O'REILLY"

cNterprise
DevOps Playbook

e

Bill Ott, Jimmy Pham & Haluk Saker

Foreword by Gene Kim

Short. Smart.
Seriously usetful.

Free ebooks and reports from O'Reilly
at oreil.ly/ops-perf

OREILLY®

HTTP/2

A New Excerpt from
High Performance Browser Networking

Security

Using Containers Safely in Production

IN Practice

DevOps
for Fmance

Reducing Risk Through Continuous Delivery

Kubernetes

Scheduling the Future at Cloud Scale

llya Grigorik

Get even more insights from industry experts
and stay current with the latest developments in
web operations, DevOps, and web performance
with free ebooks and reports from O'Reilly.

Q
)
Q
i

OREILLY®

http://oreil.ly/ops-perf

Enterprise DevOps
Playbook

A Guide to Delivering at Velocity

Bill Ott, Jimmy Pham, and Haluk Saker

Beijing - Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

Enterprise DevOps Playbook
by Bill Ott, Jimmy Pham, and Haluk Saker

Copyright © 2017 Booz Allen Hamilton Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://www.oreilly.com/safari). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Brian Anderson and Virginia Interior Designer: David Futato
Wilson Cover Designer: Randy Comer
Production Editor: Colleen Lobner lllustrator: Rebecca Demarest
Copyeditor: Octal Publishing Inc.

December 2016: First Edition

Revision History for the First Edition
2016-12-12: First Release

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Enterprise
DevOps Playbook, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub-
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

978-1-491-97417-9
[LSI]

http://safaribooksonline.com

Table of Contents

FOreWord.oovviiii ittt it ittt i eneanes

Enterprise DevOps Playbook.c.covveniiinnen..

Introduction

Play 1: Develop the Team—Culture, Principles, and Roles

Play 2: Study the DevOps Practices

Play 3: Assess Your DevOps Maturity Level and Define a
Roadmap

Play 4: Create a DevOps Pipeline

Play 5: Learn and Improve through Metrics and Visibility

Summary

Recommended Reading

12

43
56
58
65
66

Foreword

DevOps principles and practices are increasingly influencing how
we plan, organize, and execute our technology programs. One of my
areas of passion is learning about how large, complex organizations
are embarking on DevOps transformations.

Part of that journey has been hosting the DevOps Enterprise Sum-
mit, where leaders of these transformations share their experiences.
I've asked leaders to tell us about their organization and the industry
in which they compete, their role and where they fit in the organiza-
tion, the business problem they set out to solve, where they chose to
start and why, what they did, what their outcomes were, what they
learned, and what challenges remain.

Over the past three years, these experience reports have given us
ever-greater confidence that there are common adoption patterns
and ways to answer important questions such as: Where do I start?
Who do I need to involve? What architectures, technical practices,
and cultural norms do we need to integrate into our daily work to
get the DevOps outcomes we want? The team at Booz Allen Hamil-
ton has published their model of guiding teams through DevOps
programs, and it is clearly based on hard-won experience with their
clients. I think it will be of interest to anyone to embarking on a
DevOps transformation.

— Gene Kim, coauthor of The
DevOps Handbook and The
Phoenix Project: A Novel
About IT, DevOps, and
Helping Your Business Win

Enterprise DevOps Playbook

Introduction

If Agile software development (SD) had never been invented, wed
probably have little reason to talk about DevOps. However, there is
an intriguing corollary worth pondering, as well: the rise of DevOps
has made Agile SD viable.

Agile is a development methodology based on principles that
embrace collaboration and constant feedback as the pillars of its
iterative process, allowing features to be developed faster and in
alignment with what businesses and users need. However, opera-
tions today are generally moving at a pace that’s still geared toward
sequential waterfall processes. As Agile SD took off, new pressures
and challenges began building to address delivering new code into
test, quality assurance, and production environments as quickly as
possible without losing visibility and quality.

We define DevOps simply as the culture, principles, and processes
that automate and streamline the end-to-end flow from code devel-
opment to delivering the features/changes to users in production.
Without DevOps, Agile SD is a powerful tool but with a prominent
limitation—it fails to address software delivery. As with other soft-
ware development processes, Agile stops when production deploy-
ment begins, opening a wide gap between users, developers, and the
operations team because the features developed for a timeboxed
sprint won’t be deployed to production until the scheduled release
goes out, often times many months later. DevOps enhances Agile SD
by filling this critical gap, bridging operations and development as a
unified team and process.

Agile SD is based in part on short sprints—perhaps a week in dura-
tion—during which a section of an application or a program feature
is developed. Questions arise: “How do you deliver each new version
of this software quickly, reliably, securely, and seamlessly to your
entire user base? How do you meet the operational requirements to
iterate frequent software development and upgrades without con-
stant disruption and overhead? How do you ensure that continuous
improvement in software development translates into continuous
improvement throughout the organization? How do you ensure that
there is continuous delivery of programs during a sprint as they are
developed?” It is from such questions that DevOps has emerged—a
natural evolution of the Agile mindset applied to the needs of opera-
tions. The goals of a DevOps implementation are to fully realize the
benefits that Agile SD aims to provide in reducing risk, increasing
velocity, and improving quality.

By integrating software developers, quality control, security engi-
neers, and IT operations, DevOps provides a platform for new soft-
ware or for fixes to be deployed into production as quickly as it is
coded and tested. That’s the idea, anyway—but it is a lot easier said
than done. Although DevOps addresses a fundamental need, it is not
a simple solution to master. To excel at DevOps, enterprises must do
the following:

o Transform their cultures

o Change the way software is designed and built following a
highly modular mindset

 Automate legacy processes

o Design contracts to enable the integration of operations and
development

o Collaborate, and then collaborate more
« Honestly assess performance

« Continually reinvent software delivery strategies based on les-
sons learned and project requirements.

To achieve the type of change described is a daunting task, especially
with large enterprises that have processes and legacy technologies
that are ingrained as part of their business. There are numerous pat-
terns, techniques, and strategies for DevOps offered by well-known
technology companies. However, these approaches tend to be too

2 | Enterprise DevOps Playbook

general and insufficient by themselves to address the many issues
that arise in each DevOps implementation, which vary depending
on the organization’s size, user base, resources, priorities, technology
capabilities, development goals, and so on. Given these shortcom-
ings, evident to us from our extended experience with DevOps
implementations, Booz Allen has devised an approach for adopting
DevOps that is comprehensive yet flexible. Think of this DevOps
playbook as your user guide for implementing a practical style of
DevOps that stresses teamwork and mission focus to achieve a sin-
gle unyielding goal: deliver new value to users continually by deliver-
ing software into production rapidly and efficiently on an ongoing
basis.

As Adam Jacob, founder of Chef, described in his DevOps Kung Fu
presentations (available on GitHub and YouTube), there can be dif-
ferent styles of DevOps that are unique to each organization but
fundamentally there are basic foundations, forms, and common
principles that make up the elements of DevOps. This book repre-
sents our perspective and style as we distill DevOps into seven key
practice areas that can be adapted for different DevOps styles. The
key takeaways are the shared principles, the common practice areas
(“elements”), and the goal for each of the seven practice areas.

How to Use This Playbook

This playbook is meant to serve as a guide for implementing
DevOps in your organization—a practical roadmap that you can use
to define your starting point, the steps, and the plan required to
meet your DevOps goals. Based on Booz Allen’s experience and pat-
terns implementing numerous DevOps initiatives, this playbook is
intended to share our style of DevOps that you can use as a refer-
ence implementation for a wide range of DevOps initiatives, no mat-
ter their size, scope, or complexity. We have organized this playbook
into five plays, as shown in Figure 1-1.

Introduction | 3

http://bit.ly/2ezyysb
http://bit.ly/2epAqpo

Play 3

Assess Your DevOps
Maturity Level

Play 1
Develop the Team

Play 5
Learn and Improve
Through Metrics

Play 2

Study the DevOps
Practices

Play4

(reate a DevOps
Pipeline

Figure 1-1. The 5 Plays of the Enterprise DevOps Playbook

Gene Kim, one of the top DevOps evangelists in the industry,
described DevOps in 2014 as more of a philosophical movement
than a set of practices. This is what makes it difficult for organiza-
tions to embrace DevOps and determine how to begin. This report
is intended for teams and organizations of all maturity levels that
have been exposed to the benefits and need for DevOps. We do not
dive into the economics and the ROI aspects: the goal of this report
is to provide organizations with a clear guide, through the five plays
that cover all the practice areas that encapsulate DevOps, to assess
where you are, to determine what they mean to you and your spe-
cific business requirements, and to get you started with an early
adopter project.

Play 1: Develop the team—culture, principles, and roles
Successful transformational change in an organization depends
on the capabilities of its people and its culture. With DevOps, a
collaborative effort that requires cross-functional cooperation
and deep team engagement is critical. This play details the key
DevOps principles and tenets and describes how the organiza-
tional culture should be structured to achieve a top DevOps
performance. You will be able to compare the structure of your
organization to the principles in this play to drive the necessary
culture change, especially for enterprises in which multiple
functional groups (development, testing, and operations), ven-
dors, and contractors might need to be restructured to enable

4 | Enterprise DevOps Playbook

the transparency and automation across the groups. Having the
people, culture, and principles in place is essential to an endur-
ing DevOps practice; the people and the culture will drive suc-
cess and continual improvement.

Play 2: Study the DevOps practices

This play offers a deep dive into each of the seven DevOps prac-
tices—what they are and how they should be implemented and
measured. The objective is for the DevOps project team to gain
a baseline understanding of the expectations for each tactical
step in the DevOps practice. We include a set of workshop ques-
tions to facilitate discussions among the DevOps team about the
definition and scope of each practice as well as a checklist of key
items that we believe are critical in implementing the practice’s
activities.

Play 3: Assess your DevOps maturity level and define a roadmap

After there is a common understanding within the DevOps
team about each practice, this play enables you to assess your
organization’s strengths and weaknesses pertaining to these
practices. With that baseline knowledge, you can determine
how to improve the practice areas where your organization
needs improvement. As you go through this assessment and
subsequent improvement efforts, you should refer back to Play
2 to review the definition of each practice area and to scan the
checklist to ensure that the organizations skills are in increasing
alignment with DevOps requirements.

Play 4: Create a DevOps pipeline

The DevOps pipeline is the engine that puts your DevOps pro-
cesses, practices, and philosophy into action. The pipeline is the
end-to-end implementation of the DevOps workflow that estab-
lishes the repeatable process for code development—from code
check-in to automated testing, to required manual reviews prior
to deployment. In this play, we include a DevOps pipeline refer-
ence to illustrate DevOps workflow activities and tools.

Play 5: Learn and improve through metrics and visibility
You can’t manage what you can’t measure.

—Peter Drucker

The objective of this play is to define the metrics that you will
use to measure the health of your DevOps efforts. Defining

Introduction | 5

metrics is critical to learn how your DevOps efforts can be
improved, modified, or extended. The metrics in this play pro-
vide a holistic viewpoint—they help you know where you are,
where you're going, and how to get there.

Play 1: Develop the Team—Culture,
Principles, and Roles

All DevOps success stories—those for which teams are able to han-
dle multiple workstreams while also supporting continuous deploy-
ment of changes to production—have one thing in common: the
attitudes and culture of the organization are rooted in a series of
established DevOps principles and tenets. In this report, we do not
explore the specific implementation strategies, because the solutions
to achieve these are very unique to your organization; thus, our typi-
cal DevOps adoption engagements begin with an assessment pro-
cess during which we do a dive deep to understand the
organizational construct, existing processes, gaps, and challenges.
We then overlay a DevOps model to see how it would look and
determine the steps needed to develop the team.

In the next section, we introduce a list of key DevOps principles and
cultural concepts. Each organization might have a different
approach for adopting these tenets, but no matter what techniques
you use, integrating the ideas themselves is critical to the success of
the DevOps project. In “New DevOps Roles” on page 9, we describe
the new roles and responsibilities required for a successful DevOps
project.

Principles and Culture

Many organizations have ambitious goals for adopting DevOps
strategies, and an underlying need to do so. Their ability to effec-
tively serve their customers and clients depends on nimble develop-
ment and implementation practices. When such endeavors fail, it is
often because the enterprise’s culture is not suited for a DevOps pro-
gram. Following are principles and cultural landmarks that organi-
zations with successful DevOps implementations exhibit.

6 | Enterprise DevOps Playbook

Treat operations as first-class citizens

When operation engineers are supporting a system in production,
developers are working on future releases with their scope and tim-
ing often determined by new feature requests from product owners
and stakeholders. However, operational needs raised by the team
during production can occur at any time, and the entire team,
including developers, testers, and operations engineers, must treat
such requests as priorities with equal weighting as other backlog
items.

Developers act as first responders to issues with the production system

For traditional SD, operations teams have their own engineers to
address problems with applications as they occur. Even though these
employees have the same basic skill sets as development team mem-
bers, they were not the developers that wrote the code; thus, they are
not familiar with how the code was built and probably unaware of
the code’s idiosyncrasies. For this reason, developers and operations
engineers should work as a team to troubleshoot and repair issues
that arise. The actual code developer should be part of the diagnosis
team, communicating with the help desk and accessing the logs to
find a solution without waiting for the operations team to provide
background data. This enforces more accountability on the develop-
ment team, extending its involvement to even after the software is
delivered into production—an essential DevOps principle. With this
added responsibility in the latter phases of the project, the develop-
ment team’s performance during the writing of the software
improves because the group is no longer isolated from the mistakes
discovered during production.

