Learning Scrapy

Learn the art of efficient web scraping and crawling with Python

PACKT *

Learning Scrapy

Learn the art of efficient web scraping and crawling
with Python

Dimitrios Kouzis-Loukas

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Learning Scrapy

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016
Production reference: 1220116

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-978-8

www . packtpub.com

www.packtpub.com

Credits

Author
Dimitrios Kouzis-Loukas

Reviewer
Lazar Telebak

Commissioning Editor
Akram Hussain

Acquisition Editor
Subho Gupta

Content Development Editor
Kirti Patil

Technical Editor
Siddhesh Ghadi

Copy Editor
Priyanka Ravi

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Dimitrios Kouzis-Loukas has over fifteen years experience as a topnotch
software developer. He uses his acquired knowledge and expertise to teach a wide
range of audiences how to write great software, as well.

He studied and mastered several disciplines, including mathematics, physics, and
microelectronics. His thorough understanding of these subjects helped him raise his
standards beyond the scope of "pragmatic solutions." He knows that true solutions
should be as certain as the laws of physics, as robust as ECC memories, and as
universal as mathematics.

Dimitrios now develops distributed, low-latency, highly-availability systems using
the latest datacenter technologies. He is language agnostic, yet has a slight preference
for Python, C++, and Java. A firm believer in open source software and hardware,

he hopes that his contributions will benefit individual communities as well as all

of humanity.

About the Reviewer

Lazar Telebak is a freelance web developer specializing in web scraping, crawling,
and indexing web pages using Python libraries/frameworks.

He has worked mostly on projects that deal with automation and website scraping,
crawling, and exporting data to various formats, including CSV, JSON, XML, and
TXT, and databases such as MongoDB, SQLAlIchemy, and Postgres.

He also has experience in frontend technologies and the languages: HTML, CSS,]S,
and jQuery.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface Vii
Chapter 1: Introducing Scrapy 1
Hello Scrapy 1
More reasons to love Scrapy 2
About this book: aim and usage 3
The importance of mastering automated data scraping 4
Developing robust, quality applications, and providing realistic schedules 5
Developing quality minimum viable products quickly 5
Scraping gives you scale; Google couldn't use forms 6
Discovering and integrating into your ecosystem 7
Being a good citizen in a world full of spiders 8
What Scrapy is not 8
Summary 9
Chapter 2: Understanding HTML and XPath 11
HTML, the DOM tree representation, and the XPath 11
The URL 12
The HTML document 12
The tree representation 14
What you see on the screen 15
Selecting HTML elements with XPath 16
Useful XPath expressions 17
Using Chrome to get XPath expressions 20
Examples of common tasks 21
Anticipating changes 22
Summary 23
Chapter 3: Basic Crawling 25
Installing Scrapy 26
MacOS 26

[il

Table of Contents

Windows 27
Linux 27
Ubuntu or Debian Linux 28

Red Hat or CentOS Linux 28
From the latest source 28
Upgrading Scrapy 29
Vagrant: this book's official way to run examples 29
UR?IM - the fundamental scraping process 31
The URL 32
The request and the response 33
The Items 34
A Scrapy project 40
Defining items 41
Writing spiders 42
Populating an item 46
Saving to files 47
Cleaning up — item loaders and housekeeping fields 49
Creating contracts 53
Extracting more URLs 55
Two-direction crawling with a spider 58
Two-direction crawling with a CrawISpider 61
Summary 62
Chapter 4: From Scrapy to a Mobile App 63
Choosing a mobile application framework 63
Creating a database and a collection 64
Populating the database with Scrapy 66
Creating a mobile application 69
Creating a database access service 70
Setting up the user interface 70
Mapping data to the User Interface 72
Mappings between database fields and User Interface controls 73
Testing, sharing, and exporting your mobile app 74
Summary 75
Chapter 5: Quick Spider Recipes 77
A spider that logs in 78
A spider that uses JSON APIs and AJAX pages 84
Passing arguments between responses 87
A 30-times faster property spider 88
A spider that crawls based on an Excel file 92
Summary 96

Lii]

Table of Contents

Chapter 6: Deploying to Scrapinghub 97
Signing up, signing in, and starting a project 98
Deploying our spiders and scheduling runs 100
Accessing our items 102
Scheduling recurring crawls 104
Summary 104

Chapter 7: Configuration and Management 105
Using Scrapy settings 106
Essential settings 107

Analysis 107
Logging 108
Stats 108
Telnet 108

Performance 110

Stopping crawls early 111

HTTP caching and working offline 111
Example 2 — working offline by using the cache 111

Crawling style 112

Feeds 113

Downloading media 114
Other media 114

Amazon Web Services 115

Using proxies and crawlers 116
Example 4 — using proxies and Crawlera's clever proxy 116

Further settings 117

Project-related settings 118

Extending Scrapy settings 118

Fine-tuning downloading 119

Autothrottle extension settings 119

Memory UsageExtension settings 119

Logging and debugging 120

Summary 120

Chapter 8. Programming Scrapy 121

Scrapy is a Twisted application 122
Deferreds and deferred chains 124
Understanding Twisted and nonblocking I/O — a Python tale 127

Overview of Scrapy architecture 134
Example 1 - a very simple pipeline 137

Signals 138

Example 2 - an extension that measures throughput and latencies 140

[iii]

Table of Contents

Extending beyond middlewares 144
Summary 146
Chapter 9: Pipeline Recipes 147
Using REST APIs 148
Using treq 148
A pipeline that writes to Elasticsearch 148
A pipeline that geocodes using the Google Geocoding API 151
Enabling geoindexing on Elasticsearch 158
Interfacing databases with standard Python clients 159
A pipeline that writes to MySQL 159
Interfacing services using Twisted-specific clients 163
A pipeline that reads/writes to Redis 163
Interfacing CPU-intensive, blocking, or legacy functionality 167
A pipeline that performs CPU-intensive or blocking operations 167
A pipeline that uses binaries or scripts 170
Summary 173
Chapter 10: Understanding Scrapy's Performance 175
Scrapy's engine — an intuitive approach 176
Cascading queuing systems 177
Identifying the bottleneck 178
Scrapy's performance model 179
Getting component utilization using telnet 180
Our benchmark system 182
The standard performance model 185
Solving performance problems 187
Case #1 — saturated CPU 188
Case #2 — blocking code 189
Case #3 — "garbage" on the downloader 191
Case #4 — overflow due to many or large responses 194
Case #5 — overflow due to limited/excessive item concurrency 195
Case #6 — the downloader doesn't have enough to do 197
Troubleshooting flow 199
Summary 200
Chapter 11: Distributed Crawling with Scrapyd and Real-Time
Analytics 201
How does the title of a property affect the price? 202
Scrapyd 202
Overview of our distributed system 205
Changes to our spider and middleware 207
Sharded-index crawling 207

[iv]

Table of Contents

Batching crawl URLs 209
Getting start URLs from settings 214
Deploy your project to scrapyd servers 216
Creating our custom monitoring command 217
Calculating the shift with Apache Spark streaming 218
Running a distributed crawl 220
System performance 223
The key take-away 223
Summary 224
Appendix: Installing and troubleshooting prerequisite software 225
Installing prerequisites 225
The system 226
Installation in a nutshell 228
Installing on Linux 228
Installing on Windows or Mac 230
Install Vagrant 230
How to access the terminal 231
Install VirtualBox and Git 232
Ensure that VirtualBox supports 64-bit images 232
Enable ssh client for Windows 234
Download this book's code and set up the system 235
System setup and operations FAQ 235
What do | download and how much time does it take? 236
What should | do if Vagrant freezes? 237
How do | shut down/resume the VM quickly? 238
How do | fully reset the VM? 238
How do | resize the virtual machine? 239
How do | resolve any port conflicts? 239
On Linux using Docker natively 239

On Windows or Mac using a VM 239
How do | make it work behind a corporate proxy? 240
How do | connect with the Docker provider VM? 240
How much CPU/memory does each server use? 241
How can | see the size of Docker container images? 241
How can | reset the system if Vagrant doesn't respond? 242
There's a problem | can't work around, what can | do? 242

Index

243

[v]

Preface

Let me take a wild guess. One of these two stories is curiously similar to yours:

Your first encounter with Scrapy was while searching the net for something along
the lines of "web scraping Python". You had a quick look at it and thought, "This is
too complex...I just need something simple." You went on and developed a Python
script using requests, struggled a bit with beautiful soup, but finally made something
cool. It was kind of slow, so you let it run overnight. You restarted it a few times,
ignored some semi-broken links and non-English characters, and in the morning,
most of the website was proudly on your hard disk. Sadly, for some unknown
reason, you didn't want to see your code again. The next time you had to scrape
something, you went directly to scrapy.org and this time the documentation made
perfect sense. Scrapy now felt like it was elegantly and effortlessly solving all of the
problems that you faced, and it even took care of problems you hadn't thought of
yet. You never looked back.

Alternatively, your first encounter with Scrapy was while doing research for a web-
scraping project. You needed something robust, fast, and enterprise-grade, so most
of the fancy one-click web-scraping tools were out of question. You needed it to be
simple but at the same time flexible enough to allow you to customize its behavior
for different sources, provide different types of output feeds, and reliably run 24/7
in an automated manner. Companies that provided scraping as a service seemed too
expensive and you were more comfortable using open source solutions than feeling
locked on vendors. From the very beginning, Scrapy looked like a clear winner.

[vii]

Preface

No matter how you got here, I'm glad to meet you on a book that is entirely devoted
to Scrapy. Scrapy is the secret of web-scraping experts throughout the world. They
know how to maneuver it to save them hours of work, deliver stellar performance,
and keep their hosting bills to an absolute minimum. If you are less experienced and
you want to achieve their results, unfortunately, Google will do you a disservice.

The majority of Scrapy information on the Web is either simplistic and inefficient

or complex. This book is an absolute necessity for everyone who wants accurate,
accessible, and well-organized information on how to make the most out of Scrapy. It
is my hope that it will help the Scrapy community grow even further and give it the
wide adoption that it rightfully deserves.

What this book covers

Chapter 1, Introducing Scrapy, will introduce you to this book and Scrapy, and will
allow you to set clear expectations for the framework and the rest of the book.

Chapter 2, Understanding HTML and XPath, aims to bring web-crawling beginners
up to speed with the essential web-related technologies and techniques that we will
use thereafter.

Chapter 3, Basic Crawling, is where we learn how to install Scrapy and crawl a
website. We develop this example step by step by showing you the methodology and
the way of thinking behind every action. After this chapter, you will be able to crawl
the majority of simple websites.

Chapter 4, From Scrapy to a Mobile App, shows us how we can use our scraper to
populate a database and feed a mobile application. After this chapter, you will have
a clear appreciation of the benefits that web crawling brings in time to market terms.

Chapter 5, Quick Spider Recipes, demonstrates more powerful spider features, allowing
us to log in, scrape faster, consume APIs, and crawl lists of URLs.

Chapter 6, Deploying to Scrapinghub, shows us how to deploy spiders to Scrapinghub's
cloud servers and enjoy availability, easy deployment, and control.

Chapter 7, Configuration and Management, is a well-organized presentation of the
impressive number of features that one can enable and fine-tune using Scrapy's
configuration.

[viii]

Preface

Chapter 8, Programming Scrapy, takes our knowledge to a whole new level by showing
us how to use the underlying Twisted engine and Scrapy's architecture to extend
every aspect of its functionality.

Chapter 9, Pipeline Recipes, presents numerous examples where we alter Scrapy's
functionality to insert into databases such as MySQL, Elasticsearch, and Redis,
interface APIs, and legacy applications with virtually no degradation of performance.

Chapter 10, Understanding Scrapy's Performance, will help us understand how Scrapy
spends its time, and what exactly we need to do to increase its performance.

Chapter 11, Distributed Crawling with Scrapyd and Real-Time Analytics, is our final
chapter showing how to use scrapyd in multiple servers to achieve horizontal
scalability, and how to feed crawled data to an Apache Spark server that performs
stream analytics on it.

What you need for this book

Lots of effort was put into making this book's code and content available for as

wide an audience as possible. We want to provide interesting examples that involve
multiple servers and databases, but we don't want you to have to know how to set
all these up. We use a great technology called Vagrant to automatically download
and set up a disposable multiserver environment inside your computer. Our Vagrant
configuration uses a virtual machine on Mac OS X and Windows, and it can run
natively on Linux.

For Windows and OS X, you will need a 64-bit computer that supports either Intel

or AMD virtualization technologies: VT-x or AMD-v. Most modern computers will

do fine. You will also need 1 GB of memory that is dedicated to the Virtual Machine
for most chapters with the exception of Chapter 9, Pipeline Recipes, and Chapter 11,
Distributed Crawling with Scrapyd and Real-Time Analytics, which require 2 GB. Appendix
A, Installing Prerequisites, has all the details of how to install the necessary software.

Scrapy itself has way more limited hardware and software requirements. If you
are an experienced user and you don't want to use Vagrant, you will be able to
set Scrapy up on any operating system even if it has limited memory using the
instructions that we provide in Chapter 3, Basic Crawling.

After you successfully set up your Vagrant environment, you will be able to run
examples from the entire book (with the obvious exceptions of Chapter 4, From Scrapy
to a Mobile App, and Chapter 6, Deploying to Scrapinghub) without the need for an
Internet connection. Yes, you can enjoy this book on a flight.

[ix]

Preface

Who this book is for

This book tries to accommodate quite a wide audience. It should be useful to:

* Web entrepreneurs who need source data to power their applications

* Data scientists and Machine Learning practitioners who need to extract data
for analysis or to train their models

* Software engineers who need to develop large-scale web-scraping
infrastructure

* Hobbyists who want to run Scrapy on a Raspberry Pi for their next cool project

In terms of prerequisite knowledge, we tried to require a very small amount of
it. This book presents the basics of web technologies and scraping in the earliest
chapters for those who have very little web-scraping experience. Python is easily
readable and most of what we present in the spider chapters should be fine for
anyone with basic experience of any programming language.

Frankly, I strongly believe that if someone has a project in mind and wants to use
Scrapy, they will be able to hack the examples of this book and have something up and
running within hours even with no previous scraping, Scrapy, or Python experience.

After the first half of the book, we become more Python-heavy, and at this point,
beginners may want to allow themselves a few weeks of basic Scrapy experience
before they delve deeper. At this point, more experienced Python/Scrapy developers
will enjoy learning event-driven Python development using Twisted and the very
interesting Scrapy internals. For the performance chapter, some mathematics intuition
may be beneficial, but even without it, most diagrams should make a clear impression.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
<head> part is important to indicate meta-information such as character encoding."

