in 0.52 seconds

How it works…
The first time we ran Puppet, the noop metaparameter was set to true, so for this particular
resource it's as if you had run Puppet with the --noop flag. Puppet noted that the resource
would have been applied, but otherwise did nothing.

In the second case, with noop removed, the resource is applied as normal.

Chapter 6

161

Managing timezones

"I try to take one day at a time, but sometimes several days attack at once."

- Ashleigh Brilliant

Sooner or later, you'll encounter a weird problem which you'll eventually track down to servers
having different time zones. It's wise to avoid this kind of issue by making sure all your servers
use the same time zone, whatever their geographical location (GMT is the logical choice).

Unless a server is solar powered, I can't think of any reason for it to care about the time zone
it's in.

How to do it…
1. Create the file /etc/puppet/modules/admin/manifests/gmt.pp with the

following contents:
class admin::gmt {
 file { "/etc/localtime":
 ensure => "/usr/share/zoneinfo/GMT",
 }
}

2. Add the following to all nodes:
include admin::gmt

3. Run Puppet:
puppet agent --test

info: Retrieving plugin

info: Caching catalog for cookbook.bitfieldconsulting.com

info: Applying configuration version '1304955158'

info: FileBucket adding /etc/localtime as {md5}02b73b0cf0d96e2f75c
ae56b178bf58e

info: /Stage[main]/Admin::Gmt/File[/etc/localtime]: Filebucketed
/etc/localtime to puppet with sum 02b73b0cf0d96e2f75cae56b178bf58e

notice: /Stage[main]/Admin::Gmt/File[/etc/localtime]/ensure:
ensure changed 'file' to 'link'

notice: Finished catalog run in 1.94 seconds

Users and Other Resources

162

How it works…
No explanation necessary.

There's more…
If you want to use a different timezone, choose the appropriate file in /usr/share/
zoneinfo: for example, US/Eastern.

	Cover
	Copyright
	About the Author
	Table of Contents
	 Preface
	Chapter 1: Puppet Infrastructure
	Introduction
	Using version control
	Deploying changes with Rake
	Configuring Puppet's file server
	Running Puppet from cron
	Retrieving files from Puppet's filebucket
	Using autosign
	Pre-signing certificates
	Scaling Puppet using Passenger
	Creating a decentralized Puppet
	architecture

	Chapter 2: Monitoring, Reporting, and Troubleshooting
	Introduction
	Generating reports
	Emailing log messages containing
	specific tags
	Creating graphical reports
	Producing automatic HTML documentation
	Drawing dependency graphs
	Testing your Puppet manifests
	Doing a dry run
	Detecting compilation errors
	Understanding Puppet errors
	Logging command output
	Logging debug messages
	Inspecting configuration settings
	Using tags
	Using run stages
	Using environments

	Chapter 3: Puppet Language and Style
	Using modules
	Using standard naming conventions
	Using community Puppet style
	Using embedded Ruby
	Writing manifests in pure Ruby
	Iterating over multiple items
	Writing powerful conditional statements
	Using regular expressions in if statements
	Using selectors and case statements
	Checking if values are contained in strings
	Using regular expression substitutions

	Chapter 4: Writing Better Manifests
	Introduction
	Using arrays of resources
	Using defines
	Using dependencies
	Using node inheritance
	Using class inheritance and overriding
	Passing parameters to classes
	Writing reusable, cross-platform manifests
	Getting information about the environment
	Importing dynamic information with
	generate
	Importing data from CSV files
	Passing arguments to shell commands

	Chapter 5: Working with Files and Packages
	Making quick edits to config files
	Using Augeas to automatically edit
	config files
	Building config files using snippets
	Using ERB templates
	Using array iteration in templates
	Installing packages from a third-party
	repository
	Setting up an APT package repository
	Setting up a gem repository
	Building packages automatically
	from source
	Comparing package versions

	Chapter 6: Users and Other Resources
	Using virtual resources
	Managing users with virtual resources
	 Managing users' SSH access
	Managing users' customization files
	Efficiently distributing cron jobs
	Running a command when a file is updated
	Using host resources
	Using multiple file sources
	Distributing directory trees using
	recursive file resources
	Cleaning up old files
	Using schedules with resources
	Auditing resources
	Temporarily disabling resources
	Managing timezones