Shorten the time between identification of a production issue and its repair

Often times, production support is reactionary. It is critical to
change that mindset if the organization is to become more proactive
in identifying potential needs. This could only be achieved if the
developer is part of the operations support team. From a production
issue perspective, there are many obstacles to communicating or
integrating with the development team. Most times, the barrier is
the structure of the development and sustainment contracts. For
example, separate teams with separate contracts might have a delin-
eation between their responsibilities, different Service-Level Agree-
ments (SLAs), and varied processes. Even when separate contracts

Play 1: Develop the Team—Culture, Principles, and Roles | 7

are not a problem—that is, when there is only a single contract that
covers development, operations, and sustainment—responsibilities
and accountability might slow efforts to fix the production problem
due to the separation of accountability and manual processes; for
example, we often hear statements like, “This is a hosting problem,
not an application problem; the sysadmins need to look into it,” or,
“We checked everything, it’s over to the quality assurance (QA) team
to validate and then the operations team to deploy.”

Shorten the time between code commit and code deploy

There are typically multiple gates that must be passed through
before deploying software changes into production to ensure the
integrity of the system. Most of these steps can be automated to
reduce deployment time as well as to improve quality. However, to
enable automation, the architecture of the system must be designed
in a manner that is conducive to deploying discrete changes versus
deploying the entire application every time.

Minimize coordination to deploy releases

In traditional SD, there is a lot of inefficient coordination and com-
munication overhead among teams. This is often necessary because
each team has specific and siloed responsibilities and accountability
for the project. If constant communication is not the norm, checks
and balances will not occur, and quality suffers. Ironically, in a
DevOps implementation, it is essential to minimize the formal com-
munications channels between each group; instead, it is important
to establish a culture of shared responsibilities, ongoing interaction,
and shared knowledge of every aspect of the project and the auto-
mated repeatable processes among all teams. Maximizing transpar-
ency enhances efficiency and quality and reduces the need for
constant forced communications.

Stop and fix potential defects identified by continuous flow and monitoring

Frequently, defects and bugs in programs reported by users catch
organizations by surprise, forcing them into a reactive mode to fix
the issue. To avoid this inefficient and potentially harmful situation
—which can impact organizational productivity and waste opera-
tional resources—you should implement a DevOps culture that
focuses on constant visibility into all programs and systems to mon-

8 | Enterprise DevOps Playbook

itor, identify, and resolve issues before they become so problematic
that users are inconvenienced and critical workflow suffers.

Enforce standardized processes to ensure predictable outcomes

Exceptions should not be the norm. Informal and diverse processes
increase instability and the potential for unpredictable outcomes.
Establishing and enforcing repeatable standardized processes is
essential. Moreover, it is the cornerstone of automation, which itself
is central to an efficient and unified DevOps process.

Become a learning organization through continual feedback and action

Every environment is different and all aspects of development and
operations are subject to change. The goal is to constantly learn,
assess, and analyze what works and what doesn’t. Organizational vis-
ibility and a culture built on constant improvement is critical to
DevOps success. Peter Senge, the founding chair of the Society for
Organization Learning, explains in his book, The Fifth Discipline
(Doubleday), the importance of having an environment in which
“we must create a culture that rewards learning, which often comes
from failure. Moreover, we must ensure that what we learn becomes
embedded into our institutional memory so that future occurrences
are prevented.

The adoption of these principles and culture changes requires
organizations to define new roles for development and operations
teams. We describe several new roles and their associated responsi-
bilities in a DevOps world in the next section.

New DevOps Roles

Currently, there is a lack of clarity of the new roles and responsibili-
ties required for DevOps. In this section, we identify the new
DevOps roles for you to consider in augmenting your current team
with the enhanced mix of talent to implement DevOps practices.

In an ideal situation, these responsibilities would exist in an autono-
mous team that manages its own work and working practices and
builds, deploys, operates, and maintains software functionality
without any additional support from other parts of the organization.

Play 1: Develop the Team—Culture, Principles, and Roles | 9

The DevOps Team Antipattern

We do not believe in the existence of DevOps standalone teams—
DevOps responsibilities must exist within the Agile teams. Just like
a software developer or tester, a DevOps engineer or an engineer
with DevOps skills must take ownership of the feature on which the
team is working and work to make the software better for the end
user.

The DevOps architect

The DevOps architect uses automation to create efficient, effective
processes and standards to continuously improve quality and esti-
mation. The DevOps architect must have deep knowledge, hands-on
experience, and a passion for making a difference in the DevOps
space. The architect implements Agile practices and automation and
has the technical depth necessary to provide advice for making
appropriate technology choices, defending recommendations, and
driving technical implementation. These technologies and methods
include understanding containerization and the orchestration of
containers across multiple Infrastructure as a Service (IaaS) vendors
and deployment automation using laaS providers. Roadmaps to
support automation are an essential element of the architect’s role,
which includes end-to-end test automation and tool strategies. An
architect oversees tool analysis and selection and implements test
automation frameworks and approaches.

The DevOps engineer

A DevOps engineer performs in a hybrid technical role that compri-
ses development and operations, and must be proficient in coding
or scripting, process reengineering, and collaborating with multiple
groups. The DevOps engineer also must be well-versed in multiple
popular and commonly used operating systems and platforms. The
DevOps engineer is responsible for implementing the automation
vision of the DevOps architect’s development and deployment pipe-
line. This includes the critical responsibilities for developing Infra-
structure as Code that enables immutable infrastructure,
repeatability, and automation of the entire infrastructure for each
environment.

10 | Enterprise DevOps Playbook

The test automation engineer

The test automation engineer automates as many steps as possible to
achieve the test coverage and confidence required to quickly push
changes to production.. The test automation engineer should be
well-versed in software testing processes and tools (such as unit test-
ing, mock integration testing, and test automation tools like Sele-
nium) and be proficient in the scripting needed to implement
automated test processes for each DevOps pipeline step. These auto-
mations include unit tests, static code tests, smoke tests, and more
specific tests, such as Section 508 compliance checks, SLA valida-
tions, and vulnerability scans. Test automation should not be solely
the responsibility of the test automation engineer; it should also be
the province of every developer and tester on the team. A developer
must be able to add any type of automated test that integrates with
the delivery pipeline defined by the DevOps engineer. Typically, QA
is performed by a separate group. The test automation engineer pro-
vides the framework and expertise to enable developers to embed
test automation as part of the continuous process.

The site reliability engineer

The site reliability engineer is responsible for monitoring the appli-
cations and/or services post-deployment. Site reliability engineering
occurs when you ask a software developer to design an operations
team. Using a variety of metrics (e.g., application performance mon-
itoring [APM], SIEM, user metrics, and infrastructure health)
aligned with the deployment strategies being used (e.g., canary
releases, blue/green deployment), the site reliability engineer should
be exceptional at troubleshooting and at metrics analysis to establish
key thresholds for alert automation to baseline the different health
levels for applications and services. Simply put, the primary respon-
sibility of site reliability engineers is to automate themselves to be as
efficient as possible.

The software engineer

A frequently discussed topic with DevOps is the responsibility of
software engineers (also called developers). To be successful in a
DevOps world, a developer must embrace all the principles dis-
cussed previously and have a complete team mindset, where tradi-
tional responsibilities such as testing, infrastructure, and system

Play 1: Develop the Team—Culture, Principles, and Roles | 11

administration are all part of the developer’s roles. This aligns with
the mantra of “you build it, you run it, you fix it”

The roles and responsibilities we covered are meant to provide
insights and to generate healthy discussions among your organiza-
tion with regard to how to assess resources within your team, and to
identify any potential gaps. The important takeaways are the respon-
sibilities that you need to cover versus the actual role titles because
other organizations might call the roles different names such as
“release engineer” or “ops lead”

Play 2: Study the DevOps Practices

As DevOps became an industry buzzword, the term lost some of its
meaning. It’s obvious that DevOps is a collaboration between the
development, testing, and operations teams, but where it fits within
an organization and how teams adopt DevOps vary from enterprise
to enterprise. For example, some say DevOps is primarily a by-
product of culture; others say it is primarily a technological applica-
tion. No matter through what lens you view DevOps, it is essential
that the teams have a clear and common understanding of the fol-
lowing seven core DevOps practices:

o Practice 1: Configuration management
o Practice 2: Continuous integration

o Practice 3: Automated testing

o Practice 4: Infrastructure as Code

« Practice 5: Continuous delivery

« Practice 6: Continuous deployment

» Practice 7: Continuous monitoring.

These practices encompass the full end-to-end cycle, from code
commit to deployment to operations and maintenance.

12 | Enterprise DevOps Playbook

How to Read the Practices

In the subsections that follow, we dive into each practice area by
providing the following components:

Definition
A common introductory reference point for how the practice
can best be described and what it entails.

Workshop guiding questions
The basis for a dialogue and discussion with your team about
the parameters and scope of your project. The intent of the
guiding questions is for a thought exercise to help gauge where
things are, what needs to be considered, and whats actually
important for your team.

Checklist
A number of items that may become tasks in your project
backlog to implement or serve to improve your DevOps
maturity.

Practice 1: Configuration Management

Configuration management definition

Configuration management (CM) is a broad term, widely used as a
synonym for version or source code control, but can also be used in
the context of managing, deployment artifacts, or configurations of
software/hardware. In our context here, we are talking about CM
strictly from code management perspective. In the DevOps land-
scape, CM focuses on having a clear and clean code repository man-
agement strategy that helps maximize automation and standardize
deployments.

Developers often are frustrated by not being able to replicate a prob-
lem that appears in different environments. You may hear develop-
ers say, “It works in my environment. I cannot reproduce the glitch”
This is mainly because CM of the application throughout the pro-
cess of development and deployment is controlled manually and
there are definite differences between a program’s behavior in a
deployed environment and on a developer’s computer. This results
in configuration drift or “snowflake” environments, in which man-

Play 2: Study the DevOps Practices | 13

agement of the various environments and code repositories become
a heavy lift and a nightmare to manage. Although a software team
might carefully document the evolving versions of the configuration
of a server or a container, the need to manually execute the docu-
mented process might still result in human errors because the server
will be used in the development, code testing, user acceptance test-
ing, and production environments.

You can achieve effective and less problematic version and source
code control by using various automated CM workflows. The fol-
lowing list of workflows is a compilation of common industry prac-
tices that ranges from basic to advanced. In this playbook we use
GitHub for CM implementations, but other source code control sys-
tems, such as GitLab or Bit Bucket, are good alternatives, and you
can follow similar workflow strategies for them as well.

Centralized workflow

In a centralized workflow (Figure 1-2), a central repository serves as
the single point of entry for all changes to the project. The develop-
ment branch is called the “master” and all changes are made to this
branch. A centralized workflow does not require any other
branches. Developers have the complete copy of the central reposi-
tory locally; they write their changes on their own equipment; and
then synchronize with the master at agreed upon intervals. If there
is a conflict among developers initiating changes, Git (for example)
will stop the commit and force a manual merge. This workflow is
usually used by teams to transition out of traditional source code
control using Apache Subversion (SVN).

Master Branch

Figure 1-2. Centralized flow

Feature workflow

Feature workflow (Figure 1-3) is for teams that are comfortable with
centralized workflow. Isolated branches are added for each new fea-
ture, which enables independent and loosely coupled design princi-
ples without affecting other parts of the system. The main difference
between feature workflow and centralized workflow is that in fea-
ture workflow, feature development takes place in a dedicated

14 | Enterprise DevOps Playbook

branch instead of in the master. This enables various groups of
developers to work on features without routinely disturbing the
master codebase. Feature workflow also provides a foundation for
continuous delivery and continuous deployment DevOps practices.
For a microservices architecture, which treats each microservice as a
separate product, feature workflow branches are an ideal configura-
tion management mechanism because the code for each feature is
isolated.

Master Branch

‘ Feature Branch

‘ ‘ Feature Branch

Figure 1-3. Feature branch workflow

Gitflow workflow

Gitflow workflow is for established and advanced projects. It
includes the attributes of centralized and feature workflows and also
other capabilities. Based on Vincent Driessen’s Git Branching model,
Gitflow workflow is a good foundation for many of the seven
DevOps practices.

Gitflow workflow (Figure 1-4) is composed of a strict branching
model designed around project releases and enhancements. Specific
roles are assigned to each of five branches: Master, Hotfix, Release,
Development, and Feature. The way the branches interact with one
another as well as the availability of multiple branches coming off an
individual branch, is carefully defined. For example, while new
development is occurring in one feature branch, another feature
branch can be created for changed requirements or to fix a defect for
an update that will be deployed with a patch release.

Table 1-1 explains each of the Gitflow branches.

Play 2: Study the DevOps Practices | 15

http://bit.ly/1h5JLPc

Table 1-1. Gitflow branches

Branch Description

Master branch | Stores the official release history; the code is merged to it only when a new
release is deployed. All historical releases are tagged in the master branch.
Hotfix branch | Supports maintenance or patch fixes that must be released quickly into

production. This is the only branch that forks off of the master directly. After the
fix is completed, the changes are merged back into the master, development,
and/or release branches, as appropriate.