[x]

Preface

A block of command line is set as follows:

$ python

>>> from twisted.internet import defer
>>> # Experiment 1

>>> d = defer.Deferred()

>>> d.called

False

>>> d.callback(3)

>>> d.called

True

>>> d.result

3

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

%j%‘\ Warnings or important notes appear in a box like this.
p— ~\| -
(:;l Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

[xi]

www.packtpub.com/authors

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[xii]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xiii]

Introducing Scrapy

Welcome to your Scrapy journey. With this book, we aim to take you from a Scrapy
beginner —someone who has little or no experience with Scrapy —to a level where
you will be able to confidently use this powerful framework to scrape large datasets
from the web or other sources. In this chapter, we will introduce you to Scrapy and
talk to you about some of the great things you can achieve with it.

Hello Scrapy

Scrapy is a robust web framework for scraping data from various sources. As a
casual web user, you will often find yourself wishing to be able to get data from a
website that you're browsing on a spreadsheet program like Excel (see Chapter 3,
Basic Crawling) in order to access it while you're offline or to perform calculations. As
a developer, you'll often wish to be able to combine data from various data sources,
but you are well aware of the complexities of retrieving or extracting them. Scrapy
can help you complete both easy and complex data extraction initiatives.

Scrapy is built upon years of experience in extracting massive amounts of data in a
robust and efficient manner. With Scrapy, you are able to do with a single setting
what would take various classes, plug-ins, and configuration in most other scraping
frameworks. A quick look at Chapter 7, Configuration and Management will make you
appreciate how much you can achieve in Scrapy with a few lines of configuration.

[11]

Introducing Scrapy

From a developer's perspective, you will also appreciate Scrapy's event-based
architecture (we will explore it in depth in Chapter 8§, Programming Scrapy and
Chapter 9, Pipeline Recipes). It allows us to cascade operations that clean, form, and
enrich data, store them in databases, and so on, while enjoying very low degradation
in performance —if we do it in the right way, of course. In this book, you will learn
exactly how to do so. Technically speaking, being event-based, Scrapy allows us to
disconnect latency from throughput by operating smoothly while having thousands
of connections open. As an extreme example, imagine that you aim to extract listings
from a website that has summary pages with a hundred listings per page. Scrapy
will effortlessly perform 16 requests on that site in parallel, and assuming that, on
an average, a request takes a second to complete, you will be crawling at 16 pages
per second. If you multiply that with the number of listings per page, you will be
generating 1600 listings per second. Imagine now that for each of those listings

you have to do a write to a massively concurrent cloud storage, which takes 3
seconds (very bad idea) on an average. In order to support the throughput of 16
requests per second, it turns out that we need to be running 1600 - 3 = 4800 write
requests in parallel (you will see many such interesting calculations in Chapter 9,
Pipeline Recipes). For a traditional multithreaded application, this would translate

to 4800 threads, which would be a very unpleasant experience for both you and the
operating system. In Scrapy's world, 4800 concurrent requests is business as usual as
long as the operating system is okay with it. Furthermore, memory requirements of
Scrapy closely follow the amount of data that you need for your listings in contrast
to a multithreaded application, where each thread adds a significant overhead as
compared to a listing's size.

In a nutshell, slow or unpredictable websites, databases, or remote APIs won't
have devastating consequences on your scraper's performance, since you can run
many requests concurrently, and manage everything from a single thread. This
translates to lower hosting bills, opportunity for co-hosting scrapers with other
applications, and simpler code (no synchronization necessary) as compared to
typical multithreaded applications.

More reasons to love Scrapy

Scrapy has been around for more than half a decade, and is mature and stable.
Beyond the performance benefits that we mentioned in the previous section, there
are several other reasons to love Scrapy:

* Scrapy understands broken HTML

You can use Beautiful Soup or Ixml directly from Scrapy, but Scrapy provides
selectors —a higher level XPath (mainly) interface on top of Ixml. It is able to
efficiently handle broken HTML code and confusing encodings.

[2]

Chapter 1

e Community

Scrapy has a vibrant community. Just have a look at the mailing list at
https://groups.google.com/forum/#! forum/scrapy-users and the
thousands of questions in Stack Overflow at http://stackoverflow.
com/questions/tagged/scrapy. Most questions get answered within
minutes. More community resources are available at http://scrapy.org/
community/.

* Well-organized code that is maintained by the community

Scrapy requires a standard way of organizing your code. You write little
Python modules called spiders and pipelines, and you automatically gain
from any future improvements to the engine itself. If you search online, you
will find quite a few professionals who have Scrapy experience. This means
that it's quite easy to find a contractor who will help you maintain or extend
your code. Whoever joins your team won't have to go through the learning
curve of understanding the peculiarities of your own custom crawler.

* Growing feature set but also quality focused

If you have a quick look at the Release Notes (http://doc.scrapy.org/en/
latest/news.html), you will notice that there is a growth, both in features
and in stability /bug fixes.

About this book: aim and usage

With this book, we aim to teach you Scrapy by using focused examples and realistic
datasets. Most chapters focus on crawling an example property rental website. We
chose this, because it's representative of most of the web crawling projects, allows us
to present interesting variations, and is at the same time simple. Having this example
as the main theme helps us focus on Scrapy without distraction.

We start by running small crawls of a few hundred pages, and we scale it out to
performing distributed crawling of fifty thousand pages within minutes in

Chapter 11, Distributed Crawling with Scrapyd and Real-Time Analytics. In the process,
we will show you how to connect Scrapy with services like MySQL, Redis, and
Elasticsearch, use the Google geocoding API to find coordinates for the location of
our example properties, and feed Apache Spark to predict the keywords which affect
property prices the most.

[31]

https://groups.google.com/forum/#!forum/scrapy-users
http://stackoverflow.com/questions/tagged/scrapy
http://stackoverflow.com/questions/tagged/scrapy
http://scrapy.org/community/
http://scrapy.org/community/
http://doc.scrapy.org/en/latest/news.html
http://doc.scrapy.org/en/latest/news.html

Introducing Scrapy

Be prepared to read this book several times. Maybe you can start by skimming
through it to understand its structure. Then read a chapter or two, learn, experiment
for a while, and then move further. Don't be afraid to skip a chapter if you feel
familiar with it. In particular, if you know HTML and XPath, there's no point
spending much time on Chapter 2, Understanding HTML and XPath. Don't worry;

this book still has plenty for you. Some chapters like Chapter 8, Programming

Scrapy combine the elements of a reference and a tutorial, and go in depth into
programming concepts. That's an example of a chapter one might like to read a few
times, while allowing a couple of weeks of Scrapy practice in between. You don't
need to perfectly master Chapter 8, Programming Scrapy before moving, for example,
to Chapter 9, Pipeline Recipes, which is full of applications. Reading the latter will help
you understand how to use the programming concepts, and if you wish, you can
reiterate as many times as you like.

We have tried to balance the pace to keep the book both interesting and beginner-
friendly. One thing we can't do though, is teach Python in this book. There are
several excellent books on the subject, but what I would recommend is trying a bit
more relaxed attitude while learning. One of the reasons Python is so popular is
that it's relatively simple, clean, and it reads well as English. Scrapy is a high-level
framework that requires learning from Python beginners and experts alike. You
could call it "the Scrapy language". As a result, I would recommend going through
the material, and if you feel that you find the Python syntax confusing, supplement
your learning with some of the excellent online Python tutorials or free Python
online courses for beginners at Coursera or elsewhere. Rest assured, you can be
quite a good Scrapy developer without being a Python expert.

The importance of mastering automated
data scraping

For many of us, the curiosity and the mental satisfaction in mastering a cool
technology like Scrapy is sufficient to motivate us. As a pleasant surprise, while
learning this great framework, we enjoy a few benefits that derive from starting the
development process from data and the community instead of the code.

[4]

Chapter 1

Developing robust, quality applications, and
providing realistic schedules

In order to develop modern high-quality applications, we need realistic, large datasets,
if possible, before even writing a single line of code. Modern software development

is all about processing large amounts of less-than-perfect data in real time to extract
knowledge and actionable insights. When we develop software and apply it to large
datasets, small errors and oversights are difficult to detect and might lead us to costly
erroneous decisions. It's easy, for example, to overlook entire states while trying to
study demographics, just because of a bug that silently drops data when the state name
is too long. By carefully scraping, and having production-quality, large, real-world
datasets during development (or even earlier) during design exploration, one can find
and fix bugs, and make informed engineering decisions.

As another example, imagine that you want to design an Amazon-style "if you like
this, you might also like that"-style recommendation system. If you are able to crawl
and collect a real-world dataset before you even start, you will quickly become aware
of the issues related to invalid entries, discontinued products, duplicates, invalid
characters, and performance issues due to skewed distributions. Data will force you
to design algorithms robust enough to handle the products bought by thousands of
people as well as new entries with zero sales. Compare that to software developed
in isolation that will later, potentially after weeks of development, face the ugliness
of real-world data. The two approaches might eventually converge, but the ability
to provide schedule estimates you can commit to, and the quality of software as the
project's time progresses will be significantly different. Starting from data, leads to a
much more pleasant and predictable software development experience.

Developing quality minimum viable products
quickly

Large realistic datasets are even more essential for start-ups. You might have

heard of the "Lean Startup", a term coined by Eric Ries to describe the business
development process under conditions of extreme uncertainty like tech-start-ups.
One of the key concepts of that framework is that of the minimum viable product
(MVP) —a product with limited functionality that one can quickly develop and
release to a limited audience in order to measure reactions and validate business
hypotheses. Based on the reactions, a start-up might choose to continue with further
investments, or "pivot" to something more promising.

[51]

Introducing Scrapy

Some aspects of this process that are easy to overlook are very closely connected with
the data problems that Scrapy solves for us. When we ask potential customers to try
our mobile app, for example, we as developers or entrepreneurs ask them to judge
the functionality imagining how this app will look when completed. This might

be a bit too much imagining for a non-expert. The distance between an app which
shows "product 1", "product 2", and "user 433", and an application that provides
information on "Samsung UN55J6200 55-Inch TV", which has a five star rating from
user "Richard S." and working links that take you directly to a product detail page
(despite the fact we didn't write it), is significant. It's very difficult for people to
judge the functionality of an MVP objectively, unless the data that we use is realistic
and somewhat exciting.

One of the reasons that some start-ups have data as an afterthought is the perception
that collecting them is expensive. Indeed, we would typically need to develop forms,
administration screens, and spend time entering data— or we could just use Scrapy
and crawl a few websites before writing even a single line of code. You will see in
Chapter 4, From Scrapy to a Mobile App, how easy it is to develop a simple mobile app
as soon as you have data.

Scraping gives you scale; Google couldn't
use forms

While on the subject of forms, let's consider how they affect the growth of a product.
Imagine for a second Google founders creating the first version of their engine
incorporating a form that every webmaster has to fill, and copy-paste the text for
every page on their website. They should then accept the license agreement to

allow Google to process, store, and present their content while pocketing most of
the advertising profits. Can you imagine the incredible amount of time and effort
required to explain the vision and convince people to get involved in this process?
Even if the market was starving for an excellent search engine (as it proved to be the
case), this engine wouldn't be Google because its growth would be extremely slow.
Even the most sophisticated algorithms wouldn't be able to offset the lack of data.
Google uses web crawlers that move through links from page to page, filling their
massive databases. Webmasters don't have to do anything at all. Actually, it requires
a bit of effort to prevent Google from indexing your pages.

[6]

Chapter 1

The idea of Google using forms might sound a bit ridiculous, but how many forms
does a typical website require a user to fill? A login form, a new listing form, a
checkout form, and so on. How much do those forms really cost by hindering
application's growth? If you know your audience/customers enough, it is highly
likely that you have a clue on the other websites they are typically using, and might
already have an account with. For example, a developer will likely have a Stack
Overflow and a GitHub account. Could you —with their permission—scrape those
sites as soon as they give you their username, and auto-fill their photos, their bio,
and a few recent posts? Can you perform some quick text analytics on the posts
they are mostly interested in, and use it to adapt your site's navigation structure
and suggested products or services? I hope you can see how replacing forms with
automated data scraping can allow you to better serve your audience, and grow at
web-scale.

Discovering and integrating into your
ecosystem

Scraping data naturally leads you to discover and consider your relationship

with the communities related to your endeavors. When you scrape a data source,
naturally some questions arise: Do I trust their data? Do I trust the companies who
I get data from? Should I talk to them to have a more formal cooperation? Am I
competing or cooperating with them? How much would it cost me to get these
data from another source? Those business risks are there anyway, but the scraping
process helps us become aware of them earlier, and develop mitigation strategies.

You will also find yourself wondering what do you give back to those websites or
communities? If you give them free traffic, they will likely be happy. On the other
hand, if your application doesn't provide some value to your source, maybe your
relationship is a bit ephemeral unless you talk to them and find a way to cooperate.
By getting data from various sources, you are primed to develop products friendlier
to the existing ecosystem that respect established market players, disrupting only
when it's worth the effort. Established players might also help you grow faster — for
example, if you have an application that uses data feeds from two or three distinct
ecosystems of a hundred thousand users each, your service might end up connecting
three hundred thousand users in a creative way which benefits everybody. For
example, if you create a start-up that combines a rock music and a t-shirt printing
community, you end up with a mixture of two ecosystems, and both you and the
communities will likely benefit and grow.

[71

Introducing Scrapy

Being a good citizen in a world full of
spiders

There are a few things one needs to be aware of while developing scrapers.
Irresponsible web scraping can be annoying and even illegal in some cases. The two
most important things to avoid are denial-of-service (DoS) attack like behavior and
violating copyrights.

In the first one, a typical visitor might be visiting a new page every few seconds.
A typical web crawler might be downloading tens of pages per second. That is
more than ten times the traffic that a typical user generates. This might reasonably
make the website owners upset. Use throttling to reduce the traffic you generate
to an acceptable user-like level. Monitor the response times, and if you see them
increasing, reduce the intensity of your crawl. The good news is that Scrapy
provides out-of-the-box implementation of both these functionalities

(see Chapter 7, Configuration and Management).

On copyrights, obviously, take a look at the copyright notice of every website you
scrape, and make sure you understand what is allowed and what is not. Most sites
allow you to process information from their site as long as you don't reproduce them
claiming that it's yours. What is nice to have is a User-Agent field on your requests
that allows webmasters to know who you are and what you do with their data.
Scrapy does this by default by using your BOT_NAME as a User-Agent when making
requests. If this is a URL or a name that clearly points to your application, then the
webmaster can visit your site, and learn more about how you use their data. Another
important aspect is allowing any webmaster to prevent you from accessing certain
areas of their website. Scrapy provides functionality (RobotsTxtMiddleware) that
respects their preferences as expressed on the web-standard robots. txt file (see an
example of that file at http: //www.google.com/robots. txt). Finally, it's good to
provide the means for webmasters to express their desire to be excluded from your
crawls. At the very least, it must be easy for them to find a way to communicate with
you and express any concerns.

Laws differ from country to country, and I'm by no means in a position to give legal
advice. Please seek professional legal advice if you feel the need before relying too
heavily on scraping for your projects. This applies to the entire content of this book.

What Scrapy is not

Finally, it's easy to misunderstand what Scrapy can do for you mainly because the
terms Data Scraping and all the related terminology is somewhat fuzzy, and many
terms are used interchangeably. I will try to clarify some of these areas to prevent
confusion and save you some time.

