

http://oreil.ly/ops-perf

Sébastien Goasguen

Docker in the Cloud
Recipes for AWS, Azure,

Google, and More

978-1-491-94097-6

[LSI]

Docker in the Cloud: Recipes for AWS, Azure, Google, and More
by Sébastien Goasguen

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Leia Poritz

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

January 2016: First Edition

Revision History for the First Edition
2016-01-15: First Release
2016-04-11: Second Release

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Docker in the Cloud. 1
Introduction 1
Starting a Docker Host on AWS EC2 3
Starting a Docker Host on Google GCE 7
Starting a Docker Host on Microsoft Azure 9
Introducing Docker Machine to Create Docker Hosts in the

Cloud 11
Starting a Docker Host on AWS Using Docker Machine 16
Starting a Docker Host on Azure with Docker Machine 19
Running a Cloud Provider CLI in a Docker Container 21
Using Google Container Registry to Store Your Docker Images 23
Using Kubernetes in the Cloud via GKE 26
Setting Up to Use the EC2 Container Service 30
Creating an ECS Cluster 33
Starting Docker Containers on an ECS Cluster 37

iii

Docker in the Cloud

Introduction
With the advent of public and private clouds, enterprises have
moved an increasing number of workloads to the clouds. A signifi‐
cant portion of IT infrastructure is now provisioned on public
clouds like Amazon Web Services (AWS), Google Compute Engine
(GCE), and Microsoft Azure (Azure). In addition, companies have
deployed private clouds to provide a self-service infrastructure for
IT needs.

Although Docker, like any software, runs on bare-metal servers,
running a Docker host in a public or private cloud (i.e., on virtual
machines) and orchestrating containers started on those hosts is
going to be a critical part of new IT infrastructure needs. Debating
whether running containers on virtual machines makes sense or not
is largely out of scope for this mini-book. Figure 1-1 depicts a simple
setup where you are accessing a remote Docker host in the cloud
using your local Docker client. This is made possible by the remote
Docker Engine API which can be setup with TLS authentication. We
will see how this scenario is fully automated with the use of docker-
machine.

1

http://aws.amazon.com
https://cloud.google.com
http://azure.microsoft.com/en-us/

Figure 1-1. Docker in the cloud

In this book we show you how to use public clouds to create Docker
hosts, and we also introduce some container-based services that
have reached general availability recently: the AWS container service
and the Google container engine. Both services mark a new trend in
public cloud providers who need to embrace Docker as a new way to
package, deploy and manage distributed applications. We can expect
more services like these to come out and extend the capabilities of
Docker and containers in general.

This book covers the top three public clouds (i.e., AWS, GCE, and
Azure) and some of the Docker services they offer. If you have never
used a public cloud, now is the time. You will see how to use the CLI
of these clouds to start instances and install Docker in “Starting a
Docker Host on AWS EC2” on page 3, “Starting a Docker Host on
Google GCE” on page 7, and “Starting a Docker Host on Microsoft
Azure” on page 9. To avoid installing the CLI we show you a trick in
“Running a Cloud Provider CLI in a Docker Container” on page 21,
where all the cloud clients can actually run in a container.

While Docker Machine (see “Introducing Docker Machine to Create
Docker Hosts in the Cloud” on page 11) will ultimately remove the
need to use these provider CLIs, learning how to start instances with
them will help you use the other Docker-related cloud services. That
being said, in “Starting a Docker Host on AWS Using Docker
Machine” on page 16 we show you how to start a Docker host in
AWS EC2 using docker-machine and we do the same with Azure in
“Starting a Docker Host on Azure with Docker Machine” on page
19.

We then present some Docker-related services on GCE and EC2.
First on GCE, we look at the Google container registry, a hosted
Docker registry that you can use with your Google account. It works

2 | Docker in the Cloud

like the Docker Hub but has the advantage of leveraging Google’s
authorization system to give access to your images to team members
and the public if you want to. The hosted Kubernetes service, Goo‐
gle Container Engine (i.e., GKE), is presented in “Using Kubernetes
in the Cloud via GKE” on page 26. GKE is the fastest way to experi‐
ment with Kubernetes if you already have a Google cloud account.

To finish this chapter, we look at two services on AWS that allow you
to run your containers. First we look at the Amazon Container Ser‐
vice (i.e., ECS) in “Setting Up to Use the EC2 Container Service” on
page 30. We show you how to create an ECS cluster in “Creating an
ECS Cluster” on page 33 and how to run containers by defining
tasks in “Starting Docker Containers on an ECS Cluster” on page 37.

AWS, GCE, and Azure are the recognized top-three
public cloud providers in the world. However, Docker
can be installed on any public cloud where you can run
an instance based on a Linux distribution supported by
Docker (e.g., Ubuntu, CentOS, CoreOS). For instance
DigitalOcean and Exoscale also support Docker in a
seamless fashion.

Starting a Docker Host on AWS EC2
Problem
You want to start a VM instance on the AWS EC2 cloud and use it as
a Docker host.

Solution
Although you can start an instance and install Docker in it via the
EC2 web console, you will use the AWS command-line interface
(CLI). First, you should have created an account on AWS and
obtained a set of API keys. In the AWS web console, select your
account name at the top right of the page and go to the Security Cre‐
dentials page, shown in Figure 1-2. You will be able to create a new
access key. The secret key corresponding to this new access key will
be given to you only once, so make sure that you store it securely.

Starting a Docker Host on AWS EC2 | 3

https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://www.digitalocean.com
https://www.exoscale.ch

Figure 1-2. AWS Security Credentials page

You can then install the AWS CLI and configure it to use your newly
generated keys. Select an AWS region where you want to start your
instances by default.

The AWS CLI, aws, is a Python package that can be installed via the
Python Package Index (pip). For example, on Ubuntu:

$ sudo apt-get -y install python-pip
$ sudo pip install awscli
$ aws configure
AWS Access Key ID [**********n-mg]: AKIAIEFDGHQRTW3MNQ
AWS Secret Access Key [********UjEg]: b4pWY69Qd+Yg1qo22wC
Default region name [eu-east-1]: eu-west-1
Default output format [table]:
$ aws --version
aws-cli/1.7.4 Python/2.7.6 Linux/3.13.0-32-generic

To access your instance via ssh, you need to have an SSH key pair
set up in EC2. Create a key pair via the CLI, copy the returned pri‐
vate key into a file in your ~/.ssh folder, and make that file readable
and writable only by you. Verify that the key has been created, either
via the CLI or by checking the web console:

$ aws ec2 create-key-pair --key-name cookbook
$ vi ~/.ssh/id_rsa_cookbook
$ chmod 600 ~/.ssh/id_rsa_cookbook
$ aws ec2 describe-key-pairs
--
| DescribeKeyPairs |
+--+
|| KeyPairs ||
|+--+-----------+|
|| KeyFingerprint | KeyName ||

4 | Docker in the Cloud

http://bit.ly/aws-zone

|+--+-----------+|
||69:aa:64:4b:72:50:ee:15:9a:da:71:4e:44:cd:db | cookbook ||
|+--+-----------+|

You are ready to start an instance on EC2. The standard Linux
images from AWS now contain a Docker repository. Hence when
starting an EC2 instance from an Amazon Linux AMI, you will be
one step away from running Docker (sudo yum install docker):

Use a paravirtualized (PV) Amazon Linux AMI, so that
you can use a t1.micro instance type. In addition, the
default security group allows you to connect via ssh, so
you do not need to create any additional rules in the
security group if you only need to ssh to it.