Release branch

Acts as the safeguard between the development branch and the public releases
(master branch).

Development
branch

Serves as the integration branch for features. Continuous integration deployments
to development servers are performed from this branch. Developers code on a
local copy of the development branch. When they are finished, the code is
merged to the development branch. 100 percent code review Agile practice is
used to check the code against the team’s development practices.

Feature
branches

Represent each feature just like the feature branch workflow. Instead of
branching off from the master, feature branches use the development branch as
the originator. When the feature is complete, it is merged back to the
development branch for integration into the project. As the features are built, the
developer local code and feature branch interaction could be automated using
continuous integration. When that option is chosen, the feature branch is a

O—b@—b@—b@ Feature Branch

separate module until the feature is complete.
:@ Master Branch

Develop Branch

Feature Branch

Figure 1-4. Gitflow workflow

16 | Enterprise DevOps Playbook

(M workshop guiding questions

« How do you manage source code versions?

« Do you have a production system that you are maintaining and
improving or are you building a new system?

« How many features are being built at the same time?

o What happens when you receive a defect from the operations

team? How do you fix the defect and manage the source code
change?
o Who is the owner of the source code control system—develop-

ment team, maintenance team, operations team?

o What are the criteria you use to decide on your source code
branching strategy?

« Are you building a monolithic system or a microservices-based
distributed system?

« How many code repositories do you have (or expect to have) for
the project?

 Are you planning continuous delivery or continuous deploy-
ment?

(M checklist

« Document your configuration management approach in a sim-
ple, easy-to-read document accessible to the entire team.

o Select a source code control system that allows all types of
branching techniques even though you might not use advanced
flow in the beginning.

o Select your configuration workflow based on operations need
and continuous delivery objectives. The most effective flow for
delivering under all scenarios is Gitflow.

« Document your branching strategy in a way that makes it easy
for the entire team to understand.

o Define the limitations of your configuration management and
source code branching strategy.

Play 2: Study the DevOps Practices | 17

Practice 2: Continuous Integration

Continuous integration definition

Continuous integration (CI) requires developers to integrate code
into a centralized repository as they finish coding and successfully
pass unit testing, several times per day. The end goal is to create
small workable chunks of code that are validated and integrated
back into the code repository as frequently as possible. CI is the
foundation for both continuous delivery and continuous deploy-
ment DevOps practices. There are two CI objectives:

« Minimize integration efforts throughout the development and
deployment process

 Have the capability to deliver functions to the end-user commu-
nity at any point in the development process (see “Practice 3:
Automated Testing” on page 20)

Cl is also a key Agile SD practice that connects Agile development
with DevOps. CI is certainly not a new concept; it has been around
for a while, and without a well-established CI practice, a develop-
ment team cannot expect to achieve DevOps success.

To facilitate advanced DevOps practices, such as continuous deliv-
ery and continuous deployment, CI must be planned and imple-
mented well. When a developer divides functionality into smaller
chunks, it is critical to ensure that the software not only works and
is integrated into the main code repository, but can be safely
deployed to production if there is a business reason to do so before
the rest of the application’s features are complete. CI forces the
developer to think differently during planning; that is, she must
view functionality in small, discrete bites that can be integrated into
the rest of the code base as finished pieces of larger programs.

Before CI became a best practice, integration was a major and often
difficult ordeal. Developers would code in their local environments
and, when ready, collaborate to integrate their code into the larger
project. More often than not, the working code had to be rewritten
for successful handshakes among the disparate sections of code to
occur.

With DevOps, the goal is to achieve continuous releases. When pro-
gram enhancements or features are complete, they should be

18 | Enterprise DevOps Playbook

deployed or deployable; CI enables this unique aspect of DevOps.
However, CI alone is not sufficient for the deployment of “done”
code to production; full confidence from both comprehensive test
coverage and immutable infrastructure is needed. In essence, CI is a
prerequisite to achieving continuous deployment and works in con-
junction with the other DevOps practices to build and ensure confi-
dence throughout the process, which ultimately creates the level of
trust required to automate deployments directly to production.

Cl workshop guiding questions
« How ready are you for CI? Do you have your CI tool and exper-
tise in automating builds?
+ How long does it take to build your code?

o What is your unit test coverage percentage? Are you confident
that if a developer breaks another developer’s code, the unit
tests will detect it?

« How many Agile teams do you have on your project? If you
have multiple teams, what is the definition of CI to you?

Cl checklist

o Select a CI tool that is capable of achieving your automation
objectives.

 Connect the CI tool to your code repository. Test check the
code.

« Integrate your build script to CL

« Manually trigger the build from your CI server.

o Test the build scheduler.

o Define the build branch for each environment from your
branch structure. The following steps are for Gitflow:
1. Set up build for Dev environment from development branch

2. Schedule Dev build for every check-in (core activity of CI
begins with this build; ends if all automated tests pass)

3. Set up build for test environment from the development
branch

Play 2: Study the DevOps Practices | 19

4. Set up build for preproduction (or QA) from the release
ranch

5. Set up build for production from the release branch

6. Set up auto commit to the master branch after production
deployment.

o Define automated tests for each commit to the development
branch.

— Perform unit tests (frontend, backend, API)

— Perform vulnerability scan (use ZAP for the development
branch)

— Perform code quality scan
« Define alerting solution for developer commits.
o Define criteria to accept or reject commits.

o Define commit reject mechanisms when committed code is not
acceptable (e.g., if there are vulnerability findings, or if a unit
test fails). Do not ignore any test fail. Stop and fix.

 Define automated tests for each commit to the release branch.
— All tests run for development branch commits
— Performance tests
— Other security scans

— Functional tests (e.g., Selenium tests and browser compati-
bility tests)

Practice 3: Automated Testing

Automated testing definition

Automation is the very heart of DevOps. The more tests you can
automate, the more likely that the quality of the program and the
efficiency of the deployment will be production-ready. DevOps
teams use the results of automated testing to determine their next
steps. The end goal here is to shift testing and compliance to the left
of the delivery process as much as possible, in essence ensuring that
tests are conducted early and often in the development process.
During CI, automated testing can identify defects early on so they
can be addressed. During continuous delivery, automated testing

20 | Enterprise DevOps Playhook

can increase the team’s confidence level that it can deploy a new
capability into production.

In DevOps, automated testing should be used during CI (on devel-
opment), Infrastructure as Code (on development), continuous
delivery (on test and QA), continuous deployment (on QA, accept-
ance, and production), and continuous monitoring (on develop-
ment, test, QA, and production).

Recommended automated DevOps tests, by environment, are
shown in Figure 1-5. We use a modified version of the Chef delivery
pipeline terminology for each of the steps.

Deployment Environments

a Development Text Preproduction Production

Union Rehearsal Deliver

Lint

Build Acceptance

Unit Unit

Unit Smoke Post-Prod Tests

Static Analysis |1 Mock Integration | Service Integration Integration Resiliency Resiliency Tests

Mock Integration Mock Integration End-to-End Performance Performance

Consumer Tests Ul Tests Security Tests Synthetic Tests
Code Approval 508 Manual Compliance
Tech Decision

Approve for Delivery Resiliency Tests
Business Decision S EE—
I Performance

Figure 1-5. Recommended automated tests

Let’s take a quick look into each of the environments and the auto-
mated testing activities for each one.

Local environment

This is local developers environment, whether it is their own
machine or a VM. If any tests fail locally, the developer stops and
fixes the issue.

Lint and static analysis test
Identifies potential bad source code (e.g., nonconforming code,
bad practices, compilation errors, security flaws) by examining
the code itself without executing the program. Although static
code analysis is useful, it generates both false positives and false
negatives. Ideally, all of the outcomes of static code analysis
should be reviewed. The frequency of static code analysis can be

Play 2: Study the DevOps Practices | 21

determined by the team’s DevOps maturity on other automated
tests.

Unit test

The first line of defense in assuring quality, a unit test should be
developed for both frontend and backend code. One hundred
percent unit test coverage is necessary to have the confidence in
the source code that is required for continuous deployment.
Unit tests should be:

Small in scope
Developed by the programmer based on acceptance criteria

Able to run quickly so that developers use them routinely for
every change

Mock integration test

Validate the expected result of APIs, which are a facet of any
modular architecture, such as microservices or component-
based design. For simple parts of an application, API tests could
be the same as unit tests. The intent is to simulate and provide
test integration points through mock outputs.

Consumer test

Validate integration points with external services that are being
used to ensure correctness on both sides.

Cl environment

After local testing is passed and code review is completed and
approved, CI environment testing begins with another quick round
of checks with unit and mock integration testing.

Unit test

The first line of defense in assuring quality, it should be devel-
oped for both frontend and backend code. One hundred per-
cent test coverage is necessary to have the confidence in the
source code that is required for continuous deployment. Unit
tests should be the following:

Small in scope

Developed by the programmer

22

Enterprise DevOps Playbook

o Able to run quickly so that developers use them routinely for
every change.

Mock integration test
Integration testing is critical and is repeated in this environ-
ment. We want to ensure and validate the expected result of the
APIs.

Development environment

After successful CI environment testing, we proceed to the develop-
ment environment, in which a series of tests are run to ensure readi-
ness for the test environment. If any of the tests are failed, the
developer stops and fixes the issue.

Unit test
Rerun the unit tests for all the components.

Mock integration (service and consumer) test
Tests all the service integration points.

Ul test

Runs over larger parts of the application and simulates user
actions. All of the capabilities and features of a user interface
(UI) must be tested by automated functional testing. Selenium
is a common tool for this. The drawback of functional tests is
that they are slow, which explains why they are not usually used
in the development environment. The rule of thumb is this: no
build should propagate to the QA environment before there is a
functional test for all U capabilities and before all of the func-
tional tests run successfully.

508 manual test
For applications that require Section 508 compliance, this is an
important step. Section 508 testing is mostly manual, but tools
such as CodeSniffer can check pages and detect conformance to
the W3C’s Web Content Accessibility Guidelines (WCAG) 2.0
and Section 508 guidelines.

Test environment

Upon successful development testing and business approval (for sit-
uations in which a manual business decision is required), the test
environment follows. This is the environment that unites all the dif-

Play 2: Study the DevOps Practices | 23

ferent development streams and ensures comprehensive testing
across all major areas.

Unit test

Rerun the unit tests for all the components for all the develop-
ment streams.

Integration test

Validates the integration points (internal and external) and tests
the expected inputs and outputs.

End-to-end test

Run tests across functional and nonfunctional areas (e.g., infra-
structure, build scripts, and configurations).

Functional test
Runs over larger parts of the application and simulates user
actions. All of the capabilities and features of a UI must be
tested by automated functional testing.

Build script test
Because DevOps automation relies on high-quality build
scripts, build script testing is used to ensure that there are
no errors during the build process and that the scripts are
consistent across each environment.

Properties file/configuration parameter test
All software development projects have configuration
parameters that must be tested for target boundary condi-
tions.

Infrastructure code test
Similar to applications code, infrastructure code must be
tested for every change. This is a critical for ensuring
immutability and repeatability. We discuss this in detail in
the next practice section (“Practice 4: Infrastructure as
Code” on page 29).

Security test

Ensures the security posture of your applications and environ-
ments by mitigating potential issues through automated detec-
tion. In reality, not all items will be revealed, but security and
compliance tests provide a strong baseline and confidence to
move forward:

pY

| Enterprise DevOps Playbook

Vulnerability test (or penetration test)

New code must pass a vulnerability scanner to validate that
no critical application-level vulnerabilities are present.
About 95 percent of reported software breaches in 2015
were the result of 1 out of 10 well-known vulnerabilities; 8
of them have been in the crosshairs of the software develop-
ment sector for more than 10 years. Zed Attack Proxy
(ZAP) is a common vulnerability test tool.

Functional security test
Verifies security features, such as authorization, authentica-
tion, field-level validation, and personally identifiable infor-
mation (PII) compliance.

Security scanning test
Targets applications, containers, networks, firewalls, and
operating systems for vulnerabilities.

Compliance test
Many systems are required to be compliant with specific sets of
standards. The goal of compliance testing is to use tools like
OpenSCAP and Chef Compliance to automate the process that
will continuously validate the posture of your system as changes
take place versus the tedious exercise of addressing these
changes after a release candidate is established.

Resiliency test
Applies a series of random simulations to assess the availability
of your system in outage events. For example, using Netflix’s
Simian Army (Chaos Monkey and Chaos Gorilla), resiliency is
tested by taking down random AWS instances to an entire
Amazon Web Services (AWS) availability zone to test the fault-
tolerant architecture of your system.

Performance test
Measures the performance and scalability of an application.
After the team defines SLAs for web page and API performance,
these tests will alert the team if the applications/APIs are not
performing as required. Some of these tests (e.g., soak tests) are
used only for specific situations rather than running continu-
ously for every change.

Play 2: Study the DevOps Practices | 25

http://bit.ly/1NIcfdT
http://bit.ly/1NIcfdT
https://www.open-scap.org/

Load test
Analyzes the impact of load on an application. For example,
if a performance issue is identified and subsequently
addressed, only a load test can determine if the problem has
been resolved.

Component load test
Applies a load test to a single component (or microservice).

Soak test
Identifies memory leaks. Some severe memory leak prob-
lems do not surface during load testing. To uncover these
issues, you must run soak tests over extended periods of
time (at least overnight) with steady high loads.