[8]

http://www.google.com/robots.txt

Chapter 1

Scrapy is not Apache Nutch, that is, it's not a generic web crawler. If Scrapy visits a
website it knows nothing about, it won't be able to make anything meaningful out of
it. Scrapy is about extracting structured information, and requires manual effort to
set up the appropriate XPath or CSS expressions. Apache Nutch will take a generic
page and extract information, such as keywords, from it. It might be more suitable
for some applications and less for others.

Scrapy is not Apache Solr, Elasticsearch, or Lucene; in other words, it has nothing

to do with a search engine. Scrapy is not intended to give you references to the
documents that contain the word "Einstein" or anything else. You can use the data
extracted by Scrapy, and insert them into Solr or Elasticsearch as we do at the
beginning of Chapter 9, Pipeline Recipes, but that's just a way of using Scrapy, and not
something embedded into Scrapy.

Finally, Scrapy is not a database like MySQL, MongoDB, or Redis. It neither stores
nor indexes data. It only extracts data. That said, you will likely insert the data that
Scrapy extracts to a database, and there is support for many of them, which will
make your life easier. Scrapy isn't a database though, and its outputs could easily
be just files on a disk or even no output at all —although I'm not sure how this
could be useful.

Summary

In this chapter, we introduced you to Scrapy, gave you an overview of what it can
help you with, and described what we believe is the best way to use this book. We
also presented several ways with which automated data scraping can benefit you
by helping you quickly develop high-quality applications that integrate nicely with
existing ecosystems. In the following chapter, we will introduce you to HTML and
XPath, two very important web languages that we will use in every Scrapy project.

[o]

Understanding HTML and
XPath

In order to extract information from web pages, you have to understand a little
bit more about their structure. We will have a quick look at HTML, the tree
representation of HTML, and XPath as a way of selecting information on web pages.

HTML, the DOM tree representation,
and the XPath

Let's spend some time understanding the process that takes place from when a

user types a URL on the browser (or more often, when he/she clicks on a link or a
bookmark) until a page is displayed on the screen. From the perspective of this book,
this process has four steps:

e A URL is typed on the browser. The first part of the URL (the domain name,
such as gumtree . com) is used to find the appropriate server on the web, and
the URL along with other data like cookies form a request which is sent to
that server.

* The server replies by sending an HTML page to the browser. Note that the
server might also return other formats, such as XML or JSON, but for now we
focus on HTML.

* The HTML gets translated to an internal tree representation inside the
browser: the infamous Document Object Model (DOM).

[11]

Understanding HTML and XPath

* The internal representation is rendered, based on some layout rules, to the
visual representation that you see on the screen.

1. A URL: example.com
4. what we see in the screen

3. A tree representation
inside a browser on Chrome. ..

2. An HTML document

Example Domain
on a mobile device browser...
‘”“,‘ Example et

Tiés domain s estabil
may use this domain | is ¢ est W on Tynx...

o

permission

Let's have a look at those steps and the representations of the documents that they
require. This will help you in locating the text that you want to scrape and in writing
programs that retrieve it.

The URL

For our purposes, the URL has two main parts. The first part helps us locate the
appropriate server on the net via the Domain Name System (DNS). For example,
when you send https://mail.google.com/mail/u/0/#inbox to the browser,

it creates a DNS request on mail.google.com, which resolves the IP address of a
suitable server such as 173.194.71.83. Essentially, https://mail.google.com/
mail/u/0/#inbox translates to https://173.194.71.83/mail/u/0/#inbox.

The rest of the URL is important for the server to understand what the request is all
about. It might be an image, a document, or something that needs to trigger an action
like sending an e-mail on that server.

The HTML document

The server reads the URL, understands what we are asking for, and replies with

an HTML document. This document is essentially a text file that we can open with
TextMate, Notepad, vi, or Emacs. Unlike most text documents, an HTML document
has a format specified by the World Wide Web Consortium. The specification is
certainly beyond the scope of this book, but let's have a look at a simple HTML page.
If you head to http://example. com, you can see the associated HTML file in your
browser by choosing View Page Source. The exact process is different on different
browsers; on many systems, it's an option you can get by right clicking, and most
browsers show the source if you press Ctrl + U, or Cmd + U on a Mac.

[12]

https://mail.google.com/mail/u/0/#inbox
mail.google.com
https://mail.google.com/mail/u/0/#inbox
https://mail.google.com/mail/u/0/#inbox
https://173.194.71.83/mail/u/0/#inbox
http://example.com

Chapter 2

A\l

~ In some pages, this feature might be disabled. and you will have to
click on the Chrome menu and then Tools | View Source.

The following is currently the HTML code of http://example.com/:

<!doctype htmls>
<html>
<head>
<title>Example Domain</title>
<meta charset="utf-8" />
<meta http-equiv="Content-type"
content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width,
initial-scale=1" />
<style type="text/css"> body { background-color:
} }</styles>

<body>
<divs>
<hl>Example Domain</hl>
<p>This domain is established to be used for
illustrative examples examples in documents.
You may use this domain in examples without
prior coordination or asking for permission.</p>
<p>
More information...</p>
</div>
</body>
</html>

I formatted the HTML document to be readable, but you might well get all this text
in a single line. In HTML, spaces and line breaks don't matter in most contexts.

The text between the angle brackets (for example, <html> or <head>) is called a tag.
<html> is an opening tag and </html> is a closing tag. The only difference is the /
character. As this shows, tags come in pairs. Some web pages are sloppy about closing
tags (using a single <p> tag to separate paragraphs, for instance), but the browser is
very permissive and tries to infer where a closing </p> tag should be.

Everything between <p> and </p> is called an HTML element. Note that elements
might contain other elements, as is the case for the <div> element in the example or
the second <p>, which includes an <a> element.

[13]

http://example.com/

Understanding HTML and XPath

Some tags are a bit more complex, such as <a href="http://www.iana.org/
domains/example">. The href part with the URL is called an attribute.

Finally, many elements include text, such as the "Example Domain", within the <h1>
element.

The good news is that not all this markup is important for us. The only things that
are visible are the elements of the body element: what's between the <body> and
</body> tags. The <head> part is important to indicate meta-information such as
character encoding, but Scrapy takes care of most of those issues, so it is highly
likely that you will never have to pay attention to that part of the HTML page.

The tree representation

Every browser has its own, complex internal data structures with the aid of which
it renders web pages. The DOM representation is cross-platform and language-
independent, and is supported by most browsers.

To see the tree representation of a web page in Chrome, right-click on the element
you are interested in, and select Inspect Element. If this feature is disabled, you can
still access it by clicking on the Chrome menu and then Tools | Developer Tools.

4 Rightclick
Back on the page

Reload

ex2 save/Glick on U
dina print.

Trans..l.!ls? p‘.eEI.PE lement

View Page Source

View Ege Info

At this point, you see something that looks very similar to the HTML representation,
but it's not exactly the same. It's a tree representation of the HTML code. It will

look the same regardless of how the original HTML document uses spacing and

line breaks. You can click on every element to inspect or manipulate attributes, and
such, and see how these changes affect what you see on the screen in real time. For
example, if you double-click some text, modify it, and press the Enter key, the text
on the screen will be updated with the new value. On the right, under the Properties
tag, you can see the properties of this tree representation, and at the bottom, you

can see a breadcrumb-like structure that shows the exact position of your currently
selected element in the hierarchy of HTML elements.

[14]

Chapter 2

* | Elements | Resources Network Sources Timeline Profiles Audits Console l
" <IDOCTYPE html: » Computed Style Show inherited |
v<html> i o . il
S chaags > Styles + Y 8 |

L/]

<title>Example Domain</title>
<meta charsets"utf-g">
<meta http-equiv="Content-type" content=

l
“text/htal; charset=utf-8"> 1
<meta name="viewport" contents aalcoschy-. 1
“width=device-width, initial-scale=1"» align: " i
»cstyle types"text/css">_</style> » attributes: NamedNodeMap }
</head> baseURI: "http://example. iana.org/" t
v childE lementCount: 3 H
» childNodes: NodeList[7] *
ami¥omple Domain</hl> » children: HTMLCollection(3]
> <p>_</p> » classList: DOMTokenList H
¥ <p> className: l
<a href="http://wew.iana.org/domains/ clientHeight: 200
example”>More information... clientLeft: @
</p> clientTop: @ |
=fdivs clientWidth: 657
</body> contentEditable: "inherit" |

</html> » dataset: DOMStringMap
dir: "* |

The important thing to keep in mind is that while HTML is just text, the tree
representation is an object inside the browser's memory that you can view and
manipulate programmatically, and in the case of Chrome, via the Developer Tools.

What you see on the screen

The HTML text representation and the tree representation don't have anything that
looks like the beautiful view we usually see on our screen. This is actually one of
the reasons that HTML has been so successful. It is a document that is meant to be
read by humans, and specifies the content of the page, but not the way it's going

to render on the screen. This means it's the browser's responsibility to render the
HTML document and make it look nice, whether it's a full-featured browser such as
Chrome, a mobile device browser, or even a text-only browser such as Lynx.

That said, the evolution of the web spurred great demand for both web developers
and users to have more control over how a web page is rendered. CSS was created
to give hints on how HTML elements are rendered. For scraping, though, we don't
need anything that has to do with CSS.

[15]

Understanding HTML and XPath

So, how does the tree representation map to what we see on the screen? The

answer lies in what is called the box model. Just as a DOM tree element can contain
other elements or text, in the same way, by default, when rendered on the screen,
each box representation of an element contains the box representations of the
embedded elements. In that sense, what we see on the screen is a two-dimensional
representation of the original HTML document—but the tree structure is a part of the
representation, in a hidden way. For instance, in the following image, we see how
three DOM elements —a <divs> and two embedded elements, an <h1> and a <p>—
appear in a browser and in the DOM:

div 708 286px

Example Domain
Fvamnle Domain

This domain is established to be used for il o GMBpx = 54

m se this domain in examples without |

= ._If'.sf_“_“s d This domain is established to be use
% |Elements| Rffources Netwa may sq this domain in examples w

% | Elements | R tes Network Sources Timeline Profiles

% | Elements | Res; es Network Sources Timeline Py

Selecting HTML elements with XPath

If you come from a traditional software engineering background, and have

no knowledge of XPath, you will probably worry that, in order to access this
information in HTML documents, you will have to do lots of string matching,
searching for tags on the document, handling special cases, and so on, or somehow
parse the entire tree representation to extract what you want. The good news is that
none of those is necessary. You can select and extract elements, attributes, and text
with a language called XPath, specially designed for that purpose.

In order to use XPath with Google Chrome, click on the Console tab of Developer
Tools and use the $x utility function. For example, you can try $x('//h1') on
http://example.com/. It will move the browser to the <h1> element, as shown in
the following screenshot:

[16]

http://example.com/

Chapter 2

- c www.example.com -] =

Example Domain

r 4 E . .
[h1 6@@px = 39px P shed to be used for illustrative examples in documents. You

may use this in in examples without prior coorgimmts asking for
* Elements Resourc etwork Sources Timeline Profiles Audi
» $x('//h1%)
[<h1=Example Qfmain</hl=]
>

B »= Q © <topframe> v <page context> \AR All Errors Warnings Logs Debug -ﬂ-

What you will see returned on the Chrome Console is a JavaScript array containing
the selected elements. If you put your mouse cursor over those variables, the selected
elements will be highlighted on the screen. It's very handy.

Useful XPath expressions

The hierarchy of the document starts with the <html> element, and you can use
element names and slashes to select elements of the document. For example, the
following is what various expressions will return from the http://example.com/
page:
$x('/html")
[<html>...</html>]
$x ('/html/body")
[<body>...</body> 1
$x ('/html/body/div')
[<div>...</div>]
$x ('/html/body/div/h1l")
[<hl>Example Domain</hl>]
$x ('/html/body/div/p')
[<p>...</p>, <p>...</p> 1
$x ('/html/body/div/p[1]")
[<p>...</p> 1
$x ('/html/body/div/p[2]")
[<p>...</p> 1

Note that because two <p> elements lie under the <div> on this particular page,
html/body/div/p returns two elements. You can use p[1] and p [2] to access the
first and the second element respectively.

[17]

http://example.com/

Understanding HTML and XPath

Note that Document's title, may be the only interesting element from a scraping
perspective, is in the head section, and can be accessed with the following expression:

$x('//html/head/title")
[<title>Example Domain</titles>]

For large documents, you might have to write a very large XPath expressions to
reach specific elements. In order to avoid this, the // syntax allows you to get
elements of a particular type no matter where they are in the hierarchy. For example,
//p will select all the p elements, and //a all the links for us.

$x('//p")

[<p>...</p>, <p>...</p>]
$x('//a")

[More
information...]

The //a syntax can also be used anywhere in the hierarchy. For example, to find
any links under any div, you can use //div//a. Note that //div/a with single
slash would give an empty array, because there isn't any "a" directly under “div" in
example.com:

$x('//div//a")
[More
information...]

$x('//div/a')
[]

You can also select attributes. The only attribute on http://example.com/ is the
href of the link, which you can access using the character @ as follows:

$x('//a/@href")
[href="http://www.iana.org/domains/example"]

M Apparently, in recent chrome versions, @href doesn't return
Q the URLs but empty strings instead. Don't worry, your XPath
expression is still correct.

You can also select just the text by using the text () function:

$x('//a/text () ")

["More information..."]

You can use the * character to select all elements at a specific hierarchy level.
For example:

$x('//div/*")
[<hl>Example Domain</hl>, <p>...</p>, <p>...</p>]

[18]

http://example.com/

Chapter 2

You will find it very useful to select elements that have a specific attribute, such as
@class, or that have a specific value as an attribute. You can do it by using more
advanced predicates than the numeric ones which we used on the p[1] and p [2]
examples earlier. For example, //a [@href] selects link that contains href attribute,
and //a[@href="http://www.iana.org/domains/example"] selects link that have
an attribute href with the specified value.

Even more useful is the ability to find links whose href attribute starts with, or
contains, a specific substring. The following are some examples:

$x('//al@href] ")
[More
information...]

$x('//alehref="http://www.1ilana.org/domains/example"] ")

[More
information...]

$x('//alcontains (@href, "iana")]')
[More
information...]

$x('//alstarts-with(@href, "http://www.")]")
[More
information...]

$x('//al[not (contains (@href, "abc"))]')

[More
information...]

There are tens of XPath functions like not (), contains (), and starts-with () that
you can find in the online documentation (http://www.w3schools.com/xsl/
xsl_functions.asp), but you can go quite far without using most of them.