$ aws ec2 run-instances --image-id ami-7b3db00c
 --count 1
 --instance-type t1.micro
 --key-name cookbook
$ aws ec2 describe-instances
$ ssh -i ~/.ssh/id_rsa_cookbook ec2-user@54.194.31.39
Warning: Permanently added '54.194.31.39' (RSA) to the list of
known hosts.

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2014.09-release-notes/
[ec2-user@ip-172-31-8-174 ~]$

Install the Docker package, start the Docker daemon, and verify that
the Docker CLI is working:

[ec2-user@ip-172-31-8-174 ~]$ sudo yum update
[ec2-user@ip-172-31-8-174 ~]$ sudo yum install docker
[ec2-user@ip-172-31-8-174 ~]$ sudo service docker start
[ec2-user@ip-172-31-8-174 ~]$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED ...

Do not forget to terminate the instance or you might get charged for
it:

$ aws ec2 terminate-instances --instance-ids <instance id>

Discussion
You spent some time in this recipe creating API access keys and
installing the CLI. Hopefully, you see the ease of creating Docker

Starting a Docker Host on AWS EC2 | 5

hosts in AWS. The standard AMIs are now ready to go to install
Docker in two commands.

The Amazon Linux AMI also contains cloud-init, which has
become the standard for configuring cloud instances at boot time.
This allows you to pass user data at instance creation. cloud-init
parses the content of the user data and executes the commands.
Using the AWS CLI, you can pass some user data to automatically
install Docker. The small downside is that it needs to be base64-
encoded.

Create a small bash script with the two commands from earlier:

#!/bin/bash
yum -y install docker
service docker start

Encode this script and pass it to the instance creation command:

$ udata="$(cat docker.sh | base64)"
$ aws ec2 run-instances --image-id ami-7b3db00c \
 --count 1 \
 --instance-type t1.micro \
 --key-name cookbook \
 --user-data $udata
$ ssh -i ~/.ssh/id_rsa_cookbook ec2-user@<public_IP_instance>
$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED ...

With the Docker daemon running, if you wanted to
access it remotely, you would need to set up TLS
access, and open port 2376 in your security group.

Using this CLI is not Docker-specific. This CLI gives
you access to the complete set of AWS APIs. However,
using it to start instances and install Docker in them
significantly streamlines the provisioning of Docker
hosts.

See Also
• Installing the AWS CLI
• Configuring the AWS CLI
• Launching an instance via the AWS CLI

6 | Docker in the Cloud

https://cloudinit.readthedocs.org/en/latest/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-ec2-launch.html

Starting a Docker Host on Google GCE
Problem
You want to start a VM instance on the Google GCE cloud and use
it as a Docker host.

Solution
Install the gcloud CLI (you will need to answer a few questions),
and then log in to the Google cloud (You will need to have registered
before). If the CLI can open a browser, you will be redirected to a
web page and asked to sign in and accept the terms of use. If your
terminal cannot launch a browser, you will be given a URL to open
in a browser. This will give you an access token to enter at the com‐
mand prompt:

$ curl https://sdk.cloud.google.com | bash
$ gcloud auth login
Your browser has been opened to visit:
 https://accounts.google.com/o/oauth2/auth?redirect_uri=...
...
$ gcloud compute zones list
NAME REGION STATUS
asia-east1-c asia-east1 UP
asia-east1-a asia-east1 UP
asia-east1-b asia-east1 UP
europe-west1-b europe-west1 UP
europe-west1-c europe-west1 UP
us-central1-f us-central1 UP
us-central1-b us-central1 UP
us-central1-a us-central1 UP

If you have not set up a project, set one up in the web console.
Projects allow you to manage team members and assign specific
permission to each member. It is roughly equivalent to the Amazon
Identity and Access Management (IAM) service.

To start instances, it is handy to set some defaults for the region and
zone that you would prefer to use (even though deploying a robust
system in the cloud will involve instances in multiple regions and
zones). To do this, use the gcloud config set command.

For example:

$ gcloud config set compute/region europe-west1
$ gcloud config set compute/zone europe-west1-c
$ gcloud config list --all

Starting a Docker Host on Google GCE | 7

https://cloud.google.com/sdk/gcloud/
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/compute/docs/zones

To start an instance, you need an image name and an instance type.
Then the gcloud tool does the rest:

$ gcloud compute instances create cookbook \
 --machine-type n1-standard-1 \
 --image ubuntu-14-04 \
 --metadata startup-script=\
 "sudo wget -qO- https://get.docker.com/ | sh"
...
$ gcloud compute ssh cookbook
sebgoa@cookbook:~$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED ...
...
$ gcloud compute instances delete cookbook

In this example, you created an Ubuntu 14.04 instance, of machine
type n1-standard-1 and passed metadata specifying that it was to
be used as a start-up script. The bash command specified installed
the docker package from the Docker Inc. repository. This led to a
running instance with Docker running. The GCE metadata is rela‐
tively equivalent to the AWS EC2 user data and is processed by
cloud-init in the instance.

Discussion
If you list the images available in a zone, you will see that some are
interesting for Docker-specific tasks:

$ gcloud compute images list
NAME PROJECT ALIAS ... STATUS
...
centos-7... centos-cloud centos-7 READY
...
coreos-alpha-921... coreos-cloud READY
...
container-vm... google-containers container-vm READY
...
ubuntu-1404-trusty... ubuntu-os-cloud ubuntu-14-04 READY
...

Indeed, GCE provides CoreOS images, as well as container VMs.
CoreOS is discussed in the Docker cookbook. Container VMs are
Debian 7–based instances that contain the Docker daemon and the
Kubernetes kubelet; they are discussed in the full version of the
Docker in the Cloud chapter. Kubernetes is discussed in chapter 5 of
the Docker cookbook.

8 | Docker in the Cloud

https://cloud.google.com/sdk/gcloud/reference/compute/instances/create
https://cloud.google.com/compute/docs/machine-types
http://coreos.com
https://cloud.google.com/compute/docs/containers/container_vms
http://kubernetes.io

If you want to start a CoreOS instance, you can use the image alias.
You do not need to specify any metadata to install Docker:

$ gcloud compute instances create cookbook --machine-type n1-
standard-1 --image coreos
$ gcloud compute ssh cookbook
...
CoreOS (stable)
sebgoa@cookbook ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED ...

Using the gcloud CLI is not Docker-specific. This CLI
gives you access to the complete set of GCE APIs.
However, using it to start instances and install Docker
in them significantly streamlines the provisioning of
Docker hosts.

Starting a Docker Host on Microsoft Azure
Problem
You want to start a VM instance on the Microsoft Azure cloud and
use it as a Docker host.