Capacity test
Determines how many simultaneous users a web applica-
tion can handle before response time becomes an issue (or
before the system performs below its SLA).

Stress test
Pushes a web application beyond normal workload to iden-
tify which components or services will fail under extreme
conditions and spikes in production.

Preproduction environment

This environment serves as a test ground to simulate delivery to
production. In live implementations, the tests here vary from orga-
nization to organization, depending on how confident and comfort-
able you are up to this point.

Smoke test
Run a comprehensive set of functional tests under low load to
ensure major features of the applications work as expected.

Resiliency test
Perform random simulations that are essential to test the availa-
bility of the system in outage events and continuously validate
the fault-tolerant architecture of the system.

Performance test
Assess the expected performance of the new deployment. In
“Practice 7: Continuous Monitoring” on page 40, we discuss the

26 | Enterprise DevOps Playhook

metrics and monitoring for expected performance levels and
the health of the system.

Production environment

At this point, the tests and validation processes needed for produc-
tion deployment are completed. In this section, we list tests that are
recommended for the production environment. In “Practice 5: Con-
tinuous Delivery” on page 32, we explore effective production
deployment strategies, such as canary releases and blue/green
deployment.

Post-production test
Run a series of tests on the application as well as infrastructure
to ensure that the system is in a healthy state (should include
subset of functional UI tests, configuration tests, and others)
after deployment. The extent of the post-production tests
depends on the size and maturity of the environment.

Resiliency test
Conduct random simulations that are essential to test the availa-
bility of the system in outage events and continuously validate
the fault-tolerant architecture of the system.

Performance test
Assess the expected performance of the new deployment. In
“Practice 7: Continuous Monitoring” on page 40, we discuss the
metrics and monitoring for expected performance levels and
the health of the system.

Synthetic test
Set up these tests to simulate real-world usage patterns by mim-
icking the locations, devices, and patterns of users. Some appli-
cation performance monitoring solutions, such as New Relic,
offer synthetic testing programs as well. The intent is to proac-
tively discover issues users are encountering and gain insight for
troubleshooting.

Although this is a comprehensive list of automated tests, manual
tests are also an important part of system delivery. Some functional-
ity may require manual validation. Types of manual tests include
exploratory testing, user acceptance testing, Section 508 accessibility
testing, and usability testing.

Play 2: Study the DevOps Practices | 27

Automated testing workshop guiding questions

Which tests are currently automated and which do you plan to
automate?

What percentage of your code base is automated?

How long does it take to run the automated test harness? If you
have different harnesses for unit tests and functional tests, how
long do they take to run separately, and how often do you run
them?

What test automation tools and frameworks do you use?
What is the process for a developer to add a new unit test?
How many concurrent users are expected to use your system?
Do you have browser page load requirements?

How do you test load, performance, and stress?

What do you do when performance degrades? What is your
scaling strategy?

Do you have system availability requirements?

Automated testing checklist

Set high unit-test coverage and add this coverage as a require-
ment for developers to complete before a project can be final-
ized.

Select unit test technologies for U, middle-tier, and backend.

Implement unit-test reference implementations and add them
to developer practices.

Build mechanisms to measure the test coverage for unit tests.

Integrate your unit tests into test harnesses. Build mechanisms
for integrating the unit tests into the harness.

Integrate the unit-test harness into the build script and CI.
Build mechanisms to take action when unit tests fail.

After unit-test coverage is finished, identify which integration
tests should be implemented. Integration tests should cover
end-to-end paths in user stories.

Implement and automate integration tests.

28

Enterprise DevOps Playbook

o Select technology for acceptance tests or end-to-end functional
tests. Selenium is a possible option.

o Order your functionality, from most critical to least critical, and
build end-to-end automated functional tests starting with the
most critical ones. (There will be fewer end-to-end tests than
unit tests. The quality of the functional tests is more important
than the quantity.)

« Define actions when a functional test fails. Build an alerting tool
so that the developer is notified.

o After you achieve the maturity you are targeting with unit tests,
integration tests, and end-to-end functional tests, prioritize
other types of tests defined in this section and integrate them
into the aforementioned environments. Begin with the security
tests.

Practice 4: Infrastructure as Code

Infrastructure as Code definition

It can be argued that the recent maturity and adoption of tools and
technology enabling Infrastructure as Code (IaC) are among the pri-
mary reasons DevOps has exploded onto the scene with true end-
to-end automation. IaC goes beyond simply automating processes
using scripts, as traditional systems administrators have been doing
for years. Instead, IaC enables configuration and provisioning of
infrastructure through applications using APIs. With IaC, configu-
rations are treated just like application code with all the best soft-
ware development practices of version control, unit tests, code
review, gating, and so on. The barriers and walls between system
administration and operations staff and developers are removed,
with full transparency, automation, and shared responsibilities. IaC
addresses configuration drifts by ensuring immutability of both the
actual server configurations/instantiation and also standardizing
how environments are built and deployed.

The ability to view IaC opens the possibility to control and automate
configurations so that they are highly repeatable and consistent, no
matter how many times the environment is torn down and brought
back up. Not surprisingly, best practices for IaC are similar to those
for software development, including the following:

Play 2: Study the DevOps Practices | 29

Source control

Code version control and auditing

Peer reviews

Code review practices as application code processes

Testing

Unit testing, functional testing, and integration testing

Code as documentation

Code is developed in an easily readable manner as the IaC itself
serves as living, always-up-to-date documentation

Collaboration

The barrier between development and operations is broken
down

There are two primary approaches for implementing IaC. It is
important to assess the pros and cons of each and determine which
model fits best with your team and environment:

Declarative model

Similar to the concept of declarative programming, code is writ-
ten to describe what the code should do as opposed to how the
code should do it. Puppet, for example, is declarative because it
doesn’t run scripts or execute code on the infrastructure. You
can use Puppet’s declarative language to model and describe the
desired target server end state. You tell Puppet what you want
the server to look like, not the steps to take to get there. The
typical advantage here is a cleaner and more structured
approach, as you are just modeling and describing what is
needed. The downside is less flexibility in what you can control.

Imperative model

Code is written that explicitly lays out the specific steps that
must be executed to complete the desired task or, in this case,
the desired target server end state. Instead of modeling the end
state, you use the imperative approach to describe how to get to
the end state. In this model the advantage is full control of what
steps and actions you execute and the conditions around them.
However, the code/scripts can get complicated. For example,
Chef is imperative—users define commands and their execution
order and logic. These instructions, called Chef Recipes, in turn
can be organized in Cookbooks. To illustrate this, part of a

30

Enterprise DevOps Playbook

recipe can be to check if a specific dependency is available on a
target node. If the dependency exists, Chef will install it; other-
wise, a warning is raised and/or other failed execution steps are
run.

No matter which solution you decide on, having IaC in place will
reduce and in most cases eliminate configuration drift/snowtflake
environments. In making your decision, you should consider the
skillset of your team and how well it lines up with the various
options, such as Chef, Ansible, or Puppet.

laC workshop guiding questions

Does your datacenter or IaaS provider have scripted provision-
ing capability?

Can you script the installation of every product in your system?
What are the differences for installing components of your sys-

tem when they are deployed on these distinct environments:
developer computers, development, test, QA, and production?

Do you perform version control on the configuration control
parameters of your components? If yes, how?

Who on your team knows the details of these configuration
parameters?

Have you heard this all-too-common complaint?: “I cannot
reproduce this error in my environment.”

laC checklist

Set the objectives of your infrastructure automation and plan
your automation in an Agile way. You do not need to wait to
complete everything before you use it. Start using the IaC as
pieces are completed.

Define what you can automate and what you cannot. For exam-
ple, most application servers can be automated, but network
devices such as firewalls can be configured automatically if they
have APIs to do that.

Write the code to automate the configuration of the container in
which your main application is going to run.

Play 2: Study the DevOps Practices | 31

o Integrate the IaC for your app servers/containers to CI. Ideally,
re-create the servers and containers when there is a patch
instead of just applying the patch. After you do this, you will
have achieved an immutable infrastructure for your application
servers.

« Use the same IaC you build for your app servers on your devel-
opers’ computers and in your development, testing, quality, and
production environments. There should not be any difference
other than the IP, URL, and so on.

o Write the code for building your database server and container
and follow the same steps you used for the applications server.

Practice 5: Continuous Delivery

Continuous delivery definition

Continuous delivery simply means that every change is ready to be
deployed to production as soon as automated testing validates it.
Figure 1-6 illustrates a reference pipeline flow (also discussed in
“Practice 3: Automated Testing” on page 20). Note there are two
manual checkpoints in this example. One is for a technical decision
to approve the code before initiating activities in the CI environ-
ment. The second is a business decision to accept the changes and
continue with the automated steps to production deployment.

The goal of continuous delivery is to deliver incremental or small
changes quickly and continually as they go through the pipeline.
This not only helps distribute microfeatures more rapidly, but also
reduces the risk of a large release failing. It is important to note that
not all microfeatures that go to production will be seen by users.
These features or fixes might be part of the production version, but
potentially “turned off” for a period of time because you want to
have specific changes validated as part of a build, even though the
organization is not necessarily ready to install them on end-user sys-
tems.

DevOps is a reaction to features and releases being deployed slowly.
Even using Agile SD principles, the mindset is to build programs
incrementally and produce releasable software at the end of every
sprint. In each sprint, the team develops features/changes for the
software, but the completed story must wait for the other stories to

32 | Enterprise DevOps Playhook

be finished and grouped together to be deployed in a scheduled
release. In contrast, continuous delivery gives power to the product
owner, who is the gatekeeper in DevOps terms, to decide whether to
deploy the new capabilities before the rest of the release is ready.

Deployment Environments

a Development Text Preproduction Production

Build Acceptance Union Rehearsal Deliver
Lint Unit Unit Unit Smoke Post-Prod Tests
Static Analysis |1 Mock Integration | Service Integration Integration Resiliency Resiliency Tests

Mock Integration Mock Integration End-to-End Performance Performance

Consumer Tests Ul Tests Security Tests Synthetic Tests
Code Approval 508 Manual Compliance
Tech Decision

Approve for Delivery Resiliency Tests
Business Decision S EE—
I Performance

Figure 1-6. Reference pipeline—continuous delivery

Continuous delivery usually requires a change in organizational cul-
ture. Team and customer expectations must shift from full-fledged
deployment when all aspects of the project are finished and tested to
incremental and iterative application distribution. Simply put, you
can view the objectives of continuous delivery as follows:

« New features, configuration changes, bug fixes, and experiments
are sent into production safely and quickly in a sustainable way.

o Forget about having to spend nights and weekends in the data-
center to deploy releases; design the architecture to deploy pro-
grams whenever the time is appropriate for the DevOps team
and the user community.

To achieve these objectives, DevOps teams must develop maturity
and capabilities in the four DevOps practices described previously,
or continuous delivery is not viable. The four critical practices and
the required capabilities are as follows:

« CM

— Builds should be scripted. Developers should use the same
deployment scripts that are used for production.

Play 2: Study the DevOps Practices | 33

— Environments should be automated and scripted. There
should be no differences between the developer and produc-
tion environments.

— It should not be a lengthy task to bring a new developer onto
the team.

« CI
— Automated builds are triggered for every check-in.

— Developers check into the trunk (of the source code reposi-
tory) at least once per day.

— When the build goes red (i.e., when an automated test fails),
the team should fix it quickly, ideally within 10 minutes.

+ Automated testing

— Unit tests for all public interfaces are in place to provide
some level of confidence before exploratory testing (which is
based on manual testing) and acceptance.

— Acceptance tests are automated. The gatekeeper agrees that
the capability is ready to push to production deployment.

e JaC

— The instantiation and teardown of the infrastructure for
every environment us managed, automated, and executed
through scripts and code using tools such as Chef, Puppet,
Ansible, and others.

— The infrastructure is immutable and there are no differences
between the developer, implementation, and user environ-
ments.

These four DevOps practices cover the following two rules of con-
tinuous delivery:

The software (trunk) should always be deployable
Trunk software should be healthy at all times and ready to be
deployed to production. Its up to the gatekeeper to decide
whether to deploy it once per day or multiple times per day—
this is a business decision, not a technical decision.

34 | Enterprise DevOps Playhook

Everyone checks into the trunk from feature branches at least once

per day
This forces developers to divide user stories and features into
meaningful, smaller pieces. Every check-in is performed to

>

determine if the team’s “definition of done” has been achieved.

In deploying to production, there are several advanced strategies
that you can adopt to achieve zero downtime and flexibility:

Canary releases

By definition, continuous delivery deploys many builds to pro-
duction. In “Practice 3: Automated Testing” on page 20, we dis-
cuss the importance of having a sophisticated set of automated
tests that provide a high level of confidence in the quality of the
code. Canary is a technique that is used to further increase con-
fidence levels before deploying new code to production. In a
canary deployment, the new code is delivered only to a percent-
age of the existing infrastructure. For example, if the system is
running on 10 load-balanced virtual servers, you can define a
canary cluster of one or two servers. This way, if the deployment
is not successful due to an escaped defect, it can be caught
before the build is deployed to all of the servers. Canary releases
are also used for pilot features to determine performance and
acceptance prior to a full rollout.