I might be getting a bit ahead of myself right now, but you can use the same XPath
expressions in a Scrapy shell. To open a page and access the Scrapy shell, you just
have to type the following;:

scrapy shell http://example.com

The shell gives you access to many variables that are typically available when you
write spider code (see next chapter). The most important of them is response, which
is an HtmlResponse in case of HTML documents - a class that allows you via it's
xpath () method $x in chrome. The following are a few examples:

response.xpath ('/html') .extract ()
[u'<html><head><titles>...</body></html>"]

response.xpath (' /html/body/div/hl') .extract ()
[u'<hl>Example Domain</hl>"']

[19]

http://www.w3schools.com/xsl/xsl_functions.asp
http://www.w3schools.com/xsl/xsl_functions.asp

Understanding HTML and XPath

response.xpath (' /html/body/div/p') .extract ()

[u'<p>This domain permission.</p>', u'<p><a href="http://www.
iana.org/domains/example">More information...</p>"']
response.xpath('//html/head/title') .extract ()

[u'<title>Example Domain</title>']
response.xpath('//a') .extract ()

[u'More
information..."']
response.xpath('//a/@href') .extract ()

[u'http://www.iana.org/domains/example']
response.xpath('//a/text () ') .extract ()

'
response.xpath('//al[starts-with(@href, "http://www.")]') .extract()

[u'More

information..."']

[u'More information..

This means that you can use Chrome to develop XPath expressions, and then use
them in your Scrapy crawler as we will see in the following chapter.

Using Chrome to get XPath expressions

Chrome acts even more developer-friendly by giving us basic XPath expressions. Start

by inspecting an element as shown earlier: right-click on the desired element, and
then choose Inspect Element. This opens Developer Tools and the HTML element
in the tree representation will be highlighted. Now right-click on it, and select Copy
XPath from the menu; the XPath expression will be copied to the clipboard.

may use thisRight iclickconranythingordnat

pemie™ on the page

Open Link in New Tab

Open Link in New Window
Open Link in Incognito Window
Save Link As

Copy Link Address

Copy

Click Inspect Element

Look Up in Dictionary
Speech
o Audiy Cot
Search With Google
Add o iTunes as a Spoken Track

Search Google com for "More information. '

Demants | Beiources Network Sources Timel

Right click on an element

Add Attribute

Force Element State 3

Edlit as HTML
'_ Copy as HTML
opy XPatl

lete Node
Break on L

. Click on.Copy\XPath

© s aYWerdwap

You can test the expression as always from the console:

$x ('/html/body/div/p[2]/a")

[More

information...]

[20]

Chapter 2

Examples of common tasks

There are some uses for XPath expressions that you will probably encounter quite
often. Let's see some examples that work (right now) for Wikipedia pages. Wikipedia
has a very stable format, so I wouldn't expect them to break soon, but eventually
they will. Consider those expressions as illustrative examples.

* Getting the text of the span under the div with id "firstHeading":
//hl[@id="firstHeading"] /span/text ()

* Getting the URLs of links in an unordered list (ul) inside a div with id
"toc":

//div[@id="toc"] /ul//a/@href

* Getting the text anywhere inside a header element (h1) inside any element
with a class attribute containing "1tr" and a class attribute containing
"skin-vector". The two strings may be in the same class or different ones.

//* [contains (@class,"ltr") and contains(eclass,"skin-vector")]//
hl//text ()

Actually, you will often need to use classes in your XPath expressions. In these cases,
you should remember that due to some styling elements called CSS, you will often
see HTML elements having multiple classes stated on their class attribute. This
means that you will see, for example, some of your divs with their class attribute set
to "link" and some others to "link active" in a navigation system. The latter will
be the links that are currently active, thus visible or highlighted with a special color
(via CSS). When scraping, you will usually be interested in elements that contain

a certain class, that is, both "1ink" and "link active" in the previous example.

The contains () XPath function allows you to select all the elements that contain a
certain class.

* To select the URL for the first image in the table that has a class attribute
with value "infobox", use the following;:

//table[e@eclass="infobox"]//img[1l] /@src

e To select all the URLs of the links under the div with a class attribute that
starts with "reflist":

//div[starts-with(@class,"reflist")]//a/@href

* To select all the URLs of links under the div element following an element
whose child element contains the text "References":

//*[text () ="References"]/../following-sibling::div//a

[21]

Understanding HTML and XPath

Note that this is quite fragile and easy to break, because it makes many
assumptions on the structure of the document.

To get the URLSs for every image on the page:
//img/@src

Anticipating changes

Scraping often targets pages on servers that are beyond our control. This means

that if their HTML changes in a way that makes our XPath expressions invalid, we
will have to go back to our spiders and correct them. This doesn't usually take long,
because the changes are typically small. However, it's certainly something we would
prefer to avoid. Some simple rules help us reduce the odds that your expressions will
become invalid:

Avoid array indexes (numbers)

Chrome will often give you expressions with lots of constant numbers
such as:

//*[@id="myid"] /div/div/div[1] /div[2] /div/div[1] /div[1l] /a/img

This is quite fragile, because if something like an advertisement block adds
an extra div somewhere in that hierarchy, those numbers will end up
pointing to different elements. The solution in this case is to go as close as
possible to the target img tag, and find an element with an id or a class
attribute that you can use, such as:

//div[eclass="thumbnail"]/a/img

Classes are not that good

Using class attributes makes it easy to pinpoint elements, but they are

often used to affect the looks of the page via CSS, and may thus change as a
result of minor alterations to the website's layout. For example, the following
class:

//div[eclass="thumbnail"]/a/img

This might after a while, turn to:

//div[eclass="preview green"]/a/img

[22]

Chapter 2

* Meaningful data-oriented classes are better than specific or layout-oriented
ones

In the previous example, both "thumbnail" and "green" are examples of
bad class names to rely on. The name "thumbnail" is certainly better than
"green", but both are inferior to something like "departure-time". The
first two are used for layout, whereas "departure-time" is something
meaningful, related to the contents of the div. As a result, the latter is more
likely to remain valid even when the layout changes. It might also indicate
that the developers of the site are aware of the benefits of annotating their
data with meaningful and consistent ways.

¢ IDs are often the most reliable

The id attributes are usually the best choice for a target, as long as they are
meaningful and data-related. Partially, this is because JavaScript and external
link anchors often use them to reference specific parts of the document. For
example, the following XPath is quite robust:

//*[@id="more info"]//text ()

Exceptions to this are programmatically generated IDs that include unique
references. Those render them useless for scraping. For example:

//l@id="order-F4982322"]

The above is a very bad XPath expression despite being an id. Also keep in
mind that, even though IDs should be unique, you will find many HTML
documents where they are not.

Summary

The quality of markup continuously improves, and it's now much easier to create
robust XPath expressions that extract data from HTML documents. In this chapter,
you learned the basics of HTML documents and XPath expressions. You saw how to
use Google Chrome to automatically get some XPath expressions as a starting point
that we can later optimize. You also learned how to create such expressions directly
by inspecting the HTML document, and how to tell a robust XPath expression from
a less robust one. We are now ready to use all this knowledge to write our first few
spiders with Scrapy in Chapter 3, Basic Crawling.

[23]

Basic Crawling

This is a very important chapter, which you will probably read several times, and
return to often for finding solutions. We are going to start by explaining how to
install Scrapy, and then move on to the methodology of developing Scrapy crawlers
along with numerous examples and alternative implementations. Before we start,
let's take a look at some important notions.

Since we are quickly moving to the fun coding part, it's important to be able to use
the code segments you find in this book. When you see the following:

$ echo hello world
hello world

it means you are to type echo hello world on a terminal (skip the dollar sign). The
line(s) that follow are the output as seen on your terminal.

We will use the terms 'terminal’, 'console', and 'command line'
M interchangeably. They don't make much difference in the context
Q of this book. Please Google a bit to find out how to start the console
on your platform (Windows, OS X, or others). You will also find
detailed instructions in Appendix A, Installing Prerequisites.

When you see the following;:

>>> print 'hi'
hi
it means you have to type print 'hi' on a Python or Scrapy shell prompt

(skip >>>). Again, the line(s) that follow are the output of the command as seen
on your terminal.

[25]

Basic Crawling

For this book, you will also need to edit files. The tools you're going to use depend
heavily on your environment. If you use Vagrant (highly recommended), you will
be able to edit files with editors like Notepad, Notepad++, Sublime Text, TextMate,
Eclipse, or PyCharm on your PC/laptop. If you are more experienced with Linux/
Unix, you might also like to edit files directly from the console with vim or emacs.
Both of them are powerful, but have a learning curve. If you are a beginner, and you
have to edit something in the console, you might also like to try the more beginner-
friendly nano editor.

Installing Scrapy

The installation of Scrapy is relatively easy, but it all depends on where you're
starting from. To be able to support as many people as possible, the "official" way
of running/installing Scrapy as well as all the examples in this book is through
Vagrant—a software that allows you to run a standard Linux box with all the tools
that we've set up for you inside your computer, no matter what operating system
it runs on. We provide instructions for Vagrant, and a few instructions for some
popular operating systems in the following sections.

MacOS

To easily follow this book, please follow the instructions on Vagrant given later.
If you want to install Scrapy natively for MacOS, that's quite easy. Just type in the
following command:

$ easy install scrapy

and everything should be taken care of for you. It might, in the process, ask you for
your password or installing Xcode. That's perfectly fine, and you can safely accept
the same.

[26]

Chapter 3

The "gecc” command requires the command line
@ developer tools. Would you like to install the tools
R now?

Choose Install to continue. Choose Cet Xcode to install Xcode
and the command line developer tools from the App Store.

Cet Xcode Not Now | Instal
._n
[} 2) L
t Downloading software
u e 5
' (@)
: Time remaining: About a minute
]

Windows

Installing Scrapy natively on Windows is somewhat advanced, and frankly, a bit

of a pain. Additionally, installing all the software that you need to enjoy this book
requires a significant degree of courage and determination. We have you covered
though. Vagrant with Virtualbox runs great on every Windows 64-bit platform.
Jump to the relevant section given further in this chapter, and you will be up and
running in minutes. If you really need to install Scrapy natively on Windows, consult
the resources on this book's website http: //scrapybook . com

Linux

As with the previous two operating systems, Vagrant is the recommended way to go
as far as following this book is your goal.

You will likely need to install Scrapy in many cases on Linux servers, so a few more
detailed instructions might be beneficial.

The exact dependencies change quite often. The Scrapy
M . . . - .
~ version we are installing at the time of writing is 1.0.3, and
the following are indicative instructions for different major
distributions.

[27]

http://scrapybook.com

Basic Crawling

Ubuntu or Debian Linux

In order to install Scrapy on Ubuntu (tested with Ubuntu 14.04 Trusty Tahr - 64 bit)
or other distributions that use apt, the following three commands should be enough:

$ sudo apt-get update

$ sudo apt-get install python-pip python-lxml python-crypto python-
cssselect python-openssl python-w3lib python-twisted python-dev libxml2-
dev libxsltl-dev zliblg-dev libffi-dev libssl-dev

$ sudo pip install scrapy

This preceding process requires some compilation, and might break every now and
then, but it will give you the most recent version of Scrapy available on PyPI (that is,
quite recent). If you want to avoid any complication, and are okay with a potentially
less up-to-date version, google for "install Scrapy Ubuntu packages", and follow the
instructions given in the official Scrapy documentation.

Red Hat or CentOS Linux

It's equally easy to install Scrapy on Red Hat or other distributions (tested with
Ubuntu 14.04 Trusty Tahr - 64 bit) that use yum. All you need is the following
three lines:

sudo yum update
sudo yum -y install libxslt-devel pyOpenSSL python-1lxml python-devel gcc

sudo easy install scrapy

From the latest source

If you have followed the preceding instructions, you have all the dependencies that
Scrapy currently needs. Scrapy is 100 percent Python, so if you like hacking the
source code or test-driving the latest features, you can easily clone the latest version
from https://github.com/scrapy/scrapy. To install Scrapy on your system just
type in the following commands:

$ git clone https://github.com/scrapy/scrapy.git
$ cd scrapy
$ python setup.py install

I guess if you belong to this class of Scrapy users, it's unnecessary for me to mention
virtualenv.

[28]

https://github.com/scrapy/scrapy

Chapter 3

Upgrading Scrapy

Scrapy gets upgraded rather often. You will find yourself needing to upgrade within
no time, and you can do it with pip, easy_install, or aptitude:

$ sudo pip install --upgrade Scrapy

or
$ sudo easy install --upgrade scrapy

If you need to downgrade or choose a specific version, you can do it by specifying
the version you want, for example:

$ sudo pip install Scrapy==1.0.0
or

$ sudo easy install scrapy==1.0.0

Vagrant: this book's official way to run
examples

This book has some complex interesting examples some of which use many services.
No matter how beginner or advanced you are, you will be able to run the examples
in this book, because a program called Vagrant allows us to set up this complex
system with a single command.

—_——— e — — . — — — — — — — — — — — — — — — —

—— e

I & | H
1 I

:: web | - - 4 dev o es :::
L ‘ \ ||I
N b) il

I { redis !
I ' |||

__________________________________ I I

I 1 . h! ! I|I
A sy |
I i) i ol
K i scrapyd1..3) i mysql : H
I i] i |:|
N ' : Pl
I Chapter 11 | 1Chapter9 I :|
| |
| |
| |
| |
| |
| |
| |

The system used in this book

[29]

Basic Crawling

Your PC or laptop in Vagrant terminology is called the "host" machine. Vagrant uses
our host machine to run a docker provider VM (virtual machine). These technologies
allow us to have an isolated system with its own private network where this book's
examples run regardless of the software and hardware of your host machine.

Most chapters use just two services - the "dev" machine and the "web" machine.
We log-in to the dev machine and run Scrapy crawls that scrape pages from the
web machine. Later chapters use more services including databases and big data
processing engines.

Follow the instructions in Appendix A, Installing Prerequisites, to install Vagrant on
your operating system. By the end of that chapter you will have git and vagrant
installed on your computer. You have your console/terminal/command prompt
open and you can now get the code of this book by doing:

$ git clone https://github.com/scalingexcellence/scrapybook.git
$ cd scrapybook

You can then start the Vagrant system by typing:

$ vagrant up --no-parallel

This will take some time the first time you run it - depending on your internet
connection. After the first time, “vagrant up" should be instantaneous. As soon as
your system is up, you can log in to your virtual dev machine with:

$ vagrant ssh

You are now on the dev console where you can follow the rest of the instructions in
this book. The code has been cloned from your host machine to the dev machine and
you can find it on the book directory:

$ cd book
$ 1ls

[30]

Chapter 3

ch03 ch04 ch05 ch07 ch08 ch09 chl0 chll ...

Open a few consoles and do vagrant ssh to have multiple dev terminals to play
with. You can use vagrant halt to shut the system down and vagrant status

to check their status. Note that vagrant halt won't turn off the VM. If that's a
problem open VirtualBox and stop it manually or use vagrant global-status to
find its id (name "docker-provider") and halt it with vagrant halt <ID>. Most of
the examples will be able to run even if you are offline which is a great side effect of
using Vagrant.

Now that we have set up the system properly, we are ready to start learning Scrapy.

UR?IM - the fundamental scraping
process

Every website is different, and you will certainly need to do some extra study, or ask
some questions on the Scrapy mailing list if something is unusual. However, what is
important in order to know where and how to search is to have an overview of the
process, and know the related terminology. While working with Scrapy, the general
process that you most often follow is the UR’IM process.