Solution
First you need an account on Azure. If you do not want to use the
Azure portal, you need to install the Azure CLI. On a fresh Ubuntu
14.04 machine, you would do this:

$ sudo apt-get update
$ sudo apt-get -y install nodejs-legacy
$ sudo apt-get -y install npm
$ sudo npm install -g azure-cli
$ azure -v
0.8.14

Then you need to set up your account for authentication from the
CLI. Several methods are available. One is to download your
account settings from the portal and import them on the machine
you are using the CLI from:

$ azure account download
$ azure account import ~/Downloads/Free\
Trial-2-5-2015-credentials.publishsettings
$ azure account list

Starting a Docker Host on Microsoft Azure | 9

http://azure.microsoft.com/en-us/pricing/free-trial
https://manage.windowsazure.com
http://azure.microsoft.com/en-us/documentation/articles/xplat-cli/

You are now ready to use the Azure CLI to start VM instances. Pick
a location and an image:

$ azure vm image list | grep Ubuntu
$ azure vm location list
info: Executing command vm location list
+ Getting locations
data: Name
data: ----------------
data: West Europe
data: North Europe
data: East US 2
data: Central US
data: South Central US
data: West US
data: East US
data: Southeast Asia
data: East Asia
data: Japan West
info: vm location list command OK

To create an instance with ssh access using password authentication,
use the azure vm create command:

$ azure vm create cookbook --ssh=22 \
 --password #@$#%#@$ \
 --userName cookbook \
 --location "West Europe" \

b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04_1-LTS \
 -amd64-server-20150123-en-us-30GB
...
$ azure vm list
...
data: Name Status Location ... IP Address
data: -------- --------- ----------- ... ----------
data: cookbook ReadyRole West Europe ... 100.91.96.137
info: vm list command OK

You can then ssh to the instance and set up Docker normally.

Discussion
The Azure CLI is still under active development. The source can be
found on GitHub, and a Docker Machine driver is available.

The Azure CLI also allows you to create a Docker host automatically
by using the azure vm docker create command:

$ azure vm docker create goasguen -l "West Europe"
b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu -14_04_1-LTS-amd64-

10 | Docker in the Cloud

https://msopentech.com/blog/2014/10/08/latest-updates-to-azure-cli/
https://github.com/Azure/azure-xplat-cli
https://github.com/docker/machine#microsoft-azure

server-20150123-en-us -30GB cookbook @#$%@#$%$

info: Executing command vm docker create
warn: --vm-size has not been specified. Defaulting to
"Small".
info: Found docker certificates.
...
info: vm docker create command OK

$ azure vm list
info: Executing command vm list
+ Getting virtual machines
data: Name ... DNS Name IP Address
data: -------- ... --------------------- -------------
data: goasguen ... goasguen.cloudapp.net 100.112.4.136

The host started will automatically have the Docker daemon run‐
ning, and you can connect to it by using the Docker client and a TLS
connection:

$ docker --tls -H tcp://goasguen.cloudapp.net:4243 ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
$ docker --tls -H tcp://goasguen.cloudapp.net:4243 images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

Using this CLI is not Docker-specific. This CLI gives
you access to the complete set of Azure APIs. However,
using it to start instances and install Docker in them
significantly streamlines the provisioning of Docker
hosts.

See Also
• The Azure command-line interface
• Starting a CoreOS instance on Azure
• Using Docker Machine with Azure

Introducing Docker Machine to Create Docker
Hosts in the Cloud
Problem
You do not want to install the Docker daemon locally using Vagrant
or the Docker toolbox. Instead, you would like to use a Docker host

Introducing Docker Machine to Create Docker Hosts in the Cloud | 11

http://azure.microsoft.com/en-us/documentation/articles/xplat-cli/
https://coreos.com/docs/running-coreos/cloud-providers/azure/#via-the-cross-platform-cli
https://github.com/chanezon/azure-linux/blob/master/docker/machine.md

in the cloud (e.g., AWS, Azure, DigitalOcean, Exoscale or GCE) and
connect to it seamlessly using the local Docker client.

Solution
Use Docker Machine to start a cloud instance in your public cloud of
choice. Docker Machine is a client-side tool that you run on your
local host that allows you to start a server in a remote public cloud
and use it as a Docker host as if it were local. Machine will automati‐
cally install Docker and set up TLS for secure communication. You
will then be able to use the cloud instance as your Docker host and
use it from a local Docker client.

Docker Machine beta was announced on February 26,
2015. Official documentation is now available on the
Docker website. The source code is available on Git‐
Hub.

Let’s get started. Machine currently supports VirtualBox, DigitalO‐
cean, AWS, Azure, GCE, and a few other providers. This recipe uses
DigitalOcean, so if you want to follow along step by step, you will
need an account on DigitalOcean.

Once you have an account, do not create a droplet through the Digi‐
talOcean UI. Instead, generate an API access token for using Docker
Machine. This token will need to be both a read and a write token so
that Machine can upload a public SSH key (Figure 1-3). Set an envi‐
ronment variable DIGITALOCEAN_ACCESS_TOKEN in your local com‐
puter shell that defines the token you created.

Machine will upload an SSH key to your cloud
account. Make sure that your access tokens or API
keys give you the privileges necessary to create a key.

12 | Docker in the Cloud

http://blog.docker.com/2015/02/announcing-docker-machine-beta/
https://docs.docker.com/machine/
https://github.com/docker/machine
https://github.com/docker/machine
https://www.digitalocean.com
https://www.digitalocean.com
https://aws.amazon.com
https://azure.microsoft.com
http://cloud.google.com
https://cloud.digitalocean.com/registrations/new

Figure 1-3. DigitalOcean access token for Machine

You are almost set. You just need to download the docker-machine
binary. Go to the documentation site and choose the correct binary
for your local computer architecture. For example, on OS X:

$ sudo curl -L https://github.com/docker/machine/releases/\
download/v0.5.6/docker-machine_darwin-amd64
$ mv docker-machine_darwin-amd64 docker-machine
$ chmod +x docker-machine
$./docker-machine --version
docker-machine version 0.5.6

With the environment variable DIGITALOCEAN_ACCESS_TOKEN set,
you can create your remote Docker host:

$./docker-machine create -d digitalocean foobar
Running pre-create checks...
Creating machine...
(foobar) Creating SSH key...
(foobar) Creating Digital Ocean droplet...
...
To see how to connect Docker to this machine,
run: docker-machine env foobar

If you go back to your DigitalOcean dashboard, you will see that an
SSH key has been created, as well as a new droplet (see Figures 1-4
and 1-5).

Figure 1-4. DigitalOcean SSH keys generated by Machine

Introducing Docker Machine to Create Docker Hosts in the Cloud | 13

https://docs.docker.com/machine/

Figure 1-5. DigitalOcean droplet created by Machine

To configure your local Docker client to use this remote Docker
host, you execute the command that was listed in the output of cre‐
ating the machine:

$./docker-machine env foobar
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://104.131.102.224:2376"
export DOCKER_CERT_PATH="/Users/.docker/.../machines/foobar"
export DOCKER_MACHINE_NAME="foobar"
Run this command to configure your shell:
eval $(docker-machine env foobar)
$ eval "$(./docker-machine env foobar)"
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ...

Enjoy Docker running remotely on a DigitalOcean droplet created
with Docker Machine.

Discussion

If not specified at the command line, Machine will
look for DIGITALOCEAN_IMAGE, DIGITALOCEAN_REGION,
and DIGITALOCEAN_SIZE environment variables. By
default, they are set to docker, nyc3, and 512mb, respec‐
tively.

The docker-machine binary lets you create multiple machines, on
multiple providers. You also have the basic management capabilities:
start, stop, rm, and so forth:

$./docker-machine
...
Commands:
 active Print which machine is active
 config Print the connection config for machine
 create Create a machine
 env Display the commands to set up ...

14 | Docker in the Cloud

 inspect Inspect information about a machine
 ip Get the IP address of a machine
 kill Kill a machine
 ls List machines
 regenerate-certs Regenerate TLS ...
 restart Restart a machine
 rm Remove a machine
 ssh Log into or run a command ...
 scp Copy files between machines
 start Start a machine
 status Get the status of a machine
 stop Stop a machine
 upgrade Upgrade a machine to the latest version of
Docker
 url Get the URL of a machine
 version Show the Docker Machine version ...
 help Shows a list of commands or ...