Blue/green deployment
This is a zero-downtime deployment technique that involves a
gradual release to ensure uninterrupted service. The blue/green
approach is effective in virtualized environments, especially if
Iaa$S is used. Although a blue/green deployment is a deep topic
that deserves an entire chapter on its own, simply put, it
includes maintaining two identical development environments
—Blue and Green. One is a live environment for production
traffic, whereas the other is used to deploy the new release. In
our example, let’s say that Green is the current live production
environment and Blue is the idle identical production environ-
ment. After the code is deployed and tested in the Blue environ-
ment, we can begin directing traffic of incoming requests from
Green (current production) to Blue. You can do this gradually
until the traffic redirect is 100 percent to the Blue environment.
If unexpected issues occur during this gradual release, we can
roll back. When it is completed, the Green environment

Play 2: Study the DevOps Practices | 35

becomes idle and the Blue environment is now the live produc-
tion environment.

Getting to this point in continuous delivery is an incredible mile-
stone, and means that your organization has enough confidence and
automation from your implementations CI, CM, automated testing,
and IaC that you are able to deploy any point into production.

Continuous delivery workshop guiding questions

Do you have CI in place?

What is your confidence level in the coverage and quality of
your automated testing?

Do you have IaC for infrastructure? Have you heard developers
complaining that they are unable to reproduce an error identi-
fied by quality assurance?

What is the “definition of done” for your code?

Do you have 100 percent code review for each commit?

Do you run code quality scans for committed code?

How does the product owner approve your definition of done?

Does your contract let you deploy to production, or is there
another contractor in the middle?

Do you run automated tests (continuously) in production for

feedback?

Do you have practices to revert the build?

Continuous delivery checklist

o Before attempting continuous delivery, assess your maturity

level for the prerequisite practices described in this section. If
you do not have sufficient maturity in these practices, make
sure to first improve those practices.

o Build your continuous delivery pipeline. Do not reinvent the

wheel. Instead, use products such as Jenkins, Chef Delivery, and
Spinnaker.

« Integrate your test automation and CI server to the continuous

delivery pipeline.

36

Enterprise DevOps Playbook

o Decide whether to use canary or blue/green deployments. If you
do, build the mechanisms and determine how the deployed
build will be monitored.

o There are two manual checkpoints for continuous delivery:
code approval and delivery approval. Document these two
approval points and communicate them:

— Code approval

— Define who will perform this approval. Usually, it is the
technical lead.

— Define the developer’s tasks to achieve the “definition of
done” and submit the code for approval.

— Define the reviewer’s tasks and standardize these across
Agile teams.

— Contfigure the delivery pipeline to deploy builds to the
proper target environments (development, testing, qual-
ity assurance, or production).

— Construct or configure the trigger that the person
responsible for code approval will use to initiate the build
automation for the delivery pipeline.

— Build mechanisms to alert the team if any of the automa-
ted tests fail. This mechanism must stop the pipeline
when something is found to have gone wrong.

— Delivery approval

— Define who is accountable for this approval, which is the
last step before deploying the code to production assum-
ing all of the planned automated tests run successfully.
Because the code is a candidate to be deployed to pro-
duction, the product owner should be involved.

+ Build advanced deployment techniques (e.g., blue/green deploy-
ment, canary release, and or A/B tests) to improve the success of
continuous delivery.

o Create mechanisms to monitor production and the success of

the build.

o Create mechanisms to revert the build in case of a failure.

Play 2: Study the DevOps Practices | 37

Practice 6: Continuous Deployment

Continuous deployment definition

Unlike continuous delivery, which means that every change is
deployable but might be held back because of business considera-
tions or other manual steps, continuous deployment strives to auto-
mate production deployment end to end. With this practice,
confidence in the automated tests is extremely high, and as long as
the code has passed all the tests, it will be deployed.

Figure 1-7 shows our reference pipeline. We maintain a manual
checkpoint for implementation of a business decision about deploy-
ment prior to continuing the process to production. You can remove
this step for full end-to-end automation of continuous and constant
deployment of production changes. In a fully automated scenario, it
is vital that you have high maturity levels in each of the DevOps
practices and full visibility into the health of the systems at all times.
If unexpected issues arise, it is critical to have the metrics, insight,
and process to either quickly revert to a known stable state or to fix
the issue immediately with a new build.

Deployment Environments

Local a Development Text Preproduction Production

Verify Build Acceptance E Union Rehearsal Deliver
Lint Unit Unit E Unit Smoke Post-Prod Tests
Static Analysis | Mock Integration | Service Integration : Integration Resiliency Resiliency Tests
Mock Integration Mock Integration |} End-to-End Performance Performance
Consumer Tests Ul Tests E Security Tests Synthetic Tests
508 Manual E Compliance
Approve for Delivery . ' Resiliency Tests
Business Decision S EE—
* Optional Manual Checkpoint m

Figure 1-7. Reference pipeline—continuous deployment

38 | Enterprise DevOps Playhook

Continuous deployment is the ultimate goal for modern efficient
organizations. However, this DevOps practice does not imply that all
applications are deployed without any manual interaction. Here are
some factors to examine when considering continuous deployment:

+ Automated test coverage

o Automated test types, including unit, functional, accessibility,
security, compliance, different types of performance, and
acceptance tests

+ Robust multilayer code review during developer commit for
every change

o Validation of functionality by the product owner during devel-
oper commit

o Advance deployment mechanisms, including blue/green
deployments, canary testing, post-production testing, and
revert scripts.

In deciding which services can be deployed automatically and which
need manual validation, most organizations use a hybrid mecha-
nism early on before becoming fully confident as to whether the fea-
ture is something that can be fully automated to production. For
example, a change in a business rule that requires extensive scenario
testing by a subject matter expert (SME) might be better suited for
continuous delivery because it would require the SME (and the
product owner) to give a thumbs up after going over all possible sce-
narios. This is especially true in the government world in which
there are policies in place that require individuals to give their
approval prior to moving on to production.

Continuous deployment workshop guiding questions
« Do you have continuous delivery in place? How successful are
you with it?
o What are the driving factors to move to continuous deploy-
ment?
« How comfortable is your client with continuous deployment?

» How will you ensure that the functionality you deploy still con-
forms to the product owner’s preferences when you eliminate
the manual delivery approval step?

Play 2: Study the DevOps Practices | 39

o Assess whether you can use continuous delivery and continuous
deployment together. What is ideal to be part of continuous
deployment for your team? (This could be all components or
perhaps just APIs and backend capabilities.)

Continuous deployment checklist

« Ensure that you are successful with continuous delivery before
pursuing continuous deployment.

o Integrate delivery approval with code approval—that is, make
the business decision about the deployment when you assess the
readiness of the code right before CI.

o Build mature centralized logging and continuous monitoring
practices to ensure that youre aware of the impact of every
deployment.

« Adopt canary deployment mechanisms.

o Embrace blue/green deployment mechanisms. For continuous
deployment, the blue/green approach is a necessity. No matter
how good your automated tests are, it is still possible to miss
defects. Blue/green techniques help to minimize the chances of
releasing defects to all users.

o Integrate all of the chosen deployment techniques with your
delivery pipeline. Some continuous delivery pipelines (e.g.,
Spinnaker) have advanced deployment techniques out of the
box.

Practice 7: Continuous Monitoring

Continuous monitoring definition

Continuous monitoring is the practice that connects operations
back to development, providing visibility and relevant data through-
out the development lifecycle including production monitoring. In
traditional IT operations, an operations team composed of system
administrators, various help desks, and analysts performs opera-
tions. But with continuous monitoring, modern DevOps operations
teams also include the developers who originally built the system
and then are responsible for site reliability, overseeing the software,
and acting as first responders for production problems. Simply put,

40 | Enterprise DevOps Playbook

continuous monitoring aims to reduce the time between identifica-
tion of a problem and deployment of the fix.

This practice should not be an afterthought. Monitoring begins with
Sprint 1 and should be integrated into the development work. As the
system is built, monitoring solutions are also designed. In this play-
book, we focus on four different types of continuous monitoring:

Infrastructure monitoring
Visualize infrastructure events coming from all computing
resources, storage and network, and measure the usage and
health of infrastructure resources. AWS CloudWatch and
CloudTrail are examples of infrastructure monitoring tools.

Application performance monitoring (APM)
Target bottlenecks in the application’s framework. Appdynamics
and New Relic are industry-leading APM tools.

Log management monitoring
Collect performance logs in a standardized way and use analyt-
ics to identify application and system problems. Splunk and
ELK are two leading products in this area.

Security monitoring
Reduce security and compliance risk through automation. Secu-
rity configuration management, vulnerability management, and
intelligence to detect attacks and breaches before they do seri-
ous damage are achieved through continuous monitoring. For
example, Netflix’s Security Monkey is a tool that checks the
security configuration of your cloud implementation on AWS.

We can divide continuous monitoring into three major steps. First,
the obvious one—monitoring. Second, an alert system to warn the
team about a problem. The alert system should be capable of auto-
matically elevating the alert if the team members who initially
received notice of the issue take no action. The third step of contin-
uous monitoring is actions to take when an alert occurs. No matter
what the nature of the alert, all should be captured and reviewed.
For example, there can be false negatives, but they should not be
ignored. Instead, false negatives should be reported as such to the
continuous monitoring tool so that if the same set of circumstances
occurs again, the monitoring equipment will not trigger an alert.
Similarly, if an alert is issued, but the software appears to be operat-
ing satisfactorily, it should not be neglected. Rather, it should be

Play 2: Study the DevOps Practices | 41

investigated and the outcome of the investigation must become a
part of the record that the monitoring tool can use in determining
the severity of future similar incidents.

Continuous monitoring workshop guiding questions

How and why is early detection of defects important to your
project?

What performance SLAs do you have and when do you plan to
start achieving them?

What is the system availability requirement and what is the plan
to achieve it?

When do you do performance testing as part of your continu-
ous integration and automated testing practices? How do you
know that the tests represent actual production conditions?

What is the labor cost of your operations? How many systems
engineers, system administrators, and database administrators
do you have monitoring the production environments, and how
do they react when there is an issue?

How many errors are there in your application? How do you
trace the errors back in your code?

How do you forecast infrastructure utilization when your code
changes?

Continuous monitoring checklist

Implement APM, log analytics, and security monitoring solu-
tions for your system.

Design and start using these implementations as the system is
built, not after it is deployed.

Design and implement alerting solutions composed of alert gen-
eration, mitigation actions, verification, baseline calculations,
and alarm setup. Build alerts for each try/catch in your code as
the code is designed.

Know your monitoring coverage and identify what it should be.

Start monitoring performance during CI. Define page-level
SLAs, build automated performance tests for these SLAs, and
define triggers.

)

Enterprise DevOps Playbook

o Define baselines during development to be able to identify later
anomalies.

o After defining baselines, define quantitative forecasts for critical
processes. For example, login page SLA is two seconds. Based
on 95 percent of responses, the system can achieve a 2-second
response time for up to 1,000 concurrent users.

o Collect data from servers. After aggregating and storing the
data, present the data in graph format, prepared for time series
analysis.

 Automatically create issues when the monitoring solution cap-
tures a problem and triggers an alert. Automatically group the
created issues.

o Allocate developer resources to filter false positives and nega-
tives.

Play 3: Assess Your DevOps Maturity Level and
Define a Roadmap

DevOps is not a set of prescriptive procedures, but it is critical that
organizations assess the maturity of their adherence to DevOps
practices by measuring them against a standard model. Without
this, it would be impossible to identify gaps or potential areas for
improvement that could interfere with a successful DevOps imple-
mentation.

To make this assessment, we created a Maturity Questionnaire that
provides a series of questions related to each of the seven DevOps
practices. Each answer has a point value. When you complete the
questionnaire, add up the total points and use Table 1-2 to deter-
mine your project’s DevOps maturity level.

Play 3: Assess Your DevOps Maturity Level and Definea Roadmap | 43

Table 1-2. The DevOps Maturity Questionnaire

Maturity Level Points

Base Agile practices might be in use, but DevOps practices are limited | 0-32
Beginner Foundational use of DevOps practices 33-98
Intermediate | Stabilized use of DevOps practices 99-164
Advanced Continuous improvement in place 165-230

Team has the competence and confidence to use DevOps practices
Cultural barriers have been overcome

Extreme No cultural barriers 231
Role model DevOps implementation

Booz Allen’s Maturity Questionnaire should be the first step toward
achieving a more mature DevOps capability because it highlights the
current state and provides a roadmap that indicates where to focus
on increasing your organizational maturity. Some DevOps practices
are more difficult to introduce than others and will require substan-
tial changes in the fundamental management of software develop-
ment. Over time, as an organization grows in DevOps maturity,
improvements will bring tangible increases in both efficiency and
quality of software development and implementation.

Tables 1-3 through 1-9 highlight our maturity assessment.