The Basic Scraping Equation: UR2IM

* URL

* Request

* Response
* Items

* More URLs

The UR?IM process

[31]

Basic Crawling

The URL

It all starts with a URL. You will need a few example URLs from the site you want to
scrape. I'm going to demonstrate this using the Gumtree classifieds site (https://
www .gumtree.com/) as an example.

By visiting, for example, the London properties index page of Gumtree on http://
www .gumtree.com/flats-houses/london, you will be able to find numerous
examples of URLs of properties. You can copy them by right clicking on the
classifieds' listings, and clicking Copy Link Address or the equivalent for your
browser. One of them, for example, might look like this: https://www.gumtree.
com/p/studios-bedsits-rent/split-level. It's okay for you to play with a few
URLSs on the real site. Unfortunately, XPath expressions will likely stop working on
the real Gumtree site after some time as their website changes. Gumtree also doesn't
reply, unless you set a "user-agent header". More on this a bit later, but for now, if
you want to load one of their pages, you can use the Scrapy shell, as follows:

scrapy shell -s USER_AGENT="Mozilla/5.0" <your url here e.g. http://www.
gumtree.com/p/studios-bedsits-rent/...>

To debug problems while using scrapy shell, add the - -pdb argument to enable
interactive debugging in case of exceptions. For example:

scrapy shell --pdb https://gumtree.com

> The Scrapy shell is an invaluable tool that helps us
develop with Scrapy.

Obviously, we don't encourage you hitting Gumtree's website while learning with
this book, and we don't want the examples of this book to break anytime soon. We
also want you to be able to develop and play with our examples even if you aren't
connected to the Internet. That's why your Vagrant development environment
contains a web server that provides generated pages similar to those of Gumtree.
They might not look as nice as the real site, but from a scraper's perspective, they
are exactly the same. That said, we still prefer all the screenshots of the chapter to
come from the real Gumtree site. From your Vagrant dev machine, you can hit the
web server at http://web:9312/, and also from your web browser at http://
localhost:9312/.

[32]

https://www.gumtree.com/
https://www.gumtree.com/
http://www.gumtree.com/flats-houses/london
http://www.gumtree.com/flats-houses/london
https://www.gumtree.com/p/studios-bedsits-rent/split-level
https://www.gumtree.com/p/studios-bedsits-rent/split-level

Chapter 3

Let's open a page from that server with the Scrapy shell, and play a bit by typing the
following on our dev machine:

$ scrapy shell http://web:9312/properties/property 000000.html

[s] Available Scrapy objects:

[s] crawler <scrapy.crawler.Crawler object at 0x2d4fbl0>
[s] item {}
[s] request <GET http:// web:9312/.../property 000000.html>

[s] response <200 http://web:9312/.../property 000000.html>
[s] settings <scrapy.settings.Settings object at 0x2d4fa90>
[s] spider <DefaultSpider 'default' at 0x3ealObdo>

[s] Useful shortcuts:

[s] shelp () Shell help (print this help)
[s] fetch(req or url) Fetch request (or URL) and update local...
[s] view (response) View response in a browser

>>>

We got some output, and now you are on a (Python) prompt that you can use to
experiment with the page you just loaded (you can always exit with Ctrl + D).

The request and the response

What you might notice in the preceding log is that the Scrapy shell did some work
for us by itself. We gave it a URL, and it performed a default GET request and got a
response with the success code 200. This means that the information from this page
is already loaded and ready to be used. If we try to print the first 50 characters of
response .body, we get the following:

>>> response.body[:50]

'<!DOCTYPE html>\n<html>\n<head>\n<meta charset="UTF-8""!

What is this [:50]? It's the Python way of extracting the first
M 50 characters (if available) from a textual variable (in this case,
Q response.body). If you haven't seen Python before, just
keep calm and follow along. Soon you will be familiar with
and enjoy all these syntax tricks.

[33]

Basic Crawling

This is the HTML content of the given page on Gumtree. The request and

response part didn't cause us too much trouble. However, there are many cases
where you will need to do some work to get those right. We will see a few of those in
Chapter 5, Quick Spider Recipes. For now, we keep things simple, and move to the next
part—the Item.

The Items

The next step is to try and extract data from the response into the fields of the Item.
Since the format of this page is HTML, we use XPath expressions to do so. Let's first
have a look at the page:

[E - - = B, i A -

€ Back | United Wingdom | England | London | WestLondon | EarlsCourt | Froperty | Propertyto@ent f Fists&iousesfor Rent | Studs

Split level i ey + e i B et " @ CopY

Search Goagle com for 'UTILITY" M@t
Print... Mt v Soe afl ads

Inspect Element g — Reveal
Look Up in Dictionary
= T -
m_‘l — Speech
=l B mm . . SearchWithCoogle
Resources Audits Console ~ Look Up in VitalSource Bookshelf
5 Add to iTunes as a Spoken Track
ptn® itesscope itestypes"hitpr//schema,org/Pros Add to Evernote

Q uap

|£|u‘nu!s.i Nem_ri Se‘n‘m:‘n
«<siv docation; i Syles | Computed
- = elesent.style {

* role="complenentary”s</asides ¥
*adiv clm o</ dlve
v <div classWgrid-col-12 grid-col «truncate-nusber
¥ <heade ss="clearfix saace-ﬂb;-t i .
»=hl itesprops“name classs™spacebnbs"r.c/hl> dm}:l;r: ”l{rf
=<strong §lass="ad-location truncate-line set-left” itemscope itemtype="http://schema.org/Place™ itesprop="name™> position: rels
Bes oot Longan e rroncate ¢ s e telephone padding-right:
</3trong= ¥
b _ Jtarm-row-label {
iatte line-height: 48
</header>
b ediv class="tabs-triggers s </divs
b <dlv class="tabs-content space-rba"s.</div> stxt-large {
»<div class="hide-fully-from-a">_</div> . font-size: 18px
</dive ¥
¥ <div classs"grid-col-n-6 hide-fully-te-m grid-col-m-right grid-col-l-4"= +txt-emphasis {
¥<section class="box box-peelshadow-r" itemscope itestypes"http://schema.org/Person” data-g="reply-box-2"> Tont-weight: 6@
12be

"box=padding“= :
“truncate-line space-mbxs"s_</hix strong {
nderline—s space—mbs”s_</p= y
Learfixs

® _ &, strong {
Ftruncate—nusber txt-large txt-eaphasis form-row-label” data-toggle="channel:nusber-truncate, classham :is-showing,selfBroadcast:

» <3 href="§" class="bir-secondary-point-left set-right™ data-broadcast="channel:number-truncate,cnce:true™ data-analytics="gaEvent:
s zencOptions: {adld: Tyoe:VIP" dat g9 Le="channel: number-truncate, classhase; is- 4
disabled,selfBroadcast: false™s « gl

The page, the fields we are interested in, and their HTML code

[34]

Chapter 3

As you can see in the preceding screenshot, there's lots of information here, but
most of it is layout: logos, search boxes, buttons, and so on. It is great, but not very
interesting from the scraping perspective. The fields we might be interested in might
be, for example, the title of the listing, the location, or the agent's telephone number.
Those have a corresponding HTML element, and we will need to locate it, and
extract data with the process we described in the previous chapter. Let's start with
the title.

€ Back | United Kingdom | England | London [West London | EarlsCourt | Property | ytoRent | Flats & Housesfor Rent | Studio Ap:

Split bevel stadic ails a brioe, (A et Coaety Pary werr Roed AL UTILTYBILLS INCLUDIT
hl. space-mbs BEGax x 21px| £350.00pw

Contact &, =
Pasting for 4+ years

Eimages @ map
A WLEIEE, STITY

S —_— ll =
LS Ere—
\ B8 B m‘f‘ﬁm : W

Iments | Network Sources Timeline Profiles Resources Audits Console
ntainer main®>
main rol main" class="grid-row space-ptm” itemscope itemtype="http://schess.org/Product™=>
<aside class="grid-col-12 hide-fully-to-m " role="complerentary"=</aside>
b <div class="grid-col-12 hide-fully-to-m"s_</div>
¥ =div 4 lasie'nrydarei-1) grid-col-1-8"=

'4he1<-!r SEIE 11rfix space-abs"=

Add Attribute fr \.temmp-)’htm UbOdyfd i\"[a]!d|V/d|v[3]jma|nf‘d|VE2]!header{h1

Edit Attribute

=f5t
» <span 55="h] offers" itemsco type="http:ay SO F s] i 7 =</ 5pan>
Lo Force Element State > 3: S|mp||fy
=fheader=

Edit as HTML

*<div classs
» <tiv closs= il Copy as HTML \

b[‘:ci.\.- class=" Copy CS5 Path ”’h-l
v <div class="grid-c ARSI AU 2AC OPY-X Path o1

v=section clas=="t Delete Node temtypes"http://schema.org/Person” data-ga"reply-box-2">

Break on... >

Extracting the title

[35]

Basic Crawling

Right-click on the title on the page, and select Inspect Element. This takes us to the
relevant HTML code. Now, try to extract the XPath expression of this title by right-
clicking and selecting Copy XPath. You will notice that Chrome gives us an XPath
expression that is accurate, but it's very complicated, and thus, fragile. We will
simplify it a bit. We will just use the last part of it and select H1 elements wherever
we see them in the page by using the expression: //h1. This is the cheat's method,
because we don't really want every H1 in the page, but just the one that is used as

a title; however, it is considered good SEO practice to have a single H1 element in
every page, and most websites will have only one.

u SEO is the acronym for Search Engine Optimization: the
~ process of optimizing a website's coding, content, and
Q inbound and outbound links in order to promote it in the
best possible way to search engines.

Let's check to see if this XPath expression works with the Scrapy shell:

>>> response.xpath('//hl/text()') .extract ()

[u'set unique family well']

Excellent, it works fine. What you will notice is that I appended /text () at the end
of the //h1 expression. This is necessary in order to extract just the text contained

in H1, and not the H1 element itself. We will almost always use /text () for textual
tields. If we skip it, we get the text for the whole element including markup, which is
not what we want:

>>> response.xpath('//hl') .extract ()

[u'<hl itemprop="name" class="space-mbs">set unique family well</hl>']

At this point, we have the code to extract the first interesting property of this
page — the title—but if you take a better look, you will notice an easier and better
way of doing so.

» <hl itemprop="name" class="space-mbs">..</hl>

Gumtree has microdata markup

[36]

Chapter 3

Gumtree has annotated their HTML with microdata markup. We can see, for
example, that there is an itemprop="name" attribute in their header. This is great. It
allows us to use a simpler XPath expression that doesn't include any visual elements:
//* [@itemprop="name"] [1] /text (). You might wonder why we select the first
element with itemprop="name".

. Wait—did you say first? If you are a seasoned programmer,
~ you've probably been used to array [1] being the second
Q element of an array. Surprisingly, XPath is 1-based (!) thus
array [1] is the first element of the array.

We do so, not only because itemprop="name" is used in many different contexts in
microdata but also because Gumtree has nested information for other properties in
the "You may also like..." section of their page in a way that prevents us from easily
distinguishing them. Nevertheless, this is not a big problem. We just select the first
one, and we will do the same for all the other fields.

Let's have a look at price. Price is contained in the following HTML structure:

<strong class="ad-price txt-xlarge txt-emphasis" itemprop="price">
£334.39pw

Again we see itemprop="name", which is brilliant. Our XPath will be //* [e@
itemprop="price"] [1]/text (). Let's try it:

>>> response.xpath('//*[@itemprop="price"] [1]/text()"') .extract ()
[u'\xa3334.39pw"']

We notice some Unicode characters (the pound sign £), and then the 350. 00pw price.
It is indicative that data isn't always as clean as we would wish, and we might need
to clean them a bit more. In this case, for example, we might want to use a regular
expression to select just the numbers and the decimal dot. We can do so by using the
re () method and a simple regular expression instead of extract ():

>>> response.xpath('//*[@itemprop="price"] [1]/text()"').re('[.0-9]+")
[u'334.39']

[37]

Basic Crawling

We use a response object, and call its xpath () method to extract
interesting values. But what are the values xpath () returns us? If we don't
use the . extract () method with a trivial XPath, we get the following
indicative output:

>>> response.xpath('.')
[<Selector xpath='.' data=u'<html>\n<head>\n<meta
charse'>]

xpath () returns Selector objects preloaded with the contents of

the page. We just used the xpath () method, but it has another useful
method: css (). Both xpath () and css () return selectors, and only
when we call the extract () or re () method we get actual arrays of text.
This is brilliant, because it allows us to chain the xpath () and css ()
operations. For example, we could use css () to extract the right HTML
element quickly:

>>> response.css('.ad-price')

[<Selector xpath=u"descendant-or-self::*[@class and
contains (concat(' ', normalize-space(@class), ' '), '
ad-price ')]" data=u'<strong class="ad-price txt-xlarge
txt-e'>]

Notice that behind the scenes, css () actually compiles an xpath ()
expression, but what we type is simpler than the XPath itself. Then we can
chain xpath () to extract just the text.

>>> response.css('.ad-price') .xpath('text()"')
[<Selector xpath='text()' data=u'\xa3334.39pw'>]

Finally, we might chain our regular expression with re () to extract our
value:

>>> response.css('.ad-price') .xpath('text()"').re('[.0-
91+")

[u'334.39']

This expression is, practically speaking, no better or worse than our
original expression. Consider this as a thought-provoking illustrative
example. In this book, we will keep things as simple as possible, and we
will use old good XPath as much as we can. The key point to remember is
that xpath () and css () return Selector objects that might be chained.
In order to get actual values, use either extract () or re () . With each
new version of Scrapy there are new exciting and high-value features
added around those classes. The relevant Scrapy documentation section
-http://doc.scrapy.org/en/latest/topics/selectors.html
- is excellent and make sure you have a good look at it to find the most
efficient way to extract your data..

[38]

http://doc.scrapy.org/en/latest/topics/selectors.html

Chapter 3

The story for the description text is similar. There is an itemprop="description"
property that indicates description. The XPath expression is: //* [@
itemprop="description"] [1]/text (). Similarly, the address is annotated with
itemtype="http://schema.org/Place"; thus, the XPath expressionis: //* [@
itemtype="http://schema.org/Place"] [1] /text ().

Similarly, the image has an itemprop="image". We thus use //img [@
itemprop="image"] [1] /@src. Notice that we won't use /text () in this case, because
we don't want any text but just the src attribute that contains the URL for this image.

Assuming that this is all the information we want to extract, we can summarize it in
the following table:

Primary fields XPath expression

title //* [@itemprop="name"] [1] /text ()

Example value: [u'set unique family well']

price //* [@itemprop="price"] [1] /text ()
Example value (using re ()): [u'334.39']

description //* [@itemprop="description"] [1]/text ()
Example value: [u'website court warehouse\r\npool...']
address //* [@itemtype="http://schema.org/Place"] [1] /text ()

Example value: [u'Angel, London']

image urls //* [@itemprop="image"] [1] /@src

Example value: [u'../images/i01.jpg']

Now this table is important, because if we had many websites with similar
information, we would most likely need to create many similar spiders where only
the preceding expressions may need to be different. Additionally, if we wanted to
scrape tens of websites, we could use such a table to split the workload.