For instance, you can list the machine you created previously, obtain
its IP address, and even connect to it via SSH:

$./docker-machine ls
NAME ... DRIVER STATE URL
foobar digitalocean Running tcp://104.131.102.224:2376
$./docker-machine ip foobar
104.131.102.224
$./docker-machine ssh foobar
Welcome to Ubuntu 14.04.2 LTS (GNU/Linux 3.13.0-57-generic
x86_64)
...

Last login: Mon Mar 16 09:02:13 2015 from ...
root@foobar:~#

Before you are finished with this recipe, do not forget to delete the
machine you created:

$./docker-machine rm foobar

See Also
• Official documentation

Introducing Docker Machine to Create Docker Hosts in the Cloud | 15

https://docs.docker.com/machine/

Starting a Docker Host on AWS Using Docker
Machine
Problem
You understand how to use the AWS CLI to start an instance in the
cloud and know how to install Docker (see “Starting a Docker Host
on AWS EC2” on page 3). But you would like to use a streamlined
process integrated with the Docker user experience.

Solution
Use Docker Machine and its AWS EC2 driver.

Download the release candidate binaries for Docker Machine. Set
some environment variables so that Docker Machine knows your
AWS API keys and your default VPC in which to start the Docker
host. Then use Docker Machine to start the instance. Docker auto‐
matically sets up a TLS connection, and you can use this remote
Docker host started in AWS. On a 64-bit Linux machine, do the fol‐
lowing:

$ sudo su
curl -L https://github.com/docker/machine/releases/\
 download/v0.5.6/docker-machine_linux-amd64 > \
 /usr/local/bin/docker-machine
chmod +x docker-machine
exit
$ export AWS_ACCESS_KEY_ID=<your AWS access key>
$ export AWS_SECRET_ACCESS_KEY_ID=<your AWS secret key>
$ export AWS_VPC_ID=<the VPC ID you want to use>
$ docker-machine create -d amazonec2 cookbook
Running pre-create checks...
Creating machine...
(cookbook) Launching instance...
...
To see how to connect Docker to this machine,
run: docker-machine env cookbook

Once the machine has been created, you can use your local Docker
client to communicate with it. Do not forget to kill the machine after
you are finished:

$ eval "$(docker-machine env cookbook)"
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ...
$ docker-machine ls

16 | Docker in the Cloud

https://github.com/docker/machine

NAME ... DRIVER STATE URL
cookbook ... amazonec2 Running tcp://<IP_Machine_AWS>:2376
$ docker-machine rm cookbook

You can manage your machines directly from the Docker Machine
CLI:

$ docker-machine -h
...
COMMANDS:
 active Get or set the active machine
 create Create a machine
 config Print the connection config for machine
 inspect Inspect information about a machine
 ip Get the IP address of a machine
 kill Kill a machine
 ls List machines
 restart Restart a machine
 rm Remove a machine
 env Display the commands to set up the environment for
 the Docker client
 ssh Log into or run a command on a machine with SSH
 start Start a machine
 stop Stop a machine
 upgrade Upgrade a machine to the latest version of Docker
 url Get the URL of a machine
 help, h Shows a list of commands or help for one command

Discussion

Docker Machine contains drivers for several cloud
providers. We already showcased the Digital Ocean
driver (see “Introducing Docker Machine to Create
Docker Hosts in the Cloud” on page 11), and you can
see how to use it for Azure in “Starting a Docker Host
on Azure with Docker Machine” on page 19.

The AWS driver takes several command-line options to set your
keys, VPC, key pair, image, and instance type. You can set them up
as environment variables as you did previously or directly on the
machine command line:

$ docker-machine create -h
...
OPTIONS:
 --amazonec2-access-key
 AWS Access Key [$AWS_ACCESS_KEY_ID]
 --amazonec2-ami

Starting a Docker Host on AWS Using Docker Machine | 17

https://github.com/docker/machine/tree/master/drivers

 AWS machine image [$AWS_AMI]
 --amazonec2-instance-type 't2.micro'
 AWS instance type [$AWS_INSTANCE_TYPE]
 --amazonec2-region 'us-east-1'
 AWS region [$AWS_DEFAULT_REGION]
 --amazonec2-root-size '16'
 AWS root disk size (in GB) ...
 --amazonec2-secret-key
 AWS Secret Key [$AWS_SECRET_ACCESS_KEY]
 --amazonec2-security-group
 AWS VPC security group ...
 --amazonec2-session-token
 AWS Session Token [$AWS_SESSION_TOKEN]
 --amazonec2-subnet-id
 AWS VPC subnet id [$AWS_SUBNET_ID]
 --amazonec2-vpc-id
 AWS VPC id [$AWS_VPC_ID]
 --amazonec2-zone 'a'
 AWS zone for instance ... [$AWS_ZONE]

Finally, machine will create an SSH key pair and a security group for
you. The security group will open traffic on port 2376 to allow com‐
munications over TLS from a Docker client. Figure 1-6 shows the
rules of the security group in the AWS console.

Figure 1-6. Security group for machine

18 | Docker in the Cloud

Starting a Docker Host on Azure with Docker
Machine
Problem
You know how to start a Docker host on Azure by using the Azure
CLI, but you would like to unify the way you start Docker hosts in
multiple public clouds by using Docker Machine.

Solution
Use the Docker Machine Azure driver. In Figure 1-3, you saw how
to use Docker Machine to start a Docker host on DigitalOcean. The
same thing can be done on Microsoft Azure. You will need a valid
subscription to Azure.

You need to download the docker-machine binary. Go to the docu‐
mentation site and choose the correct binary for your local com‐
puter architecture. For example, on OS X:

$ wget https://github.com/docker/machine/releases/\
download/v0.5.6/docker-machine_darwin-amd64
$ mv docker-machine_darwin-amd64 docker-machine
$ chmod +x docker-machine
$./docker-machine --version
docker-machine version 0.5.6

With a valid Azure subscription, create an X.509 certificate and
upload it through the Azure portal. You can create the certificate
with the following commands:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 \
 -keyout mycert.pem -out mycert.pem
$ openssl pkcs12 -export -out mycert.pfx -in mycert.pem -name
"My Certificate"
$ openssl x509 -inform pem -in mycert.pem -outform der -out
mycert.cer

Upload mycert.cer and define the following environment variables:

$ export AZURE_SUBSCRIPTION_ID=<UID of your subscription>
$ export AZURE_SUBSCRIPTION_CERT=mycert.pem

You can then use docker-machine and set your local Docker client
to use this remote Docker daemon:

$./docker-machine create -d azure goasguen-foobar
Creating Azure machine...
Waiting for SSH...

Starting a Docker Host on Azure with Docker Machine | 19

http://azure.microsoft.com/en-us/pricing/free-trial/
https://docs.docker.com/machine/
https://manage.windowsazure.com

...
"goasguen-foobar" has been created and is now the active
machine.
...
$./docker-machine ls
NAME DRIVER ... URL
goasguen-foobar azure ... tcp://goasguen-foobar.cloudapp.net:
2376
$ $(docker-machine env goasguen-foobar)
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ...

In this example, goasguen-foobar is the name that I
gave to my Docker machine. This needs to be a glob‐
ally unique name. Chances are that names like foobar
and test have already been taken.

Discussion
With your local Docker client set up to use the remote Docker dae‐
mon running in this Azure virtual machine, you can pull images
from your favorite registries and start containers.