44 | Enterprise DevOps Playbook

L S € L 0 sjulod
(saseajal
pue ‘saxy1oy ‘sainjea) (uonexo| 3jbuis pazienuad
1o} syunodde Jeyy fijod e buisn snsian ainjeay (sebueyd | Burydueiq jo peaisul pasn

buiypueiq painpnis) U283 10} YDueIq ParedIpap) [[e Joy A1u3 jo Juiod 3jbus) (9p0d 321n0s Jo s31dod) £bajens Bunpueiq

91025 ANO MO[}IOM MOID MO[YIOM DUBIq Binjed| MOYIOM pazI|eu) sauoysodas djdnnyy | Buiyoueiq oy 3p03-221n0s
L S € L 0 sjulod

asn

3po anpnaisesul pue ‘sidinds (W)S) yudwabeuew

910S N0, SI3UIRIUOD pue Spling + 3p0) NUN0S 153 + | uonenbyuod ‘uoneinbyuo) + | apod uonedijdde oy WIS DS ON 3pod 3INo§

74025 4N0A

QWIX3

pajueApy

3)eIpawLIAy|

13uuibag 19197 faunjep

JuawaSvupui uoypindifuo) ‘¢-1 29y,

45

Assess Your DevOps Maturity Level and Define a Roadmap

Play 3

L S € L 0 sjulod
(s13y30 pue ‘yp awdoanap 100}
al0s uopedjdde |)533) SYUBLUUOIIAUR 3y} JO o) uonewoine |) Aq pajjosuod
Inojy §153) 2DUPWLIOMD] + $1593 A1IND3S + | 31 Jo S |[e 10} 1S3} UM + | [[B 03 UOIJRWOINE plIng + piing Ajug uonewony
L S € L 0 sjulod
(vD 1591 “A3Q)
SJUSWUOIIAUD [[B 0} (35e3[) JUSWUOIIAUB JudwWdo[dA3p (yueiq 3pod
‘aimiea) quawdopaAsp) | 01 ATNO Youeiq Juawdoansp | 324nos uf 3bueyd Jo abpajmouy
saypueiq [[e woy Juawrojdap | woy JuswAoldap pajewoine 3] 9ARY J0U S0P [003)
al0s Pa1eLOoINe PUB UOIIA]P pue uoia33p abueyd sp|ing pajewone s|01u0d
noy | abueyd pajewoine yum (001 | Pa1ewoIne yum (001 |) PaINPAYIS YUM [001) | P|INg [enueW Yum (00}) 1001) ON asn |00} |)
L S € L 0 sjulod
(3seqelep pue dde)
I JUSWUOIIAU] pazipJepuels
-}P3Y Ypea 10j suni sadopaasp | ‘sidids pjing uonedyjdde ‘exep
2103s ANV 351%9 552201d 153) LOYS | 1531 9|qRYSILYDI 0] SS3IIE Sey SISIX3 Ssauley | yduelq Juawdo[aa3p 0} ul
Inop | puesyduds pjing pajewolny | (]eJ0]) JUSWUOIIAUD J3d0[3A3Q | 153} parewone anisuayaidwo) | -ypayp JadojaAdp Jejnbay [D 1oy ApeasjoN | samsinbasaad)

AWaIX]

pa>ueapy

3)eIpawLIy|

J3uulbag

uovI3aju1 SNONULIU0Y) - 3]quL.

19A97 Kyunyeyy

Enterprise DevOps Playbook

46

L S € L 0 sjulod
(pe3)
[e21uyd3a} pue sadojaA3p Ajou 3P0 413y} 234 0} 3NUIIU0D 3p0) U3 04q 3y} 0) Sul
‘Pajap e oy “03) sIaquiaw | ued s13dojaA3p J3YI0 Ing ‘Y | -IY J3y0 Juanaid (q)
$1013 p|ing wea} J0 135 3|qeinbyuod | 3y} 033eq [YIAIY = NOILDY ssax01d pjing dojs (e)
ou 1B 313y} pue ssed $1s3) 2 0] 31LIIUNWWOd s|iey d01S SaMIAIE | [) Buunp suoipe
21005 pajewolne || jiun ssaxoid 03 e|d ul swsjueydaw 1591 11U Inq “Ul-Yd3Y) YuM = NOILY ‘u-ypayy e 1D JoS)nsal o} | pue suonedyi3ou
oy | pjing 3y} dos Ajjedrjewony | dABY ‘UOIIE UB S| I3y} USYM){e31q 10U S30p P|ING USYA\ | 01 3Np SYeauq p|ing ayd J| | UsNeI st NOILDY ON [SUBlY
L S € L 0 sjulod
do1S 319dwo S| (nyea}
‘35IMIRY0 ‘ssed $1s3] Jun (Mwwod 10 3|npows “b°3)
151591 1un |je buluuni Ja)je d01S ‘asimiayo 210J3q SunJ 1s3) Jjun ou) fujigeded ajoym
2103s | 3)3|dwod a4e (3p0 3|qeINIaxXs | ‘ssed s1s3) un Ji ‘sisa) yun je | 339|dwiod e (Ip0D 3|CRINIAXD | (MWL) 40J3q SUNIISA) | 3yl |un deibdyur | apod adojanap
Inoy | 153][ews) spoyiaw se ajesbaju| | buiuuni saye Ajiep aeibajuy | 1s3)jews) spoylsw se dyeibayy| Jun ou) Ajiep 3yeibaju| ‘u-ypayd oN Jo uoneibaju|

ENTE Ve |

pacueapy

3jeIpawIAu|

Jauulbag

aseq

19A97 Knieyy

47

Assess Your DevOps Maturity Level and Define a Roadmap

Play 3

L S € L 0 sjulod
WBWUONIAUD pling 113u3 3y} 10} Spjing
£19A3 U0 pjIng £I9A3 | puB JUBWUOIAUS JudwdoRAdp JWWO) e ssausey uoIyse} 204 pe uj s3sd}
210S INOJ | 10} SSUIRY 3y} SunJ |00 |) 10} SS3UJRY Y} SUNJ 001) | 313UI 3y} uni S1dO[PAIQ | UMO 413y} unl s13dojpAd(1531 0un oy | K>uanbaay 3sa3 yup
L S € L 0 sjulod
pasn |00} 3beIIN0D
91035 INO) 955/ < 3beIIN0) 95/> 01 905< 3bRIAN0) | 9405> 01 %57< 3bRIBND) 957> 3beIIN0) 1591 3unoy | abeianod 3sa3 yup
L S € L 0 sylod
SIdY puessifn yioq
210)S N0} abesan0d apo) | Joj Juawdo|aAIp UIALP-1SI] Au11geisal oy ubisaq $353) 3jdwis ma4 $1531 Jun oy $)59) U
L S € L 0 sylod
swo|qoud
wajqoid | sueyd yuuds ay3 oui pauued Y1 xy 03 s1adojansp synsai
3y} abewy 03 sdojs weay ‘s|ie} | suornde pue wea} JuawdofaAap Jupds 03 dn 3J3| s 31 pue 159) pajewojne
91025 N0 153) pajewoine Aue uaym £q pamainal ale SWI|qoId | UYIBI 10j UINL) IR SUOIDY | P3JUILINIOP dle SUOIDY U3)e} uoipe oy 10} suoipy
L S € L 0 sjulod
5159
91035 INO) $153] DUBWIOMIY + $153] Andas + 011eUI)S [eUODUNS + S1s31 U | SIsal pajewoine oy | Huiysay pajewoiny

74025 4N0A

SWIX3

pasueapy

djeIpawIAu|

Jauulbag

103ed1pu| funjeyy

aseq

Sugsay pappuiony s-1 a1quy,

Enterprise DevOps Playbook

48

L S € L 0 sjulod

fpeas
1003) 3y} wea) Juawdo|aAdp wed) JuawdoaA3p | S13sea|al Y} Jaye wea} buiuuers | £ruanbasy bujuueds
21035 In0} | £q “3Jy ul-paydayd £13A3 Jo4 3y1 Aq yunds £13A9 104 | 3y Aq aseajai K1aA3 o4 J3ypoue £q pawiopad Aujiqesauina oy Aypqesauiny
L S £ L 0 sjulod
910)S ANO{ bunsal uonesuyy + sishjeue apod JeIS + | MIIASI 3P0 pajewolny + bujuueds Ayjiqessuinp s1593 Andas oy | sadAy 3593 Ayndag
L S € L 0 sjulod

(Itey uayy pue ‘peoj J3pun

(snwi) s,uonedjdde | awr o potsad e 10) |[9Mm Yiom 51591 sadfy
2105 ANO{ 1591) 1591 5941 + | Jybiw uonedijdde) 1531 yeos + 159) peo + 153] S)UBUWLIOMR] duewsopad o | 159) dURWIOMI
L S € L 0 sylod
£>uanbauy
91035 N0} fjsnonunuo) jupds £13A3 104 aseaa K13na Jo4 0y py | 1531 duewUopId ON | I59) dIUBWI0NID
L S € L 0 sjulod

(15 (51521 ayous)

uoiNpoid uj SIs3} pue peo| abed ‘1S uondesuesy) buiyfiane fujeuonduny
21005 IN0J | JUSWAINSEIW NUBWIOHIJ SY1S Y3IM 159} dUBWLIOHIY 153) 3DURWIOMAY | PajIA[As 153} UBIIOMIY | 153} dueWLOMAd ON | SISB) DdURWI0IR]
L S £ L 0 sjulod
abesano
159) (K108
%5/> 905> 0} 153] 0LIBUDIS 10 [euor)duny)
21035 4N0) | 955/< 3beIAN0 K103S J3SN) | 03 9505 < 3bRISN0D K103S J3S) | 9657< BRISA0D K10)S 135N | 9557> 3DRIAN0D K103S J3S) pajewolne o\ oueuads

34025 ¥noA

AWaIX]

pajueapy

3jeIpawIRu|

Jauuibag

J103ed1pu] fyunzepy

49

Assess Your DevOps Maturity Level and Define a Roadmap

Play 3

L S € L 0 splod
uoneypa.nle Aundas
1003) 3y} wuds £ 3seajdl K19A9 10} weay © JO dWI} 3y} 18 Wea} buuueds | K>uanbaig bunssy
21035 4n0j | £q 3|y ul paxpayd £13A3 J04 | 10} Wea} Jayjoue Aq pawLiopad J3yjoue £q pauniopad J3yjoue £q pauniopagd uoijes3auad oy uonjel)dUdd
L S € L 0 sjulod
(9se3]a1 “uuds K133 “6°3)
fouanbaiy pauyap 1o} |00} HWIWO) 3|y Yoes
123(04d 3y3 pue 3seq apod ay} 10} (RIS [eINULA] Ay} 13A3] w3(01d 1e pasn
1o} Juawfodap £13A3 1e 3pod | Juawiojdap 3pod £13A3 1@ 3sn | 1o} 3|qeyns) (00d sisKjeue | (uedsddy gl “63) |00} pasn (00}
91035 INO) 13dojaA3p 3y sareniul) | s1dojaAap (003 Ay} Syl) Jnels asn siadojandq | siskjeue dneis inp-Aaeay siskjeue d13eis o\ sisjeue xnjels
L S £ L 0 sjulod
SM3IA3I fouanbay
1003 | 3y} wea) juawdo[anap wea} Juawdojanap 3p0) WOpUEJ Je pe3)| bujuueds fyjenb mainal fyijenb
2105 anop | £q 31y ur paxpayd K13ns Jo4 ay) Aq ‘unds A3 104 | 3y1 Aq aseajas K1ana Jo4 [e1UYD3) Aq pawoyad | 3pod pajewoine oN 9pod pajewoiny

34025 ¥noA

AWaIX]

pajueapy

3jeIpawIRu|

Jauuibag

J103ed1pu] fyunzepy

Enterprise DevOps Playbook

50

L

S

sjui0g

aInpnisesul
buiAjJapun pue siauieiuod
40 3[eds 0Ine pajesdbajul pue

aInpniselul 3sn-0)—Apeal
Bunsixs uo sadMISODIW
10 3]3S 03N pUR

SI|NPOW PIZLIUIRIUO Y}
40 buuorsinoad yuspuadapul

Juswioldap uonedjdde

21005 INOJ | SIMIISODIW PIZUIUIRIUO) | SIIIAIISOIW PIZLISUIRIUOY | PUB SINPOW PIZLIIUIEIUO) | DIYN|OUOW PIZUIUIRIUC) | UOIIRZLIBUIRIUOD O) | SN UOIJRZIIDUIRIUO)
L S € L 0 Splod
paisanbal | Ajjenuew suonedijdde o}
$9523.03P pue saseanul | Aujiqejeds uonedijdde o3 pan £jjenuew uaym uornean | pajelo|je pue ‘pazilenuia bujuoisinoid butuoisinosd
asn ayy se A|ediweudp | ou Ing ‘s|dy Aq pajewoine $324n0S3J d4NPNIISRAUI s13M3s [edIsAyd ainpniisesul ainpnaseyul
91035 4N0J | pauoisiaoid S aInpnaIselU| bujuoisiroid anpnasenuy| puBWp UO Pasn si ee| ‘dn 335 J93U3) elRQ pajewolne oN pajewoiny