Up to this point, we used mostly HTML and XPath. From this point on, we will write
some real Python.

[39]

Basic Crawling

A Scrapy project

Up to now, we were "playing" with Scrapy shell. Now we have all the necessary
ingredients to start our first Scrapy project, and we can quit Scrapy shell by

hitting Ctrl + D. Notice that everything you might have typed up to now gets lost.
Obviously, we don't want to type the code each time we want to crawl something,

so it's important to remember that the Scrapy shell is just a utility to help us play
with pages, XPath expressions, and Scrapy objects. Don't invest much time in writing
complicated code there, because it's bound to get lost as soon as you exit. In order

to write real Scrapy code, we use projects. Let's create a Scrapy project and name it
"properties', since we are scraping real estate properties.

$ scrapy startproject properties
$ cd properties

$ tree

— properties

| — _ init .py
| — items.py

| — pipelines.py
| — settings.py

| L— spiders

| L— init .py

L scrapy.cfg

2 directories, 6 files

Just to remind you that you can get all the source code of this book
from GitHub. To download this code, use the following command:
1
> git clone https://github.com/scalingexcellence/
scrapybook
The code from this chapter is available in the ch03 directory, and
for this example in particular, in the ch03 /properties directory.

We can see the directory structure for this Scrapy project. The scrapy startproject
properties command created a directory with the name of the project with three
interesting files: items.py, pipelines.py, and settings.py. There is also a
subdirectory named spiders, which is empty right now. In this chapter, we will
work mostly with items.py and files in the spiders directory. In later chapters, we
will explore more settings, pipelines, and the scrapy. cfg file.

[40]

Chapter 3

Defining items

Let's open items.py with a file editor. There is already some template code in there,
but we will modity it for our use case. We will redefine the PropertiesItem class
to add the fields that we summarized in the previous table.

We will also add a few fields that we will use later for our application (so that we
won't have to touch this file again). We will explain them in depth later in this book.
An important thing to notice is that the fact that we declare a field doesn't mean

we are going to fill it in on every spider, or even use it altogether. Feel free to add
whatever fields you feel appropriate — you can always correct them later.

Calculated fields | Python expressions

images The images pipeline will fill this in automatically based on
image urls. More on this in a later chapter.

location Our geocoding pipeline will fill this in later. More on this in a
later chapter.

We will also add a few housekeeping fields. Those are not application-specific, but
are just fields that I personally find interesting and think that might help me debug
my spider in the future. You might or might not choose to have some of them for
your projects. If you have a look at them, you'll understand that they allow me to
find out where (server, url), when (date), and how (spider) an item got scraped.
They might let me automate tasks like expiring items and scheduling new scrape
iterations, or to drop items that came from a buggy spider. Don't worry if you don't
understand all those expressions, especially the server one. Things will become clear
as we move on to later chapters.

Housekeeping fields | Python expressions

url response.url

Example value: 'http://web. .. /property 000000.
html'

project self.settings.get ('BOT _NAME')

Example value: 'properties'

spider self.name

Example value: 'basic!’

server socket .gethostname ()

Example value: ' scrapyserverl!'

date datetime.datetime.now()

Example value: datetime.datetime (2015, 6, 25...)

[41]

Basic Crawling

Given the list of fields, it's easy to modify and customize the propertiesItemclass
that scrapy startproject created for us. With our text editor, we modify the
properties/items.py file until it contains the following:

from scrapy.item import Item, Field

class PropertiesItem(Item) :
Primary fields
title = Field()
price = Field()
description = Field()
address = Field()
image urls = Field()

Calculated fields
images = Field()
location = Field()

Housekeeping fields
url = Field()

project = Field()
spider = Field()
server = Field()

date = Field()

Since this is essentially the first Python code we write in a file, it's important to mention
that Python uses indentation as part of its syntax. At the beginning of each field, there
are exactly four spaces or one tab. This is important. If you start one line with four
spaces and another with three you will get a syntax error. If you have four spaces in
one and a tab in another, that too will be a syntax error. Those spaces group the field
definitions under the PropertiesItem class. Other languages use curly braces ({}) or
special keywords like begin - end to group code, but Python uses spaces.

Writing spiders
We are halfway there. Now we need to write a spider. Typically, there will be

one spider per website or a section of website if it's very large. A spider's code
implements the whole UR’IM process, as we will see in a moment.

[42]

Chapter 3

When do you use a spider and when do you use a project? A
project groups Items and spiders. If you have many websites
M from which you extract the same type of Items, for example:
Q properties, then all those can be on a single project, and likely
have one spider for each source/website. On the other hand, you
would have different projects for sources with books and sources
with properties.

Of course, you can create a new spider from scratch with a text editor, but it's better
to save some typing by using the scrapy genspider command as follows:

$ scrapy genspider basic web
Created spider 'basic' using template 'basic' in module:

properties.spiders.basic

Now if you rerun the tree command, you will notice that the only thing that changed
is that a new file basic.py was added in your properties/spiders directory. What
the preceding command did was to create a "default" spider with the name "basic"
that is restricted to crawl URLs on the web domain. We can remove this restriction
easily if we want, but for now it's fine. This spider was created using the "basic"
template. You can see the other available templates by typing in scrapy genspider
-1, and then creating spiders using any of those templates by using the -t parameter
while doing scrapy genspider. We will see an example later in this chapter.

Scrapy has many subdirectories. We will always assume
that you are on the directory that contains a scrapy . cfg
file. This is the "top level" directory for your project. Now
whenever we refer to Python "packages" and "modules",

M they are set in such a way as to map the directory structure.

Q For example, the output mentions properties.spiders.

basic. This is the basic.py file in the properties/
spiders directory. The class PropertiesItem that
we defined earlier is on the properties.items
module, which corresponds to items. py file inside the
properties directory.

If we have a look at the properties/spiders/basic.py file, we will see the
following code:

import scrapy
class BasicSpider (scrapy.Spider) :

name = "basic"
allowed domains = ["web"]

[43]

Basic Crawling

start _urls = (
'http://www.web/ ',
)

def parse(self, response):
pass

The import statement allows us to use the existing Scrapy framework classes.

After this, it's the definition of a BasicSpider class that extends scrapy.Spider.
By 'extends' we mean that despite the fact that we didn't write any code, this class
already "inherits" quite some functionality from the Scrapy framework spider class.
This allows us to write very few extra lines of code and yet have a fully working
spider. Then we see some parameters of the spider like its name and the domains
that we are allowed to crawl. Finally, we have the definition of an empty function
parse () that has a self and a response object as arguments. By using the self
reference, we can use interesting functionality of our spider. However, the other
object — response should be well familiar. It's exactly the same response object that
we used to play with in the Scrapy shell.

u This is your code —your spider. Don't be afraid to modify
~ it; you won't really break anything very badly. In the worst
Q case, you can always remove the file with rm properties/
spiders/basic.py* and regenerate it. Feel free to play.

Okay, let's start hacking. First we will use the URL that we used with Scrapy shell by
setting start_urls accordingly. Then we will use spider's predefined method 1og ()
to output everything that we summarized in the primary fields table. The modified
code of properties/spiders/basic.py will be as follows:

import scrapy

class BasicSpider (scrapy.Spider) :
name = "basic"
allowed domains = ["web"]
start_urls = (
'http://web:9312/properties/property 000000.html"',
)

def parse(self, response):
self.log("title: %s" % response.xpath(

'//* [@itemprop="name"] [1] /text () ') .extract())
self.log("price: %s" % response.xpath(
'//* [@itemprop="price"] [1]/text () ') .re('[.0-9]+"))
(

self.log("description: %s" % response.xpath (

[44]

Chapter 3

'//* [@itemprop="description"] [1] /text () ') .extract())
self.log("address: %s" % response.xpath (

'//* [@itemtype="http://schema.org/"'

'Place"] [1] /text () ') .extract ())

self.log("image urls: %s" % response.xpath(
'//* [@itemprop="image"] [1] /@src') .extract())

M I'm going to modify the formatting every now and then to
make it fit nicely on the screen and on paper. It doesn't mean
that it has some particular meaning.

After all this wait, it's high time we run our spider. We can do so using the command
scrapy crawl followed by the name of the spider:

$ scrapy crawl basic

INFO: Scrapy 1.0.3 started (bot: properties)

INFO: Spider opened

DEBUG: Crawled (200) <GET http://...000.html>
DEBUG: title: [u'set unique family well']
DEBUG: price: [u'334.39']

DEBUG: description: [u'website...']

DEBUG: address: [u'Angel, London']

DEBUG: image urls: [u'../images/i0l.jpg'l]
INFO: Closing spider (finished)

Excellent! Don't get overwhelmed by the large number of log lines. We will examine
some of them more closely in a later chapter, but for now, just notice that all the data
that was collected using the XPath expressions actually got extracted with this simple
spider code.

Let's also play with another command — scrapy parse. It allows us to use the "most
suitable" spider to parse any URL given as an argument. I don't like to leave things to
chance, so let's use it in conjunction with the --spider parameter to set the spider:

$ scrapy parse --spider=basic http://web:9312/properties/property 000001.
html

[45]

Basic Crawling

You will see output similar to the previous one, but now for another property.

scrapy parse is also a tool for debugging and quite a handy
@’@‘\ one. In any case, the main command if you need to do "serious"
g scrapping is scrapy crawl.

Populating an item

We will slightly modify the preceding code to populate propertiesItemitems. As
you will see, the modification is going to be only slight, but it's going to "unlock" tons
of new functionalities.

First of all, we need to import the PropertiesItemclass. As we said earlier, this lies
in the items.py file in the properties directory, and thus, in the properties.items

module. We go back to our properties/spiders/basic.py file and import it with

the following command:

from properties.items import PropertiesItem

Then we need to instantiate and return one. That's fairly simple. Inside our parse ()
method, we add an item = PropertiesItem() statement which creates a new item,
and then we can assign expressions to its fields as follows:

item['title'] =
response.xpath('//* [@itemprop="name"] [1] /text () ') .extract ()

Finally, we return the item with return item. The updated code of properties/
spiders/basic.py looks like the following:

import scrapy
from properties.items import PropertiesItem

class BasicSpider (scrapy.Spider) :
name = "basic"
allowed domains = ["web"]
start_urls = (
'http://web:9312/properties/property 000000.html"',
)

def parse(self, response):
item = PropertiesItem()

item['title'] = response.xpath/(

'//* [@itemprop="name"] [1] /text () ') .extract ()
item['price'] = response.xpath

'//* [@itemprop="price"] [1] /text () ') .re('[.0-9]+")
item['description'] = response.xpath/(

'//* [@itemprop="description"] [1] /text () ') .extract ()

[46]

Chapter 3

item['address'] = response.xpath/
'//* [@itemtype="http://schema.org/"'
'Place"] [1] /text () ') .extract ()
item['image urls'] = response.xpath/(
'//* [@itemprop="image"] [1] /@src') .extract ()
return item

Now if your run a scrapy crawl basic as before, you will notice a slight but
important difference. We are no longer logging the scraped values (so no DEBUG:
lines with field values). Instead, you will see the following line:

DEBUG: Scraped from <200
http://...000.html>
{raddress': [u'Angel, London'l],
'description': [u'website ... offered'],
'image urls': [u'../images/i01l.jpg'l,
'price': [u'334.39'],
'title': [u'set unique family well']}

This is a PropertiesItem that got scraped from this page. This is great, because
Scrapy is built around the concept of Items, which means that you can now use
the pipelines we will present in later chapters to filter and enrich them, and "Feed
exports" to export and save them on different formats and places.

Saving to files

Try, for example, the following crawls:

$ scrapy crawl basic -o items.json
$ cat items.json

[{"price": ["334.39"], "address": ["Angel, London"], "description":
["website court ... offered"], "image urls": ["../images/iO0l.jpg"]l,
"title": ["set unique family well"]}]

$ scrapy crawl basic -o items.jl
$ cat items.jl

{"price": ["334.39"], "address": ["Angel, London"], "description":
["website court ... offered"], "image urls": ["../images/iOl.jpg"]l,
"title": ["set unique family well"]}

$ scrapy crawl basic -o items.csv
$ cat items.csv
description,title,url,price, spider,image urls...

", ..offered",set unique family well,,334.39,,../images/i0l.jpg

[47]

Basic Crawling

$ scrapy crawl basic -o items.xml
$ cat items.xml
<?xml version="1.0" encoding="utf-8"?>

<items><item><price><value>334.39</value></price>...</item></items>

Without us writing any extra code, we can save on all those different formats. What
happens behind the scenes is that Scrapy recognizes the file extension that you want
to output, and exports the file in the appropriate format. The preceding formats
cover some of the most common use cases. CSV and XML files are very popular,
because spreadsheet programs like Microsoft Excel can open them directly. JSON
files are very popular on the Web due to their expressiveness and close relationship
to JavaScript. The slight difference between the JSON and the JSON Line format is
that the . json files store the JSON objects in a large array. This means that if you
have such a file of 1 GB, you might have to store it all in the memory before you
parse it with a typical parser. The . j1 files on the other hand have one JSON object
per line, so they can be read more efficiently.

It is also trivial to save your generated files in places other than your filesystem. By
using the following, for example, you will have Scrapy automatically upload the files
for you on an FTP or an S3 bucket:

$ scrapy crawl basic -o "ftp://user:pass@ftp.scrapybook.com/items.json "

$ scrapy crawl basic -o "s3://aws_key:aws_ secret@scrapybook/items.json"

Note that this example won't work unless the credentials and URLs are updated to
correspond to your valid hosting/S3 provider.

Where is my MySQL driver? I was originally surprised by the lack
of built-in support by Scrapy for MySQL or other databases. The
fact is that there is nothing built-in, because it's fundamentally
wrong for Scrapy's way of thinking. Scrapy is meant to be fast and
M scalable. It uses very little CPU and as much inbound bandwidth
Q as possible. Inserting to most relational databases would be a
disaster from the perspective of performance. When you need to
insert your items to a database, you have to store them in files,
and then import them using bulk load mechanisms. That said,
in Chapter 9, Pipeline Recipes, we will see many efficient ways of
importing individual items in databases.

One more thing to notice is that if you try to use scrapy parse now, it will show you
the scraped items and new requests (none in this case) that your crawl generated:

$ scrapy parse --spider=basic http://web:9312/properties/property 000001.
html

[48]

Chapter 3

INFO: Scrapy 1.0.3 started (bot: properties)
INFO: Spider closed (finished)

>>> STATUS DEPTH LEVEL 1 <<<
Scraped Items -—-------mmm oo e e e m - -
[{*address': [u'Plaistow, London'l,
'description': [u'features'],
'image urls': [u'../images/i02.jpg'l,
'price': [u'388.03'],
'title': [u'belsize marylebone...deal']}]
RequUeStS —----- - - - e -
[1

You will appreciate scrapy parse even more while debugging URLs that give
unexpected results.