For example, let’s start an Nginx container:

$ docker pull nginx
$ docker run -d -p 80:80 nginx

To expose port 80 of this remote host in Azure, you need to add an
endpoint to the VM that was created. Head over to the Azure portal,
select the VM (here, goasguen-foobar), and add an endpoint for the
HTTP request, as in Figure 1-7. Once the endpoint is created, you
can access Nginx at http://<unique_name>.cloudapp.net.

Figure 1-7. Azure endpoint for a virtual machine

20 | Docker in the Cloud

See Also
• Docker Machine Azure driver documentation

Running a Cloud Provider CLI in a Docker
Container
Problem
You want to take advantage of containers and run your cloud pro‐
vider CLI of choice within a container. This gives you more porta‐
bility options and avoids having to install the CLI from scratch. You
just need to download a container image from the Docker Hub.

Solution
For the Google GCE CLI, there is a public image maintained by
Google. Download the image via docker pull and run your GCE
commands through interactive ephemeral containers.

For example:

$ docker pull google/cloud-sdk
$ docker images | grep google
google/cloud-sdk latest a7e7bcdfdc16 ...

You can then log in and issue commands as described in “Starting a
Docker Host on Google GCE” on page 7. The only difference is that
the CLI is running within containers. The login command is issued
through a named container. That named container is used as a data
volume container (i.e., --volumes-from cloud-config) in subse‐
quent CLI calls. This allows you to use the authorization token that
is stored in it:

$ docker run -t -i --name gcloud-config google/cloud-sdk
gcloud auth login
Go to the following link in your browser:
...
$ docker run --rm \
 -ti \
 --volumes-from gcloud-config google/cloud-sdk \
 gcloud compute zones list
NAME REGION STATUS
asia-east1-c asia-east1 UP
asia-east1-a asia-east1 UP

Running a Cloud Provider CLI in a Docker Container | 21

http://docs.docker.com/machine/#microsoft-azure
https://registry.hub.docker.com/u/google/cloud-sdk/

asia-east1-b asia-east1 UP
europe-west1-b europe-west1 UP
europe-west1-c europe-west1 UP
us-central1-f us-central1 UP
us-central1-b us-central1 UP
us-central1-a us-central1 UP

Using an alias makes things even better:

$ alias magic='docker run --rm \
 -ti \
 --volumes-from gcloud-config \
 google/cloud-sdk gcloud'
$ magic compute zones list
NAME REGION STATUS
asia-east1-c asia-east1 UP
asia-east1-a asia-east1 UP
asia-east1-b asia-east1 UP
europe-west1-b europe-west1 UP
europe-west1-c europe-west1 UP
us-central1-f us-central1 UP
us-central1-b us-central1 UP
us-central1-a us-central1 UP

Discussion
A similar process can be used for AWS. If you search for an awscli
image on Docker Hub, you will see several options. The Dockerfile
provided shows you how the image was constructed and the CLI
installed within the image. If you take the nathanleclaire/awscli
image, you notice that no volumes are mounted to keep the creden‐
tials from container to container. Hence you need to pass the AWS
access keys as environment variables when you launch a container:

$ docker pull nathanleclaire/awscli
$ docker run --rm \
 -ti \
 -e AWS_ACCESS_KEY_ID="AKIAIUCASDLGFIGDFGS" \
 -e AWS_SECRET_ACCESS_KEY="HwQdNnAIqQERfrgot" \
 nathanleclaire/awscli \
 --region eu-west-1 \
 --output=table \
 ec2 describe-key-pairs
--
| DescribeKeyPairs |
+--+
|| KeyPairs ||
|+--+-----------+|
|| KeyFingerprint | KeyName ||
|+--+-----------+|

22 | Docker in the Cloud

https://registry.hub.docker.com/u/nathanleclaire/awscli/dockerfile/

||69:aa:64:4b:72:50:ee:15:9a:da:71:4e:44:cd:db | cookbook ||
|+--+-----------+|

Also notice that aws was set up as an entry point in this image.
Therefore, there you don’t need to specify it and should only pass
arguments to it.

You can build your own AWS CLI image that allows
you to handle API keys more easily.

See Also
• Official documentation on the containerized Google SDK

Using Google Container Registry to Store Your
Docker Images
Problem
You have used a Docker private registry hosted on your own infra‐
structure but you would like to take advantage of a hosted service.
Specifically, you would like to take advantage of the newly
announced Google container registry.

Other hosted private registry solutions exist, including
Docker Hub Enterprise and Quay.io. This recipe does
not represent an endorsement of one versus another.

Solution
If you have not done so yet, sign up on the Google Cloud Platform.
Then download the Google Cloud CLI and create a project (see
“Starting a Docker Host on Google GCE” on page 7). Make sure that
you update your gcloud CLI on your Docker host to load the pre‐
view components. You will have access to gcloud docker, which is a
wrapper around the docker client:

$ gcloud components update
$ gcloud docker help
Usage: docker [OPTIONS] COMMAND [arg...]

Using Google Container Registry to Store Your Docker Images | 23

https://registry.hub.docker.com/u/google/cloud-sdk/
https://cloud.google.com/tools/container-registry/
https://www.docker.com/enterprise/hub/
https://quay.io

A self-sufficient runtime for linux containers.
...

This example uses a cookbook project on Google Cloud with the
project ID sylvan-plane-862. Your project name and project ID will
differ.

As an example, on the Docker host that we are using locally, we have
a busybox image that we want to upload to the Google Container
Registry (GCR). You need to tag the image you want to push to the
GCR so that it follows the namespace naming convention of the
GCR (i.e., gcr.io/project_id/image_name). You can then upload
the image with gcloud docker push:

$ docker images | grep busybox
busybox latest a9eb17255234 8 months ago 2.433 MB
$ docker tag busybox gcr.io/sylvan_plane_862/busybox
$ gcloud docker push gcr.io/sylvan_plane_862/busybox
The push refers to a repository [gcr.io/sylvan_plane_862/busy-
box] (len: 1)
Sending image list
Pushing repository gcr.io/sylvan_plane_862/busybox (1 tags)
511136ea3c5a: Image successfully pushed
42eed7f1bf2a: Image successfully pushed
120e218dd395: Image successfully pushed
a9eb17255234: Image successfully pushed
Pushing tag for rev [a9eb17255234] on \
{https://gcr.io/v1/repositories/sylvan_plane_862/busybox/tags/
latest}

The naming convention of the GCR namespace is such
that if you have dashes in your project ID, you need to
replace them with underscores.

If you navigate to your storage browser in your Google Developers
console, you will see that a new bucket has been created and that all
the layers making your image have been uploaded (see Figure 1-8).

24 | Docker in the Cloud

https://cloud.google.com/storage/docs/projects

Figure 1-8. Google container registry image

Discussion
Automatically, Google compute instances that you started in the
same project that you used to tag the image, will have the right privi‐
leges to pull that image. If you want other people to be able to pull
that image, you need to add them as members to that project. You
can set your project by default with gcloud config set project
<project_id> so you do not have to specify it on subsequent gcloud
commands.

Let’s start an instance in GCE, ssh to it, and pull the busybox image
from GCR:

$ gcloud compute instances create cookbook-gce \
 --image container-vm \
 --zone europe-west1-c \
 --machine-type f1-micro
$ gcloud compute ssh cookbook-gce
Updated [https://www.googleapis.com/compute/v1/projects/sylvan-
plane-862].
...
$ sudo gcloud docker pull gcr.io/sylvan_plane_862/busybox
Pulling repository gcr.io/sylvan_plane_862/busybox
a9eb17255234: Download complete
511136ea3c5a: Download complete
42eed7f1bf2a: Download complete
120e218dd395: Download complete
Status: Downloaded newer image for gcr.io/sylvan_plane_862/
busybox:latest
sebastiengoasguen@cookbook:~$ sudo docker images | grep busybox
gcr.io/sylvan_plane_862/busybox latest a9eb17255234 ...