3WaNXg

3jeIpawa)u|

Jauuibag

l0jedipuj Kyunjey

ov["9-1 919v],

51

Assess Your DevOps Maturity Level and Define a Roadmap

Play 3

L S € L 0 sylod
JuawAojdap uondnpoid Joj | s3jeb [enyesuod 03 anp pasn
P3YD [enuew B INOYNM J0 YUM | 39 Jouue Ing ‘yuawAojdap
pasn s yiym ‘dass jerosdde uonpnpoud o3 Juawdojansp
[enuew e piasul 03 3|qissod s} woJ} uopewone SJULUUOJIAUD 1S3} pue
2100S sys1xa auRdid [} 3|qeus 03 3|qeinbyuod v 01 1uswfo|dap pue) saniae) Aluo | auipdid yuswikoldap aupdid
inoj wawAojdap parewoine An4 st auladid Juawikojdaq | smojje aujadid Juawkojdaq | smojje auipdid uswiholdag pajewoine oy juawkoldag
L S € L 0 sylod
dueldade
(parewozne s1y3 40} 3|qisuodsal Jou
(Bunyiomiau ‘uoneinbyuod)Iny) uonuaAIAIUI [BNUBW | S| J0JIRIIU0) JuaWdORAR(Q £13nj3p Joj pasn
‘eJep ““3'1) UOIJUIMIA}UI [enUBW 31eb buiisa) enuew INOY}M SJUSLIUOIIAUD (Aued | 3q 0 5353) pajewone
2103s fue Jnoyym SJusWUOIIAU | yBnoiy) ssed SJUBWIUOIIAUD 1531 pue Juawdo|3Aap 03 10) Jopeijuod Jayjoue Aq J0 synsas mojje SjuleI)SU0d
INOX | [V Pue O 03 PJANIAP Sp|Ing 1N pue yD 01Spjing | paJaAIRp pue paisal spjing | auop dueidadde Joj bunsa| 10U S0P 1IRAJU0) Pesnuo)
L S € L 0 sjulod
wea} 94001 10U S 3be1AN0) 3y} SM3IARI
ping uoispap | udwdojaAap ay1 Joj ,3uop | 3snedaq dueidadde pedw | d3eb pue uoideIu
3y} yum anl| ob o3 Aj219jdwod 3NI[-06 3103q [[am Se S153) JO UOIUYAP, Ay} Se pasn | 1ou Op S} NSal 3y} Ing “Juaip uewny sl 313y 5359
21038 $1531 ueydadde pajewoine | |enuew swiopad Ing ‘syynsai | 1593 3duedadde pajewone 3y 03 papiaoid synsal | 3uns 1593 3dueydarne ueydane
Inop U0 S3|[31 JAUMO 1Npoid 3y} S3SN J3UMO 1Npold yum 3besanod 94001 153] OLIBUS pajewioIny pajewoine oy parewolny

oWwRIIX3

pa>ueapy

3JeIpawu|

Jauubag

Auaarjap snonuyuo? /-1 219v],

l03ed1pu|
fyunyey

Enterprise DevOps Playbook

52

L S € L 0 sylod
(19031 SN@ pawJopad
3y} 1 J13Y30 3y} yum parejdal awnumop oy | i apesbdn 3y} pue umop uaxe}
pue papeibdn si 3uo ‘uaaib 319|dwod | s1 wR)sAs ayy ‘pjing uoipnpoid
pue an|q :uondnpoid Jo suoisiaA | juawfoldap ay} [nun awn e ur f1eued ay) bunsal oYy
2103s [EJ1UIPI OM3) AWIIUMOP ON | J© 3UO SIIAIAS dpeibdn uayy 1511 JUWUOIIAUD KIeuE) 0} piing bunsixa ayy wawhojdap saniiqede>
Inop wawAojdap usaib/anig pue £1eued 03 fojdap 15114 | pakojdap pjing ‘buiseajas fieue) | sadejdal Juawikojdag pajewiolne oy juawkoldag
L S 3 L 0 suulod
apinb
uone|jeisui dais-Aq
suopeinbyuod | -days pue saunpadoid
pajewoine bunesado paepuels
umop | ob suopeinbyuod apnpu sdais buisn £jjenuew
wi1sAs ay3 bupyel Inoyum pjing | 31043q paisal pue pawiopad palewolne apnpul sdals | JNOS INg ‘Uorejjeisul papnpuod |y
21038 3y} yum papesbdn st walsAs s1juawfoldap ypip-auQ | 1y Inq ‘uoiejjeisur dais-Ag-dais days-Ag-daig aulo uorpnpoid
inoj 358391 AWIIUMOP 0137 AUILLO UIYe) S| WAlSAS AUILLO UIXR) S| WISAS | UL U eY S| WlSAS uayel st waisks | 03 yuswfojdag

3WaX]

pajueApy

3jeIpawIu|

Jauubag

Juawdojdap snonuyuo) "g-1 3|qv],

lojedipu|
funyey

53

Assess Your DevOps Maturity Level and Define a Roadmap

Play 3

L S € L 0 sylod
M3IAI 10 3|qIssIe
2103s 3|qeypseas Appinb uoledO| [RIIU) B)1sea (ss320e gam ‘A1ndas 5100} SO
Inoj pue paxapul aie sboj [y | urind pue pajepijosuod shoj ||y ‘uonedijdde “371) sboj |1y buisn bupioyuow hoq bunioyuow bojoy | Humoyuow hoq
L S € L 0 sylod
aseqe)ep $3553204d pue SIduleIU0d

3y} 0] umop 1sanbal jenyui JWA/SI9MIS [enplAipul uoipnpoid uj duewlopad 51003 50 buisn buniojuow Bupioyiuow
2103s woJ} ‘paynuapl anssi Aue jo 3y} 0} umop uoipnpoid uonedijdde uo soisness | bunojuow duewlopad uewiopad uew.opd
INOA | XEIS U 3YI MAIA 03 ANIqy ui sanss| ajejost 03 Auiqy aWI}-[eal 0} Sse Ase] uonedijdde [enueyy uopjedijdde o uonedjddy
L S € L 0 sjulod

(syaa

bupioyuow fundag - pue siojensjuiwpe

bupioyuow £undag - buuoyuow funag - sisjeue waysAs)

siskjeue pue buuonuow o7 « | sishjeue pue butionuow bo7 - pue buuioyuow 6o - wea) suonesado

burioyuow burioyuow bunoyuow fq pawioyiad

dduewsopad =o_.~8r_%< . uewopad =o_.§__&< . aduewopad =o_.~sr_%< . wea) suopesado st Bunouuoy
21038 o o i 3y} £q sjoo3 bunioyuow uonn|os uonnjos
Inop | :s9dA) bupoyuow 3say Jo ||y :sadf) bunoyuow 3aiy) :s9df1 burioyuopy JO pasn paywi burioyuow oy funoyuopy

SWaJIX3

pajueApy

3)eIpawLIy|

Jauubag

Suri031u0ui snonuIuoy) ‘6-T 3|quL

l03ed1pu|
fyunyey

Enterprise DevOps Playbook

54

L S € L 0 sjulod

£3und3s pue ‘uonedyjdde

S|1e33p UaA3 buipnppul 1366113 bupioyuow jo ‘sbo| bupoyuow
2103s 3|qRYIPOW | “SYUIAI SNOIAAI JO ISI| DLI0ISIY | INJRU AU} INOGE UOIRULIOJUI wed) q payaje uonnjos
Inoj e spjoysaiyy buia)y sapinoid uonnjos bupualy pajie1ap apiroid LRy | 3Je satued 3jqisuodsay buruaje oy bunssy
L S € L 0 sjulod

syexne d|qissod bufynuapi SDENE AR 51001 YHOMI3U
2100s 10J WSS 3yy bunuy | Jo sarujigeIau|nA puy KA 03 SYDEJE S0(SNOLIEA SB NS pue g0 diseq buisn Bupoyuow burioyuow
Inojp aJe Jey) speojfed Joyuoly | BunojuOw YOMIdU PdUBAPY | ‘UOIIRIYUSPI JeaiY 3jdwis Bupoyuow £1Lndag fyunas oy fyundag

AWAIIX]

pajueapy

dJeIpawidu|

Jauuibag

loyedipu|
funey

55

Assess Your DevOps Maturity Level and Define a Roadmap

Play 3

Play 4: Create a DevOps Pipeline

So how do you put DevOps into action once you have a clear road-
map and identify what DevOps means to your organization? We
suggest you begin by defining and creating a DevOps delivery pipe-
line. This is the set of tools and processes working together to pro-
vide workflow automation that reflects your DevOps practices
taking code changes all the way through into production. The shape
of the pipeline, the activities inside each step, what steps are automa-
ted versus manual, and code release and deployment strategies will
reflect your DevOps practices, requirements, and philosophies.
Every environment and pipeline is different, but the characteristics
of a successful delivery pipeline are the same, providing the follow-
ing:

 Automation of building, testing, and deploying

o Automation of infrastructure, which can be created and
destroyed without impacting the health of the software

« Reflective of your release DevOps philosophy and strategy

« Repeatable and expected results with immutable infrastructure
and processes

« Visibility into the entire pipeline workflow steps.

There is a wide range and constantly evolving set of technology and
tools for implementing your delivery pipeline. Key factors to con-
sider when choosing your set of DevOps tools include team skillset,
breadth of required hosting providers/infrastructure, availability of
the tools’ APIs, and, ultimately, the tools’ ability to execute your
DevOps practices’ requirements and philosophy.

The delivery pipeline you build should first satisfy the basic flow.
With it, you should be able to do the following:

o Check out code
« Change the code and integrate it into the repository

o Run validation and predeployment automated tests to ensure
the code meets required needs, does not break other existing
code, and runs as expected

 Deploy your builds on predefined infrastructure clusters

56 | Enterprise DevOps Playhook

o Move the build from development to testing, testing to QA, and
finally to production.

When the basic flow is perfected, you can begin exploring advanced
concepts that can help you to safely and reliably deploy, easily scale,
and roll back or forward. Among the advanced concepts, you
should become familiar with these:

o Spin up or down virtual machines (or on Iaa$ platforms) based
on user load

« Containerize (e.g., use Docker) your application and deploy it
on a scalable server cluster

« Provision containers based on user load

 Explore microservices architecture. This is not easy to imple-
ment and there are many considerations that must be addressed
involving this approach, including service discovery, communi-
cations, and orchestration. These aspects are beyond the scope
of this playbook.

It is important to approach and look at your pipeline as an enter-
prise change management workflow because handling one project
(delivery pipeline) is not the same when you have multiple delivery
streams that need to be validated and merged into a shared work-
flow for handling dependencies. Simplh having automation and
repeatability does not necessarily equate to an effective and scalable
pipeline. You want to avoid creating a complex Rube Goldberg-type
contraption and keep steps simple as appropriate and select tools for
what they are good/meant for versus doing heavy customization and
or using a large of amount of plug-ins.

Guiding Questions

o Are there any steps that cannot be automated and will need
manual review and/or acceptance?

« Is the goal to move to a microservices architecture?

« How many builds to production do you want to target/require
on a daily/weekly/monthly basis?

o What SLAs do you want to automate?
» What platforms and hosting providers do you need to support?

Play 4: Create a DevOps Pipeline | 57

+ How many features are you anticipating?

Do you currently use a canary release and or blue/green deploy-
ment strategy when rolling features out to production?

» How are production rollbacks typically handled?

o Are you planning to move to containerization architecture
soon?

Checklist

o Defined repeatable automated and manual steps that every code
change will go through—the workflow does not change and
provides expected steps and results every time.

« Established and verified full traceability for each step in the
pipeline—the ablility to see where a change is in the pipeline at
any time and its status.

 Implemented notification and resolution process for each suc-
cess/fail action for each step—ensure that you clearly define
responsibility groups for each action issue.

o Verified immutable infrastructure—your IaC is able to tear
down and bring up each environment over and over again with
the same expected state and results.

o Ensured metrics defined in continuous monitoring are cap-
tured, visible, and integrated with your notification process.

Play 5: Learn and Improve through Metrics
and Visibility

Now that you have created a pipeline and have a delivery flow that’s
running, you’ll need to know how effective it is and what you can
improve. One of the key principles we highlighted earlier is being a
learning organization, and that the mastery of DevOps requires con-
stant feedback and an environment that fosters continuous learning.
To learn, you need to have the metrics and visibility into the effec-
tiveness of the processes, environments, and operations. In a
DevOps project, metrics for monitoring project performance and
capturing project data serve five critical purposes:

58 | Enterprise DevOps Playhook

o Detect failure

« Diagnose performance problems

o Plan capacity

« Obtain insights about user interactions

o Identify intrusions

Because systems are constantly increasing in complexity, breadth of
distribution, scope, and size, measuring their activities and levels of
efficacy—and logging the results in data banks—demands a new
generation of infrastructure and services to support these efforts.
Given with the right equipment in place, the value of metrics spans a
broad swath of information, from systems health and performance
to end-user habits.

For example, when applications or programs fail, metrics provide
context to alerts, opening windows into what activities occurred and
what interactions took place leading up to each failure. Equally
important, metrics offer historical awareness of usage patterns,
which is critical for anticipating potential failures, writing fixes that
could shore up programs during oversubscribed periods, and deter-
mining how robust future software must be. For this purpose, ques-
tions that metrics can answer include the following:

o What are the peak hours of the day, days of the week, or months
of the year for utilization?

o Is there a seasonal usage pattern, such as summertime lows, hol-
iday highs, more activity when school is in session or when it
isn’t, and so on?

o How do maximum (peak) values compare against minimum
(valley) values?

« Do peak and valley relationships change in different regions
around the globe?

In a large-scale system, ubiquitous monitoring can generate data
involving millions of events with countless numbers of log lines
devoted to metrics measurements. This, in turn, can monopolize
overhead and affect performance, transmission, and storage. The
emergence of big data analytics and modern distributed logging
alleviates this problem. Moreover, advanced machine learning algo-
rithms can deal with noisy, inconsistent, and voluminous data.