Cleaning up - item loaders and housekeeping
fields

Congratulations, you have done a great job in creating a basic spider! Let's make it a
bit more professional-looking.

We start by using a great utility class, ItemLoader, in order to replace all those
messy looking extract () and xpath () operations. By using it, our parse () method
changes to the following;:

def parse(self, response):

1 = ItemLoader (item=PropertiesItem(), response=response)

l.add xpath('title', '//*[@itemprop="name"] [1]/text()")

1l.add xpath('price', './/*[@itemprop="price"]'
"[1]/text ()", re='[,.0-91+")

1l.add xpath('description', '//*[@itemprop="description"]'
"[11/text () ")

1l.add xpath('address', '//*[@itemtype='
'"http://schema.org/Place"] [1] /text () ")

1l.add xpath('image urls', '//*[@itemprop="image"] [1]/@src"')

return 1l.load item()

[49]

Basic Crawling

Much better, isn't it? But it's actually a bit more than just being visually more
pleasant. It declares very clearly the intention of what we are trying to do without
messing it up with the details of implementation. This makes the code more
maintainable and self-documenting.

ItemLoaders provide many interesting ways of combining data, formatting them,
and cleaning them up. Note that they are very actively developed so check the
excellent documentation in http://doc.scrapy.org/en/latest/topics/loaders.
html to find the most efficient ways to use them. ItemLoaders pass values from
XPath/CSS expressions through different processor classes. Processors are fast yet
simple functions. An example of a processor is Join (). This processor, assuming that
you have selected multiple paragraphs with some XPath expression like //p, will
join their text together in a single entry. Another particularly interesting processor is
MapCompose (). You can use it with any Python function or chain of Python functions
to implement complex functionality. For example, MapCompose (£1loat) converts
string data to numbers, and MapCompose (unicode.strip, unicode.title) gets
rid of any excessive spaces and format strings with the first letter of each word
capitalized. Let's take a look at some examples of these processors:

Processor Functionality

Join() Concatenates multiple results into one.

MapCompose (unicode.strip) Removes leading and trailing
whitespace characters.

MapCompose (unicode.strip, unicode. Same as Mapcompose, but also gives

title) title cased results.

MapCompose (float) Converts strings to numbers.

MapCompose (lambda i: i.replace(',', | Converts strings to numbers, ignoring

'"), float) possible ', ' characters.

MapCompose (lambda i: urlparse. Converts relative URLs to absolute

urljoin(response.url, 1)) URLs using response . url as base.

You can use any Python expression as a processor. As you can see, it's easy to chain
them one after the other as we do, for example, with the strip and title-case example
given previously. unicode.strip () and unicode.title() are simple in the sense
that they take a single argument and return a single result. We can use them directly
in our MapCompose processors. Other functions such as replace () or urljoin ()

are slightly more complex, and require multiple arguments. For those, we can use
Python "lambda expressions". Lambda expressions are compact functions. For
example, the following compact lambda:

myFunction = lambda i: i.replace(',', '')

[50]

http://doc.scrapy.org/en/latest/topics/loaders.html
http://doc.scrapy.org/en/latest/topics/loaders.html

Chapter 3

can be used instead of:

def myFunction (i) :
return i.replace(',', '')

By using lambdas, we wrap functions like replace () and urljoin() to functions
that take a single argument and return a single result. To understand the processors
of the previous table a little bit better, let's see a few examples of their usage. Open
any URL with a scrapy shell, and try the following:

>>> from scrapy.loader.processors import MapCompose, Join

>>> Join() ([*hi', 'John'])

u'hi John'

>>> MapCompose (unicode.strip) ([u' I',u' am\n'l)

[u'I', u'am']

>>> MapCompose (unicode.strip, unicode.title) ([u'nIce cODe'])
[u'Nice Code']

>>> MapCompose (float) (['3.14"'])

[3.14]

>>> MapCompose (lambda i: i.replace(',', ''), float) (['1,400.23'])
[1400.23]

>>> import urlparse

>>> mc = MapCompose (lambda i: urlparse.urljoin('http://my.com/test/abc’',
i))

>>> mc (['example.html#check'])
['http://my.com/test/example.html#check']

>>> mc(['http://absolute/url#help'])

['http://absolute/url#help’]

The key thing to take away is that processors are just simple and small functions that
post-process our XPath/CSS results. Let's use a few such processors in our spider to
shape its output exactly as we want:

def parse(self, response):
l.add _xpath('title', '//*[@eitemprop="name"] [1]/text ()",
MapCompose (unicode.strip, unicode.title))

1l.add _xpath('price', './/*[e@itemprop="price"] [1]/text ()",
MapCompose (lambda i: i.replace(',', ''), float),
re='[,.0-9]+")

1l.add _xpath('description', '//*[@itemprop="description"]'

'[1] /text () ', MapCompose (unicode.strip), Join())
1l.add xpath('address',

[51]

Basic Crawling

'//* [@itemtype="http://schema.org/Place"] [1] /text ()",
MapCompose (unicode.strip))

1l.add_xpath('image urls', '//*[@itemprop="image"] [1]/@src',
MapCompose (
lambda i: urlparse.urljoin(response.url, i)))

The full listing is given a bit later in this chapter. If you run scrapy crawl basic
with the code that we've developed up to now, you'll get far cleaner output values:

'price': [334.39],
'title': [u'Set Unique Family Well'l]

Finally, we can add single values that we calculate with Python (instead of XPath/CSS
expressions) by using the add_value () method. We can use it to set our "housekeeping
fields" —things like the URL, the spider name, timestamp, and so on. We directly use the
expressions summarized in the housekeeping fields table, as follows:

.add_value('url', response.url)
.add_value('project', self.settings.get ('BOT NAME'))
.add_value('spider', self.name)

.add_value('server',6 socket.gethostname())

HoH e e

.add _value('date', datetime.datetime.now())
Remember to import datetime and socket in order to use some of those functions.

That's it! We have perfectly good looking Items. Now, I know that your first
feeling might be that this is all very complicated and you might be wondering if
it's worth the effort. The answer is yes — this is because more or less, this is all you
need to know in order to scrape everything in terms of extracting data from pages
and storing them into items. This code typically, if written from scratch or in other
languages, looks really ugly, and soon becomes unmaintainable. With Scrapy,

it's just 25 lines of code and that's it. The code is clean, and indicates the intention
instead of implementation details. You know exactly what each line does, and it's
straightforward to modify, reuse, and maintain.

Another feeling you might have is that all those processors and ItemLoaders

aren't worth the effort. If you are an experienced Python developer, it might feel a

bit uncomfortable that you have to learn to use new classes for things you would
typically do with string operations, lambda expressions, and list comprehensions.
Still, this was a brief introduction to ItemLoader and its capabilities. If you dive a

bit deeper, you will never look back. ItemLoaders and processors are toolkits that
were developed based on the scraping needs of people who wrote and supported
thousands of spiders. If you are planning to develop more than just a few spiders, it's
worth learning how to use them.

[52]

Chapter 3

Creating contracts

Contracts are a bit like unit tests for spiders. They allow you to quickly know if
something is broken. For example, let's assume that you wrote a scraper a few weeks
ago, and it had several spiders. You want to quickly check if everything is okay
today. Contracts are included in the comments just after the name of a function
(docstring), and they start with @. Let's look at the following contract for example:

def parse(self, response):
"nn Thig function parses a property page.

@url http://web:9312/properties/property 000000.html
@returns items 1

@scrapes title price description address image urls
@scrapes url project spider server date

nnn

The preceding code says, "check this URL and you should find one item with values
on those fields I enlist". Now if you run scrapy check, it will go and check whether
the contracts are satisfied:

$ scrapy check basic

Ran 3 contracts in 1.640s

OK

If it happens to leave the url field empty (by commenting out the line that sets it),
you get a descriptive failure:

FAIL: [basic] parse (@scrapes post-hook)

ContractFail: 'url' field is missing

A contract might fail because either the spider code is broken, or some of the XPath
expressions are out-of-date with the URL you are checking against. Certainly, they
aren't exhaustive, but it's a very neat first line of defence against broken code.

Overall, the following is the code for our first basic spider:

from scrapy.loader.processors import MapCompose, Join
from scrapy.loader import ItemLoader

from properties.items import PropertiesItem

import datetime

import urlparse

import socket

[53]

Basic Crawling

import scrapy

class BasicSpider (scrapy.Spider) :
name = "basic"
allowed domains = ["web"]

Start on a property page
start _urls = (
'http://web:9312/properties/property 000000.html"',

def parse(self, response):
"nm This function parses a property page.
@url http://web:9312/properties/property 000000.html
@returns items 1
@scrapes title price description address image urls
@scrapes url project spider server date
nmnn
Create the loader using the response
1 = ItemLoader (item=PropertiesItem(), response=response)

Load fields using XPath expressions

l.add _xpath('title', '//*[@itemprop="name"] [1]/text ()",
MapCompose (unicode.strip, unicode.title))

1l.add_xpath('price', './/*[e@itemprop="price"] [1]/text ()",
MapCompose (lambda i: i.replace(',', ''),
float),
re='[,.0-9]+")

1.add_xpath('description', '//*[@itemprop="description"]'
"[1]/text ()",

MapCompose (unicode.strip), Join())
l.add xpath('address',
'//* [@itemtype="http://schema.org/Place"]"'

"[1]/text O,
MapCompose (unicode.strip))
1l.add_xpath('image urls', '//*[@itemprop="image"]'

'[1] /@src', MapCompose (
lambda i: urlparse.urljoin(response.url, i)))

Housekeeping fields

.add_value('url', response.url)
.add_value('project', self.settings.get ('BOT NAME'))
.add_value('spider', self.name)

.add_value('server',6 socket.gethostname())

.add _value('date', datetime.datetime.now())

HoH e 3

return 1l.load item()

[54]

Chapter 3

Extracting more URLs

Up to now, we have been working with a single URL that we set in the spider's start_
urls property. Since that's a tuple, we can hardcode multiple URLs, for example:

start _urls = (
'http://web:9312/properties/property 000000.html"',
'http://web:9312/properties/property 000001.html"',
'http://web:9312/properties/property 000002.html"',
)

Not that exciting. We might also use a file as the source of those URLs as follows:

start_urls = [i.strip() for i in
open('todo.urls.txt') .readlines()]

This is not very exciting either, but it certainly works. What will happen more often
that not is that the website of interest will have some index pages and some listing
pages. For example, Gumtree has the following index pages: http://www.gumtree.
com/flats-houses/london:

u;h “Help wsm' © Postanad

T e | o a

Ortry room Mt doubleroom london 1bedroomflat singleroom room torent

03,495 ads in Property, London Most recent first 5
Q Refine n—— 330w
Justnow
Keyword
| winglo *
| Searchtitie &description
- £350pw
Search only: Just now
| | urgentads
| | Featwre ads *
| s with pictures 5 W
] next page 295w
e Justnow
o ETEE
*
Categories
4100 Hos® ¥
All Categories -
Froperty *

Gumtree's index page

[55]

http://www.gumtree.com/flats-houses/london
http://www.gumtree.com/flats-houses/london

Basic Crawling

A typical index page will have links to many listing pages, and a pagination system
that allows you to move from one index page to the other.

Lo ey Mymetey =) Padan s

G Index‘pages’ 1 - RN

Eoutlaron lendon | 1batoom ls | wegervom rooe ta ot

ase ot London

«== (horizontal crawling) . .

Frazertyrge Fan prica bauescy

re g 00 Sabertem aguncy.

—— e, P Items

are satabie [IE STy st v

A typical crawler moves in two directions
As aresult, a typical crawler moves in two directions:

* Horizontally — from an index page to another
* Vertically —from an index page to the listing pages to extract Items

In this book, we call the former horizontal crawling, since it crawls pages at the
same hierarchical level (for example, indices), and the latter vertical crawling, since

it moves from a higher hierarchical level (for example, indices) to a lower one (for
example, listings).

[56]

Chapter 3

It's all easier than it sounds. All we need is two more XPath expressions. For the
first expression, we right-click on the Next page button, and we notice that the
URL is contained in a link inside a 11 that has the class name next. As a result, the
convenient XPath expression //* [contains (@class, "next")]//@href will work
like a charm.

s @ Earls Court, London
Categories
1 2] 4 5 & - 4109 N
Al Categaries en Link in New Taby
Property x Open Link in New Win
For Sale Open Link in Incognit
Land, Farrms & Eatates Save Link As...
TaRent Copy Link Address
l: k Sources Timeli Profiles R Audits Console Copy
<fdiv> Search Google com fq
» <aside class="grid-col-m-5 hide-fully-to-m hide-fully-from-x1 space-phn Print...
srp-mpu-bta" role="complementary">.</aside>
¥ <giv class="grid-col-12"> Inspect Element
¥anav cla pagination txt-center pagination-smaller” data-pagination="pagination-main-srp-1"=
v <yl class="btn-group”s Look Up in Dictiona
»<li class="page-first hide-fully-te-1 is-active's. P v
»<li class="dots hide-fully-from-1"s>_ Speech
Pk <li class="hide-fully-to-1">.</1i>
»<li classs"hide=fully-to=1"». Search With Google
»<li class="hide-fully-te-1">_</1i> Look Up in VitalSourcy
®<li class="hide-fully-te-1"=_</1i> v
»<li class="hide-fully-to-1"». Add to iTunes as a Spj
*<li class="dots hide-fully-to-1">. Add to Evernote
®<li class="page=last hide=fully=to=1">_</lix —
v<li class="next"> []
ass="btn—secondary” title="Next page >. il
=/1li> .
Pk <li class="frm-more"” aria-hidden="true" data-pagiantion="pagination-main-srp-1"».</li=> P
ats

Finding the next index page URL XPath expression

For the second expression, we right-click and Inspect Element on the title of a listing
in the page:

Login Help MyGomiree © Postanad

(Gumtroo]
= T N - T <

Ortry room | flat dowblercom lendon Lbedroomfet singlercom roam torent

53,435 ads in Praperty, Landan Mot recent first &
ik A e £3300w
Q e ’ : Open Link in New Tab ==
Keyword 3 Open Link in New Window
O I Open Link in Incognito Window
L sk, linli . s@ | | Save Link As... *
[Search title & deseription Copy Link Address
k Sources Timeline Profiles Resources Audits Console ~ Copy I
“varticle class="isting-naxi" itenscope (ientype="httpi//schena.ora/P izi::h Google com for 'S images An amazing duplex studio near..." yles | Computed Eved

<2 class="listing-link" href="/p/studios-bedsits—rent/an. e s sent.style {

Inspect Element

:r:btriort kitlineclamp Gf3el
b oediv class="listing-side”s < /div> 1 iting-maxi . listim
¥ <div class="listing-content™> Look Up in Dictionary elgl?l: auto; !