Using Google Container Registry to Store Your Docker Images | 25

To be able to push from a GCE instance, you need to
start it with the correct scope: --scopes https://

www.googleapis.com/auth/devstorage.read_write.

Using Kubernetes in the Cloud via GKE
Problem
You want to use a group of Docker hosts and manage containers on
them. You like the Kubernetes container orchestration engine but
would like to use it as a hosted cloud service.

Solution
Use the Google Container Engine service (GKE). This new service
allows you to create a Kubernetes cluster on-demand using the Goo‐
gle API. A cluster will be composed of a master node and a set of
compute nodes that act as container VMs, similar to what was
described in “Starting a Docker Host on Google GCE” on page 7.

GKE is Generally Available (GA). Kubernetes is still
under heavy development but has released a stable API
with its 1.0 release. For details on Kubernetes, see
chapter 5 of the Docker cookbook.

Update your gcloud SDK to use the container engine preview. If you
have not yet installed the Google SDK, see “Starting a Docker Host
on Google GCE” on page 7.

$ gcloud components update

Install the kubectl Kubernetes client:

$ gcloud components install kubectl

Starting a Kubernetes cluster using the GKE service requires a single
command:

$ gcloud container clusters create cook \
 --num-nodes 1 \
 --machine-type g1-small
Creating cluster cook...done.
Created [https://container.googleapis.com/v1/projects/sylvan-
plane-862/zones/ \
us-central1-f/clusters/cook].
kubeconfig entry generated for cook.

26 | Docker in the Cloud

https://kubernetes.io
https://cloud.google.com/container-engine/

NAME ZONE MASTER_VERSION ... STATUS
cook us-central1-f 1.0.3 ... RUNNING

Your cluster IP addresses, project name, and zone will differ from
what is shown here. What you do see is that a Kubernetes configura‐
tion file, kubeconfig, was generated for you. It is located at ~/.kube/
config and contains the endpoint of your container cluster as well as
the credentials to use it.

You could also create a cluster through the Google Cloud web con‐
sole (see Figure 1-9).

Figure 1-9. Container Engine Wizard

Once your cluster is up, you can submit containers to it—meaning
that you can interact with the underlying Kubernetes master node to
launch a group of containers on the set of nodes in your cluster.
Groups of containers are defined as pods. The gcloud CLI gives you
a convenient way to define simple pods and submit them to the clus‐
ter. Next you are going to launch a container using the tutum/word‐
press image, which contains a MySQL database. When you installed
the gcloud CLI, it also installed the Kubernetes client kubectl. You
can verify that kubectl is in your path. It will use the configuration
that was autogenerated when you created the cluster. This will allow
you to launch containers from your local machine on the remote
container cluster securely:

Using Kubernetes in the Cloud via GKE | 27

$ kubectl run wordpress --image=tutum/wordpress --port=80
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
wordpress-0d58l 1/1 Running 0 1m

Once the container is scheduled on one of the cluster nodes, you
need to create a Kubernetes service to expose the application run‐
ning in the container to the outside world. This is done again with
kubectl:

$ kubectl expose rc wordpress \
--type=LoadBalancer
NAME LABELS SELECTOR IP(S) PORT(S)
wordpress run=wordpress run=wordpress 80/TCP

The expose command creates a Kubernetes service (one of the three
Kubernetes primitives with pods and replication controllers) and it
also obtains a public IP address from a load-balancer. The result is
that when you list the services in your container cluster, you can see
the wordpress service with an internal IP and a public IP where you
can access the WordPress UI from your laptop:

$ kubectl get services
NAME ... SELECTOR IP(S) PORT(S)
wordpress ... run=wordpress 10.95.252.182 80/TCP
 104.154.82.185

You will then be able to enjoy WordPress.

Discussion
The kubectl CLI can be used to manage all resources in a Kuber‐
netes cluster (i.e., pods, services, replication controllers, nodes). As
shown in the following snippet of the kubectl usage, you can create,
delete, describe, and list all of these resources:

$ kubectl -h
kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/GoogleCloudPlat-
form/kubernetes.

Usage:
 kubectl [flags]
 kubectl [command]

Available Commands:
 get Display one or many resources
 describe Show details of a specific resource ...

28 | Docker in the Cloud

 create Create a resource by filename or stdin
 replace Replace a resource by filename or stdin.
 patch Update field(s) of a resource by stdin.
 delete Delete a resource by filename, or ...
...

Although you can launch simple pods consisting of a single con‐
tainer, you can also specify a more advanced pod defined in a JSON
or YAML file by using the -f option:

$ kubectl create -f /path/to/pod/pod.json

A pod can be described in YAML. Here let’s write your pod in a
JSON file, using the newly released Kubernetes v1 API version. This
pod will start Nginx:

{
 "kind": "Pod",
 "apiVersion": "v1",
 "metadata": {
 "name": "nginx",
 "labels": {
 "app": "nginx"
 }
 },
 "spec": {
 "containers": [
 {
 "name": "nginx",
 "image": "nginx",
 "ports": [
 {
 "containerPort": 80,
 "protocol": "TCP"
 }
]
 }
]
 }
}

Start the pod and check its status. Once it is running and you have a
firewall with port 80 open for the cluster nodes, you will be able to
see the Nginx welcome page. Additional examples are available on
the Kubernetes GitHub page.

$ kubectl create -f nginx.json
pods/nginx
$ kubectl get pods
NAME READY STATUS RESTARTS AGE

Using Kubernetes in the Cloud via GKE | 29

https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples

nginx 1/1 Running 0 20s
wordpress 1/1 Running 0 17m

To clean things up, remove your pods, exit the master node, and
delete your cluster:

$ kubectl delete pods nginx
$ kubectl delete pods wordpress
$ gcloud container clusters delete cook

See Also
• Cluster operations
• Pod operations
• Service operations
• Replication controller operations

Setting Up to Use the EC2 Container Service
Problem
You want to try the new Amazon AWS EC2 container service (ECS).

Solution
ECS is a generally available service of Amazon Web Services. Get‐
ting set up to test ECS involves several steps. This recipe summari‐
zes the main steps, but you should refer to the official documenta‐
tion for all details:

1. Sign up for AWS if you have not done so.
2. Log in to the AWS console. Review “Starting a Docker Host on

AWS EC2” on page 3 if needed. You will launch ECS instances
within a security group associated with a VPC. Create a VPC
and a security group, or ensure that you have default ones
present.

3. Go to the IAM console and create a role for ECS. If you are not
familiar with IAM, this step is a bit advanced and can be fol‐
lowed step by step on the AWS documentation for ECS.

4. For the role that you just created, create an inline policy. If suc‐
cessful, when you select the Show Policy link, you should see

30 | Docker in the Cloud

https://cloud.google.com/container-engine/docs/clusters/operations
https://cloud.google.com/container-engine/docs/pods/operations
https://cloud.google.com/container-engine/docs/services/operations
https://cloud.google.com/container-engine/docs/services/operations
http://bit.ly/ecs-setup
http://bit.ly/ecs-setup
http://aws.amazon.com
http://bit.ly/ecs-setup
http://bit.ly/ecs-setup

Figure 1-10. See the discussion section of this recipe for an
automated way of creating this policy using Boto.