Play 5: Learn and Improve through Metrics and Visibility | 59

When deciding how much data resolution to maintain for metrics,
you need to think about the type and amount of information that
you want to get from them. Will you be depending on metrics for
insight into what is causing an outage or degradation? If so, you'll
most likely want to have a fine resolution, less than a minute. Or will
you be using the data primarily for capacity planning on a three-,
six-, or nine-month timeline? If so, you'll want to ensure that you
can retain the historical details about maximum and minimum over
a long period of time.

At the very least, the metrics in place should effectively and continu-
ously monitor the following four fundamental DevOps facets:

Deployment frequency

How often does new code reach customers? DevOps practices
make frequent or continuous program delivery possible, and
large, high-traffic websites and cloud-based services make it a
necessity. With fast feedback and small-batch development,
updated software can be deployed every few days, or even sev-
eral times per day. In a DevOps environment, delivery (i.e.,
deployment to production) frequency can be a direct or indirect
measure of response time, team cohesiveness, developer capa-
bilities, development tool effectiveness, and overall DevOps
team efficiency.

Change lead time (from development to production)

How long does it take, on average, to move code from develop-
ment through a cycle of A/B testing to 100 percent deployed
and upgraded in production? The time from the start of a devel-
opment cycle (the first new code) to deployment is the change
lead time. It is a measure of the efficiency of the development
process, of the complexity of the code and the development sys-
tems, and (like deployment frequency) of team and developer
capabilities. If the change lead time is too long, it might be an
indication that the development and deployment process is
inefficient in certain stages or that it is subject to performance
bottlenecks.

Change failure rate (per week)
What percentage of deployments to production failed or rever-
ted back to be fixed with another patch? One of the main goals
of DevOps is to turn rapid, frequent deployments into an every-
day affair. For such deployments to have value, the failure rate

60 | Enterprise DevOps Playhook

must be low. In fact, the failure rate must decrease over time, as
the experience and the capabilities of the DevOps teams
increase. A rising failure rate, or a high failure rate that does not
decline over time, is a good indication of problems in the over-
all DevOps process.

Mean time to recovery (MTTR)

What is the mean time to recover from a failed deployment—
that is, the time from failure to recovery from that failure? This
generally is a good measure of team capabilities and, like the
failure rate, it should show an overall decrease over time (allow-
ing for occasional longer recovery periods when the team
encounters a technically unfamiliar problem). MTTR can also
be affected by such things as code (or platform) complexity, the
number of new features being implemented, and changes in the
operating environment (e.g., migration to a new cloud server).

In addition to these essential four metrics, there are others that we
recommend DevOps teams consider. The more information you
have, the more successful your DevOps projects will be. Among the
other benchmarks to assess are the following:

Delivery frequency
How often is code deployed to the development and test envi-
ronments?

Change volume
For each deployment, how many user stories and new lines of
code are making it to production?

Customer tickets (per week)
How many alerts are generated by customers to indicate service
issues?

Percentage change in user volume
How many new users are signing up and generating traffic?

Availability
What is the overall service uptime and were any SLAs violated?

Response time

Does the application’s performance reach the predetermined
thresholds?

Play 5: Learn and Improve through Metrics and Visibility | 61

In addition to the nitty-gritty, day-to-day performance and usage
patterns that DevOps metrics excel in providing, there are two other
areas of organizational activities that well-designed standards can
monitor for strengths and weaknesses: cultural metrics and process
metrics. Let’s look more closely at each one.

Cultural Metrics

DevOps is meant to include a set of efficiency and improvement
principles that should minimize project development conflict and
eliminate stress and burnout. In turn, team members will ideally be
more healthy, loyal to the organization, and deeply engaged in
workplace activities. It's possible to measure across a number of key
cultural indicators, including sentiment toward change, failure, and
a typical day’s work. Among the most telling metrics to be sought in
this regard are the following:

Cross-skilling
How much knowledge sharing and pairing exists among teams?

Focus
Are teams working in a fluid and focused manner toward ach-
ieving common goals or objectives?

Multidisciplinary teams
Do teams comprise members with varied but complimentary
experience, qualifications, and skills?

Project-based teams
Are teams organized around projects rather than solely skill-
sets?

Business demand
Are the demands placed on development teams by the business
side too onerous?

Extra lines of code
How many extraneous lines of code exist in the project?

Attitude
Are team members receptive to and positive about continuous
improvement?

Number of metrics
Is the obsession with metrics perceived to be too high?

62 | Enterprise DevOps Playhook

Technological experimentation
What is the degree of experimentation and innovation within
the project?

Team autonomy
How successfully does the team manage its own work and
working practices?

Rewards
Do team members feel appreciated and rewarded for their work
and successes?

As you can tell, many of these cultural metrics cannot be directly
measured. That is why we have stressed the mindset of becoming a
learning organization and having transparency and visibility into
the end-to-end process. For example, with regard to cross-skilling,
one way to assess that is to track to see if there’s a high variance in
the velocity across Agile teams, especially knowing that team mem-
bers are being shuffled. The takeaway here is that in order to gauge
the impact and effectiveness of cultural changes, you need to estab-
lish a means for constant feedback and dialogue with the team.

Process Metrics

One goal of a typical DevOps project is to achieve continuous
deployment. This occurs by linking software development processes
and tools together to allow fully tested, production-ready, commit-
ted code to proceed to a live environment without user interaction.
This software infrastructure portion of a DevOps project is often
termed the DevOps toolchain. It's useful to measure the relative
maturity of the component processes of the toolchain as a proxy for
overall DevOps capabilities. Typically, we look at an organization’s
skills in the following areas:

« Project requirements gathering and management

+ Adherence to Agile development principles

o Whether the software build is generally defect-free
o Fluidity of releases and deployment

« Degree to which units of code are tested to determine their suit-
ability for use

 Degree of user acceptance testing

Play 5: Learn and Improve through Metrics and Visibility | 63

+ Quality assurance programs

« Performance monitoring to ensure the program is reliable and
can scale

o Cloud testing to be certain that the application and its load can
be supported

Also under the umbrella of process is sharing, which is another area
that is often overlooked but should be encouraged—and measured.
People from different parts of an organization often have different,
but overlapping, skillsets. For example, this is true of staffers on the
development side and the operations side, the disparate parts of the
enterprise that DevOps is meant to link together. Given the impor-
tance of sharing between these teams, and the benefits to be gained
by an organization when there is a maximum amount of sharing, it’s
useful to measure the frequency of sharing.

Examples of workplace sharing that you can measure, and the
aspects of a DevOps project that these collaborative efforts affect,
include the following:

o Shared Goal: Reliability and speed

o Shared Problem Space: Deployment and delivery

o Shared Priorities: Improvement decisions

o Shared Location: Communications

o Shared Communication: Chat, wiki, mailing list

« Shared Codebase: Code and infracode

« Shared Responsibility: Building and deployment

o Shared Workflow: One-button deployment

o Shared Reusable Environments: Reusable recipes

o Shared Process: Standups and releases

o Shared Knowledge: One ticketing system

o Shared Success and Failure: Common experience and history

Metrics Tools

There are many monitoring and metrics systems and tools available,
both from open source and commercial developers. Typical systems

64 | Enterprise DevOps Playhook

include Nagios; Sensu and Icinga; Ganglia; and Graylog2, Logstash,
and Splunk:

Nagios
Nagios is probably the most widely used monitoring tool due to
its large number of plug-ins, which are basically agents that col-
lect metrics in which you are interested. However, Nagios’ core
is essentially an alerting system with limited features, and
Nagios is weak in dealing with the frequent changes of servers
and infrastructure encountered in cloud environments.

Sensu and Icinga
Sensu is a highly extensible and scalable system that works well
in a cloud environment. Icinga is a fork of Nagios with a more
scalable distributed monitoring architecture and easy exten-
sions. Icinga also has stronger internal reporting systems than
Nagios. Both Sensu and Icinga can run Nagios’s large plug-in
pool.

Ganglia
Ganglia was originally designed to collect cluster metrics. It is
designed to have node-level metrics replicated to nearby nodes
to prevent data loss and over-chattiness to the central reposi-
tory. Many laa$S providers support Ganglia.

Graylog2, Logstash, Splunk
These distributed log management systems are tailored to
process large amounts of text-based metrics logs. They have
frontends for integrative exploration of logs and powerful
search features.

Summary

There is plenty of information, excitement, value, promise, and con-
fusion that comes with DevOps. The benefits are clear: improved
quality, flexibility, speed to value, increased efficiency, and potential
cost savings. Less clear, however, is the best approach to adopting
DevOps practices. Adopting DevOps practices involves a mindset
change that is built on the right mix of people and culture, an
understanding of DevOps practices and how they relate to your
projects, and, ultimately, choosing and implementing tools to put
DevOps practices into action through a delivery pipeline.

Summary | 65

Selecting DevOps tools is a challenging task given the many tools
available. We recommend aligning the tools with your organization’s
skillsets, flexibility needs, and modularity bias. This technical land-
scape is changing constantly, with updated versions, open source
efforts, and new solutions. Make sure the tools you select do not
require custom integration or a high level of consolidation, which
might lead to a large effort to swap out the application down the
road.

Most organizations have trouble establishing appropriate require-
ments and goals for a DevOps program. You will need initial targets
to quantify your successes, and those targets will not be the same
from one team to another. Consequently, every organization will
implement DevOps to different levels of maturity. We hope this
report has provided you with a solid foundation of what DevOps
means, and more importantly, a framework for developing an effec-
tive adoption plan or to incorporate/assess your current efforts:

o Understand each DevOps practice and how it conforms with
your organization’s objectives and goals

o Assess the level of your organization’s DevOps capabilities

o Determine how far you need to go and what you need to do to
achieve the DevOps level of performance that you want.

Understanding these three items will put you on the road to a suc-
cessful and enduring DevOps practice. We look forward to hearing
your success stories!

Recommended Reading

We recommend the following reading that dives deeper into each of
the areas we touched upon in this report, from culture to technical
details around continuous delivery and microservices:

o The Phoenix Project: A Novel about IT, DevOps, and Helping
Your Business Win, Gene Kim and Kevin Behr (IT Revolution
Press).

o The Fifth Discipline: The Art & Practice of The Learning Organi-
zation, Peter M. Senge (Doubleday Business).

66 | Enterprise DevOps Playhook

The DevOps Handbook: How to Create World-Class Agility, Relia-
bility, and Security in Technology Organizations, Gene Kim and
Patrick Debois (IT Revolution Press).

Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation, by Jez Humble and David
Farley (Addison-Wesley Professional).

Building a DevOps Culture, Mandi Wells (O'Reilly).

The DevOps 2.0 Toolkit: Automating the Continuous Deployment

Pipeline with Containerized Microservices, Viktor Farcic (Create-
Space Independent Publishing Platform).

Building Microservices, Sam Newman (O'Reilly).

Recommended Reading | 67

About the Authors

Bill Ott is a Vice President with Booz Allen Hamilton, where he
leads a group of creative and technology professionals who are pas-
sionate about integrating human-centered design, Agile develop-
ment, DevOps, security, and advanced analytics to build digital
services that users will use and enjoy, securely. His inspiration comes
from his three boys who love technology—specifically Minecraft
gaming/programming and creating and watching YouTube videos.
Mr. Ott holds a BS in electrical engineering from Drexel University
and an MBA from Emory University.

Jimmy Pham is an avid technologist who has designed, developed,
and managed large software solutions for major private and public
customers. He is currently a Chief Technologist focusing on modern
software development. His interests and experience also span web
acceleration/performance and cloud security. Prior to Booz Allen
Hamilton, he worked at Akamai and ran a startup. He holds a
degree in Computer Science (BSE) and minors in Mathematics and
Psychology.

Haluk Saker is a director with the Digital team and a 20-year vet-
eran of Booz Allen. An experienced system/cloud architect, he leads
Digital’s DevOps practice, microservices architecture, and numerous
cloud platforms investments. He is also one of the coauthors of the
Booz Allen Agile Playbook that is used by all software development
teams at the firm. He has an extensive background in turnkey sys-
tem and cloud implementations, modern technology stacks, and
Continuous Deployment. Haluk holds a BS in Electrical Engineer-
ing, an MS in Engineering Management, and an MS in Management
Information Systems.

	Cover
	DevOps at O’Reilly
	Copyright
	Table of Contents
	Foreword
	Chapter 1. Enterprise DevOps Playbook
	Introduction
	How to Use This Playbook

	Play 1: Develop the Team—Culture, Principles, and Roles
	Principles and Culture
	New DevOps Roles

	Play 2: Study the DevOps Practices
	Practice 1: Configuration Management
	Practice 2: Continuous Integration
	Practice 3: Automated Testing
	Practice 4: Infrastructure as Code
	Practice 5: Continuous Delivery
	Practice 6: Continuous Deployment
	Practice 7: Continuous Monitoring

	Play 3: Assess Your DevOps Maturity Level and Define a
Roadmap
	Play 4: Create a DevOps Pipeline
	Guiding Questions
	Checklist

	Play 5: Learn and Improve through Metrics and Visibility
	Cultural Metrics
	Process Metrics
	Metrics Tools

	Summary
	Recommended Reading

	About the Authors