Figure 1-10. ECS policy in IAM role console

5. Install the latest AWS CLI. The ECS API is available in version
1.7.0 or greater. You can verify that the aws ecs commands are
now available:

$ sudo pip install awscli
$ aws --version
aws-cli/1.7.8 Python/2.7.9 Darwin/12.6.0
$ aws ecs help

ECS()

NAME
 ecs -

DESCRIPTION
 Amazon EC2 Container Service (Amazon ECS) is a
highly scalable, fast, container management service
that makes it easy to run, stop, and manage Docker con-
tainers on a cluster of Amazon EC2 instances. Amazon
ECS lets you launch and stop container-enabled applica-
tions with simple API calls, allows you to get the
state of your cluster from a centralized service, and

Setting Up to Use the EC2 Container Service | 31

http://docs.pythonboto.org/en/latest/
http://aws.amazon.com/cli/

gives you access to many familiar Amazon EC2 features
like security groups, Amazon EBS volumes, and IAM roles.
...

6. Create an AWS CLI configuration file that contains the API keys
of the IAM user you created. Note the region being set is us-
east-1, which is the Northern Virginia region where ECS is
currently available:

$ cat ~/.aws/config
[default]
output = table
region = us-east-1
aws_access_key_id = <your AWS access key>
aws_secret_access_key = <your AWS secret key>

Once you have completed all these steps, you are ready to use ECS.
You need to create a cluster (see “Creating an ECS Cluster” on page
33), define tasks corresponding to containers, and run those tasks to
start the containers on the cluster (see “Starting Docker Containers
on an ECS Cluster” on page 37).

Discussion
Creating the IAM profile and the ECS policy for the instances that
will be started to form the cluster can be overwhelming if you have
not used AWS before. To facilitate this step, you can use the online
code accompanying this book, which uses the Python Boto client to
create the policy.

Install Boto, copy /.aws/config to /.aws/credentials, clone the reposi‐
tory, and execute the script:

$ git clone https://github.com/how2dock/docbook.git
$ sudo pip install boto
$ cp ~/.aws/config ~/.aws/credentials
$ cd docbook/ch08/ecs
$./ecs-policy.py

This script creates an ecs role, an ecspolicy policy, and a cookbook
instance profile. You can edit the script to change these names. After
completion, you should see the role and the policy in the IAM con‐
sole.

See Also
• Video of an ECS demo

32 | Docker in the Cloud

http://docs.pythonboto.org/en/latest/
https://console.aws.amacon.con/iam/home#roles
https://console.aws.amacon.con/iam/home#roles
https://aws.amazon.com/blogs/compute/amazon-ecs-video-demo/

• ECS documentation

Creating an ECS Cluster
Problem
You are set up to use ECS (see “Setting Up to Use the EC2 Container
Service” on page 30). Now you want to create a cluster and some
instances in it to run containers.

Solution
Use the AWS CLI that you installed in “Setting Up to Use the EC2
Container Service” on page 30 and explore the new ECS API. In this
recipe, you will learn to use the following:

• aws ecs list-clusters

• aws ecs create-cluster

• aws ecs describe-clusters

• aws ecs list-container-instances

• aws ecs delete-cluster

By default, you have one cluster in ECS, but until you have launched
an instance in that cluster, it is not active. Try to describe the default
cluster:

$ aws ecs describe-clusters

| DescribeClusters |
+---+
|| failures ||
|+--+----------+|
|| arn | reason ||
|+--+----------+|
|| arn:aws:ecs:us-east-1::cluster/default | MISSING ||
|+--+-----------+

Currently you are limited to two ECS clusters.

Creating an ECS Cluster | 33

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html

To activate this cluster, launch an instance using Boto. The AMI
used is specific to ECS and contains the ECS agent. You need to have
created an SSH key pair to ssh into the instance, and you need an
instance profile associated with a role that has the ECS policy (see
“Setting Up to Use the EC2 Container Service” on page 30):

$ python
...
>>> import boto
>>> c = boto.connect_ec2()
>>> c.run_instances('ami-34ddbe5c', \
 key_name='ecs', \
 instance_type='t2.micro', \
 instance_profile_name='cookbook')

With one instance started, wait for it to run and register in the clus‐
ter. Then if you describe the cluster again, you will see that the
default cluster has switched to active state. You can also list con‐
tainer instances:

$ aws ecs describe-clusters

| DescribeClusters |
+---+
|| clusters ||
|+------------------------+------------------------------+|
	activeServicesCount	1	
	clusterArn	arn:aws:...cluster/default	
	clusterName	default	
	pendingTasksCount	0	
	registeredContaine...	1	
	runningTasksCount	0	
	status	ACTIVE	
+------------------------+------------------------------+			

$ aws ecs list-container-instances
--
| ListContainerInstances |
+--+
|| containerInstanceArns ||
|+--+|
|| arn:aws:ecs:us-east-1::container-instance/ ... ||
|+--+|

Starting additional instances increases the size of the cluster:

$ aws ecs list-container-instances
--
| ListContainerInstances |
+--+
|| containerInstanceArns ||

34 | Docker in the Cloud

https://github.com/aws/amazon-ecs-agent

|+--+|
	arn:aws:ecs:us-east-1::container-instance/75738343-...	
	arn:aws:ecs:us-east-1::container-instance/b457e535-...	
	arn:aws:ecs:us-east-1::container-instance/e5c0be59-...	
	arn:aws:ecs:us-east-1::container-instance/e62d3d79-...	
+--+		

Since these container instances are regular EC2 instances, you will
see them in your EC2 console. If you have set up an SSH key prop‐
erly and opened port 22 on the security group used, you can also
ssh to them:

$ ssh -i ~/.ssh/id_rsa_ecs ec2-user@52.1.224.245
...

 __| __| __|
 _| (__ \ Amazon ECS-Optimized Amazon Linux AMI
 ____|___|____/

 Image created: Thu Dec 18 01:39:14 UTC 2014
 PREVIEW AMI

9 package(s) needed for security, out of 10 available
Run "sudo yum update" to apply all updates.

[ec2-user@ip-172-31-33-78 ~]$ docker ps
CONTAINER ID IMAGE ...
4bc4d480a362 amazon/amazon-ecs-agent:latest ...

[ec2-user@ip-10-0-0-92 ~]$ docker version
Client version: 1.7.1
Client API version: 1.19
Go version (client): go1.4.2
Git commit (client): 786b29d/1.7.1
OS/Arch (client): linux/amd64
Server version: 1.7.1
Server API version: 1.19
Go version (server): go1.4.2
Git commit (server): 786b29d/1.7.1
OS/Arch (server): linux/amd64

You see that the container instance is running Docker and that the
ECS agent is a container. The Docker version that you see will most
likely be different, as Docker releases a new version approximately
every two months.

Creating an ECS Cluster | 35

Discussion
Although you can use the default cluster, you can also create your
own:

$ aws ecs create-cluster --cluster-name cookbook
--
| CreateCluster |
+--+
|| cluster ||
|+-------------------------------+-------------+----------+|
|| clusterArn | clusterName | status ||
|+-------------------------------+-------------+----------+|
|| arn:aws:...:cluster/cookbook | cookbook | ACTIVE ||
|+-------------------------------+-------------+----------+|

$ aws ecs list-clusters

| ListClusters |
+---+
|| clusterArns ||
|+---+|
|| arn:aws:ecs:us-east-1:587264368683:cluster/cookbook ||
|| arn:aws:ecs:us-east-1:587264368683:cluster/default ||
|+---+|

To launch instances in that freshly created cluster instead of the
default one, you need to pass some user data during the instance
creation step. Via Boto, this can be achieved with the following
script:

#!/usr/bin/env python

import boto
import base64

userdata="""
#!/bin/bash
echo ECS_CLUSTER=cookbook >> /etc/ecs/ecs.config
"""

c = boto.connect_ec2()
c.run_instances('ami-34ddbe5c', \
 key_name='ecs', \
 instance_type='t2.micro', \
 instance_profile_name='cookbook', \
 user_data=base64.b64encode(userdata))

Once you are done with the cluster, you can delete it entirely with
the aws ecs delete-cluster --cluster cookbook command.

36 | Docker in the Cloud

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

See Also
• The ECS agent on GitHub

Starting Docker Containers on an ECS Cluster
Problem
You know how to create an ECS cluster on AWS (see “Creating an
ECS Cluster” on page 33), and now you are ready to start containers
on the instances forming the cluster.

Solution
Define your containers or group of containers in a definition file in
JSON format. This will be called a task. You will register this task
and then run it; it is a two-step process. Once the task is running in
the cluster, you can list, stop, and start it.

For example, to run Nginx in a container based on the nginx image
from Docker Hub, you create the following task definition in JSON
format:

[
 {
 "environment": [],
 "name": "nginx",
 "image": "nginx",
 "cpu": 10,
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "memory": 10,
 "essential": true
 }
]

You can notice the similarities between this task definition, a Kuber‐
netes Pod and a Docker compose file. To register this task, use the
ECS register-task-definition call. Specify a family that groups
the tasks and helps you keep revision history, which can be handy
for rollback purposes:

Starting Docker Containers on an ECS Cluster | 37

https://github.com/aws/amazon-ecs-agent

$ aws ecs register-task-definition \
 --family nginx \
 --cli-input-json file://$PWD/nginx.json
$ aws ecs list-task-definitions

| ListTaskDefinitions |
+---+
|| taskDefinitionArns ||
|+---+|
|| arn:aws:ecs:us-east-1:5845235:task-definition/nginx:1 ||
|+---+|

To start the container in this task definition, you use the run-task
command and specify the number of containers you want running.
To stop the container, you stop the task specifying it via its task
UUID obtained from list-tasks, as shown here:

$ aws ecs run-task --task-definition nginx:1 --count 1
$ aws ecs stop-task --task 6223f2d3-3689-4b3b-a110-ea128350adb2

ECS schedules the task on one of the container instances in your
cluster. The image is pulled from Docker Hub, and the container
started using the options specified in the task definition. At this pre‐
view stage of ECS, finding the instance where the task is running
and finding the associated IP address isn’t straightforward. If you
have multiple instances running, you will have to do a bit of guess‐
work. There does not seem to be a proxy service as in Kubernetes
either.

Discussion
The Nginx example represents a task with a single container run‐
ning, but you can also define a task with linked containers. The task
definition reference describes all possible keys that can be used to
define a task. To continue with our example of running WordPress
with two containers (a wordpress one and a mysql one), you can
define a wordpress task. It is similar to a Compose definition file to
AWS ECS task definition format. It will not go unnoticed that a
standardization effort among compose, pod, and task would benefit
the community.

[
 {
 "image": "wordpress",
 "name": "wordpress",
 "cpu": 10,
 "memory": 200,

38 | Docker in the Cloud

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html

 "essential": true,
 "links": [
 "mysql"
],
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 80
 }
],
 "environment": [
 {
 "name": "WORDPRESS_DB_NAME",
 "value": "wordpress"
 },
 {
 "name": "WORDPRESS_DB_USER",
 "value": "wordpress"
 },
 {
 "name": "WORDPRESS_DB_PASSWORD",
 "value": "wordpresspwd"
 }
]
 },
 {
 "image": "mysql",
 "name": "mysql",
 "cpu": 10,
 "memory": 200,
 "essential": true,
 "environment": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "wordpressdocker"
 },
 {
 "name": "MYSQL_DATABASE",
 "value": "wordpress"
 },
 {
 "name": "MYSQL_USER",
 "value": "wordpress"
 },
 {
 "name": "MYSQL_PASSWORD",
 "value": "wordpresspwd"
 }
]
 }
]

Starting Docker Containers on an ECS Cluster | 39

The task is registered the same way as done previously with Nginx,
but you specify a new family. But when the task is run, it could fail
due to constraints not being met. In this example, my container
instances are of type t2.micro with 1GB of memory. Since the task
definition is asking for 500 MB for wordpress and 500 MB for mysql,
there’s not enough memory for the cluster scheduler to find an
instance that matches the constraints and running the task fails:

$ aws ecs register-task-definition --family wordpress \
 --cli-input-json file://$PWD/wordpress.json
$ aws ecs run-task --task-definition wordpress:1 --count 1
--
| RunTask |
+--+
|| failures ||
|+-------------------------------------+----------------+|
|| arn | reason ||
|+-------------------------------------+----------------+|
	arn:aws:ecs::container-instance/...	RESOURCE:MEMORY	
	arn:aws:ecs::container-instance/...	RESOURCE:MEMORY	
	arn:aws:ecs::container-instance/...	RESOURCE:MEMORY	
+--+			

You can edit the task definition, relax the memory constraint, and
register a new task in the same family (revision 2). It will success‐
fully run. If you log in to the instance running this task, you will see
the containers running alongside the ECS agent:

$ aws ecs run-task --task-definition wordpress:2 --count 1
$ ssh -i ~/.ssh/id_rsa_ecs ec2-user@54.152.108.134
...

 __| __| __|
 _| (__ \ Amazon ECS-Optimized Amazon Linux AMI
 ____|___|____/

...
[ec2-user@ip-172-31-36-83 ~]$ docker ps
CONTAINER ID IMAGE ... NAMES
36d590a206df wordpress:4 ... ecs-wordpress...
893d1bd24421 mysql:5 ... ecs-wordpress...
81023576f81e amazon/amazon-ecs ... ecs-agent

Enjoy ECS and keep an eye on improvements and general availabil‐
ity.

40 | Docker in the Cloud

See Also
• Task definition reference

Starting Docker Containers on an ECS Cluster | 41

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html

	Cover
	Web Ops
	Copyright
	Table of Contents
	Chapter 1. Docker in the Cloud
	Introduction
	Starting a Docker Host on AWS EC2
	Problem
	Solution
	Discussion
	See Also

	Starting a Docker Host on Google GCE
	Problem
	Solution
	Discussion

	Starting a Docker Host on Microsoft Azure
	Problem
	Solution
	Discussion
	See Also

	Introducing Docker Machine to Create Docker Hosts in the Cloud
	Problem
	Solution
	Discussion
	See Also

	Starting a Docker Host on AWS Using Docker Machine
	Problem
	Solution
	Discussion

	Starting a Docker Host on Azure with Docker Machine
	Problem
	Solution
	Discussion
	See Also

	Running a Cloud Provider CLI in a Docker Container
	Problem
	Solution
	Discussion
	See Also

	Using Google Container Registry to Store Your Docker Images
	Problem
	Solution
	Discussion

	Using Kubernetes in the Cloud via GKE
	Problem
	Solution
	Discussion
	See Also

	Setting Up to Use the EC2 Container Service
	Problem
	Solution
	Discussion
	See Also

	Creating an ECS Cluster
	Problem
	Solution
	Discussion
	See Also

	Starting Docker Containers on an ECS Cluster
	Problem
	Solution
	Discussion
	See Also