<n2 class="listing-title" itemprop= Speech P ext-overflow: elly

§ B S s R WA i g isplay: -wenkit=bo;
rch With webkit-line-clanp:
isting-description truncate-paragraph Search Wit Gong b webkit-box-arient:

o-m" itemprop="description"s.</p> Look Up in VitalSource Bookshelf

sting-attributes inline-list hide-fully-to-n">—</ul Add to iTunes as a Spoken Track ™ I
»<div class="listing-location™ iteascope itemtypes"http://schena, 4o4 o poo oo ’r‘;’ k;"ﬂ? 13
<gtrong class="listing-price txt-emphasis" itesprop="price"=£33Q ;\:in _:“.'”'u &f3c)
b <strong class="listing-posted-date txt-normal truncate-line™ itesfrop="adNge"=o=/strongs F_{;",ng,"u, listi

fod o

Finding the listing page URL XPath expression

[57]

Basic Crawling

Notice that the URL has an interesting itemprop="url" attribute. As a result, //* [@
itemprop="url"] /@href should work. Let's open a scrapy shell to confirm both:

$ scrapy shell http://web:9312/properties/index 00000.html

>>> urls = response.xpath('//*[contains(@class,"next")]//@href').
extract ()

>>> urls

[u'index 00001.html"']

>>> import urlparse

>>> [urlparse.urljoin(response.url, i) for i in urls]
[u'http://web:9312/scrapybook/properties/index 00001.html"']
>>> urls = response.xpath('//*[@itemprop="url"]/@href') .extract()
>>> urls

[u'property 000000.html', ... u'property 000029.html"']

>>> len(urls)

30

>>> [urlparse.urljoin(response.url, i) for i in urls]

[u'http://..._000000.html', ... /property 000029.html']

Excellent! We can see that by using what we have already learned and the two XPath
expressions, we are able to extract the URLs that we need to do both horizontal and
vertical crawling.

Two-direction crawling with a spider

We will copy our previous spider to a new one named manual . py:

$ 1ls
properties scrapy.cfg

$ cp properties/spiders/basic.py properties/spiders/manual.py

In properties/spiders/manual.py, we import Request by adding from scrapy.
http import Request, change the spider's name to 'manual’', change start_urls
to use our first index page, and rename the parse () method to parse_item().
Great! We are now ready to write a new parse () method that will perform both
horizontal and vertical crawling;:

def parse(self, response):
Get the next index URLs and yield Requests
next selector = response.xpath('//*[contains (@eclass,'
'"next")]//@href')
for url in next selector.extract():

[58]

Chapter 3

yield Request (urlparse.urljoin(response.url, url))

Get item URLs and yield Requests
item selector = response.xpath('//*[@itemprop="url"]/@href')
for url in item selector.extract():
yield Request (urlparse.urljoin(response.url, url),
callback=self.parse item)

You might have noticed the yield statement in the previous example. The
yield is a bit like return in the sense that it returns values to the caller.
However, in contrast to return, it doesn't exit the function, but continues
with the for loop instead. Functionally, the preceding example is roughly
equivalent to the following:
.}‘ next requests = []
for url in...
next requests.append(Request(...))
for url in...
next requests.append(Request(...))
return next requests

The yield is a piece of Python "magic" that makes coding efficient
routines easy.

We are now ready to run it. If you let this spider run though, it's going to scrape the
entire 50k pages of the website. In order to avoid running for too long, we can tell
the spider to stop after a specific (for example, 90) number of items by using this
command line parameter: -s CLOSESPIDER ITEMCOUNT=90 (more details on those
settings are given in Chapter 7, Configuration and Management). We can now run it:

$ scrapy crawl manual -s CLOSESPIDER ITEMCOUNT=90
INFO: Scrapy 1.0.3 started (bot: properties)

DEBUG: Crawled (200) <...index 00000.html> (referer: None)

DEBUG: Crawled (200) <...property 000029.html> (referer: ...index 00000.
html)
DEBUG: Scraped from <200 ...property 000029.html>

{'address': [u'Clapham, London'],
'date': [datetime.datetime (2015, 10, 4, 21, 25, 22, 801098)1],
'description': [u'situated camden facilities cormner'],
'image urls': [u'http://web:9312/images/il0.jpg'l,
'price': [223.88],

'project': ['properties'],

[59]

Basic Crawling

'server': ['scrapyserverl'],

'spider': ['manual'],

'title': [u'Portered Mile'],

‘url': ['http://.../property 000029.html']}

DEBUG: Crawled (200) <...property 000028.html> (referer: ...index 00000.
html)

DEBUG: Crawled (200) <...index 0000l1.html> (referer: ...)

DEBUG: Crawled (200) <...property 000059.html> (referer: ...)

INFO: Dumping Scrapy stats:
'downloader/request count': 94,

'item scraped count': 90,

If you take a look at the preceding output, you will observe that we get both
horizontal and vertical crawling. First index_00000.html is read, and then it spawns
many Requests. As they get executed, the debug messages indicate who initiated the
Request with the referer URL. We can see, for example, that property 000029.
html, property 000028.html ... and index 00001.html have the same referer
(index_00000.html). Then, property 000059.html and others get index_00001.
html as referer, and the process continues.

As we observed in the example, Scrapy uses a last in, first out (LIFO) strategy for
processing requests (depth first crawl). The last request you submit will be processed
tirst. This default is convenient for most of our cases. For example, we like processing
each listing page before moving to the next index page. Otherwise, we would fill

a huge queue of pending listing page URLs that would just consume memory.
Additionally, in many cases you might need auxiliary Requests to complete a single
Request, as we will see in a later chapter. You need those auxiliary Requests to be
completed as soon as possible to free up the resources and have a steady flow of
scraped items.

We can modify the default order by setting the priority Request () argument to

a value greater than 0 to indicate a higher-than-default priority, or less than 0 to
indicate a lower-than-default priority. In general, the Scrapy scheduler will execute
higher priority requests first, but don't spend much time thinking about the exact
request that should be executed first. Its highly likely that you won't use more than
one or two request priority levels in most of your applications. Notice also that URLs
are subject to duplication filtering, which is most often what we want. If we need

to perform a request to the same URL more than once, we can set the dont_filter
Request () argument to true.

[60]

Chapter 3

Two-direction crawling with a CrawlSpider

If you felt that this two-direction crawling was a bit too tedious, then you are

really getting it. Scrapy tries to simplify all those very common cases, and makes
them easier to code. The easiest way to achieve the same results is by using a
CrawlSpider, a class that allows easier implementation of such crawls. To do so, we
will use the genspider command, setting a -t crawl parameter in order to create a
spider using the crawl spider template:

$ scrapy genspider -t crawl easy web
Created spider 'crawl' using template 'crawl' in module:

properties.spiders.easy

Now the file properties/spiders/easy.py contains the following;:

class EasySpider (CrawlSpider) :

name = 'easy'

allowed domains = ['web']
start_urls = ['http://www.web/']
rules = (

Rule (LinkExtractor (allow=r'Items/'),
callback='parse_item', follow=True),

)

def parse_item(self, response):

If you see the auto-generated code, it looks similar to the previous spiders but in this
case in the class definition, this spider derives from crawlsSpider instead of Spider.
CrawlSpider provides an implementation of the parse () method that uses the
rules variable to do exactly what we did manually in the previous example.

You might be wondering why I provided the manual
u version first instead of the shortcut. What you learned on
~ the manual example, yield'ing Requests with callbacks,
Q is such a useful and fundamental technique that we will use
again and again in the following chapters, so understanding
it is well worth the effort.

We will now set start_urls to our first index page, and replace the predefined
parse_item() method with our previous implementation. We won't implement any
parse () method this time. We will replace the predefined rules variable instead
with two rules, one for horizontal and one for vertical crawling:

rules = (

[61]

Basic Crawling

Rule (LinkExtractor (restrict xpaths='//* [contains (@class, "next")]1')),
Rule (LinkExtractor (restrict xpaths='//* [@itemprop="url"]"'),
callback='parse item')

)

Those two rules use the same XPath expressions we used in the manual example,
but without the a or href constraints. As their name implies, LinkExtractors

are specialized in extracting links, so by default, they are looking for the a (and
area) href attributes. You can customize this by setting the tags and attrs
LinkExtractor ()'s arguments. Also note that callbacks are now strings containing
the callback method name (for example 'parse item') in contrast to method
references, as was the case for Requests (self.parse_item). Finally, unless
callback is set, a Rule will follow the extracted URLs, which means that it will scan
target pages for extra links and follow them. If a callback is set, the Rule won't
follow the links from target pages. If you would like it to follow links, you should
either return/yield them from your callback method, or set the follow argument
of Rule () to true. This might be useful when your listing pages contain both Items
and extra useful navigation links.

You can run this spider and get exactly the same results as with the manual one, but
now with an even simpler source code:

$ scrapy crawl easy -s CLOSESPIDER ITEMCOUNT=90

Summary

This is probably the most important chapter for everyone starting with Scrapy. You
just learned the basic methodology of developing spiders: UR’IM. You learned how
to define custom Items that fit our needs, use ItemLoaders, XPath expressions

and processors to load Items, and how to yield Requests. We used Requests to
navigate horizontally across multiple index pages and vertically towards listing
pages to extract Items. Finally, we saw how CrawlSpider and Rules can be used to
create very powerful spiders with even less lines of codes. Please feel free to read this
chapter as many times as you want to get a deeper understanding of the concepts,
and of course, use it as a reference as you develop your own spiders.

We just got some information out of a website. Why is it such a big deal? I think the
answer will become obvious in the next chapter where in just a few pages, we are
going to develop a simple mobile app, and use Scrapy to populate it with data. The
result, I think, is impressive.

[62]

From Scrapy to a Mobile App

I can hear people screaming, "What does Appery.io, a proprietary platform for
mobile applications, have to do with Scrapy?" Well, seeing is believing. Showing
someone (a friend, manager, or customer) your data on an Excel spreadsheet may
have impressed them a few years ago. Nowadays, unless your audience is quite
sophisticated, their expectations will likely be quite different. In the next few pages,
you will see a simple mobile app, a minimum viable product, being built with just
a few clicks. Its aim is to communicate clearly to your stakeholders the power of
the data that you are extracting, and to demonstrate bringing value back to the
ecosystem in the form of web traffic for the source website.

I will try to keep the motivating examples short, and they are here to show you ways
to make the most out of your data. Unless you have a specific application that will
consume your data, in which case you can safely skip this chapter, this chapter will
show you how to make your data available to the public in the most popular way
today —a mobile application.

Choosing a mobile application framework

Feeding data into a mobile application is quite easy if you use the appropriate
tools. There are many good frameworks for cross-platform mobile application
development, such as PhoneGap, Appcelerator with Appcelerator Cloud Services,
jQuery Mobile, and Sencha Touch.

[63]

From Scrapy to a Mobile App

In this chapter, we will use Appery.io because it allows us to build iOS, Android,
Windows Phone, and HTML5 mobile apps quickly using PhoneGap and jQuery
Mobile. There is no affiliation between me or Scrapy and Appery.io. I encourage you
to conduct your own independent research to see whether it fits your needs beyond
what I present in this chapter. Keep in mind that it's a paid service with a 14-day

trial but with a price that, in my opinion, makes it a no-brainer to develop a quick
prototype, especially for someone who isn't a web expert. The main reason that I chose
this service is because it provides both mobile and backend services, which means

that we won't have to configure databases, write REST APIs, or have to use potentially
different languages for the server and the mobile application. As you will see, we won't
have to write any code at all! We will use their online tools; but at any point, you can
download the app as a PhoneGap project and use the full range of PhoneGap features.

You will need an Internet connection in order to use Appery.io in this chapter.
Also, please note that the layout of their website may change in the future. Use our
screenshots as a guide but don't be surprised if their site doesn't look identical.

Creating a database and a collection

The first step is to sign up to the free Appery.io plan by clicking on the Sign-Up
button on Appery.io and choosing the free plan. You will need to provide a name,
e-mail address, and a password after which your new account is created. Give it a
few seconds until the account gets activated. Then you will be able to log in to the
Appery.io dashboard. You are ready to create a new database and collection:

LOGOUT

Account

Flan

';.;: D) 2 | .C..r.é.ate... Database -

You don't have any databases,

Certifi 5
ntegrations |
................. Simply click *Create new database” '
R . f scrapy) 3

Cancel ‘ Create |

Creating a new database and collection with Appery.io

[64]

Chapter 4

In order to do so, please follow these steps:

1. Click on the Databases tab (1).

2. Then click the green Create new database (2) button. Name the new database
scrapy (3).

3. Now, click the Create button (4). This opens the Scrapy database's dashboard
automatically, and here, you can create a new collection.

A database is a set of collections in Appery.io terminology. An application,
roughly speaking, uses a single database (at least initially), which will have many
collections, for example users, properties, messages, and so on. Appery.io already
has a Users collection for us that holds usernames and passwords (they power lots
of its built-in functionality).

| Predefined collections Query
: Users
Bl Fites
Security and permissions !

‘ 2 :
. O Devices |
] +Col -Col EditCol -Row Dele i
| Collections & |
f j _id username password <
| properties :

Create new collection

@ Type properties 6
— @
-
+Col -Col EditCol +Row -Row Delete All Full Screen Refresh
m (uue price description url image_uraa,:I CTRATRAAL | pAAtROAL
= sring number wsing wring wring E =

This collection doesn’t have any data.
Click +Col to create a new column, and then +Row to add a sample data (row)

Creating a new database and collection with Appery.io

[65]

From Scrapy to a Mobile App

Let's add a user with the username, root, and a password, pass. Obviously, feel free
to choose something more secure. You can do that by clicking on the Users collection
on the sidebar (1), and then add a user/row by clicking +Row (2). You fill in the
username and password on the two fields that just appeared (3, 4).

We will also create a new collection for the properties that we scrape with Scrapy,
and we will name it properties. We create a new collection by clicking on the green
Create new collection button (5), name it properties (6), and click the Add button
(7). Now, we have to customize this collection a bit. We click on +Col to add columns
(8). Columns have types that help validate values. Most of our fields are simple
strings with the exception of price that is a number. We will add a few columns by
clicking on +Col (8), filling in the name of the column (9), the type if it's not string
(10), and then clicking on the Create column button (11). We will repeat this process
five times to create the table that in shown in the following image:

Column | title price description | url image_urls

Type string number | string string string

By the end of this collection, you should have the columns that you require, and it will
look like the preceding image. We are now ready to import some data from Scrapy.

Populating the database with Scrapy

First of all, we will need one single number and that's the API key. We can find it in
the Settings tab (1). We can copy it (2) and then go back to our properties collection
by clicking on the Collections tab (3):

apy " d Social connections Versions Permissions
1
scrapy
APl keys

API key is always used when making requests to REST AP, It is added as X-Appery-Database-ld header,

Gﬁdrﬂ 859ed4b00252422b4454) QO edi delete

Creating a new database and collection with Appery.io

[66]

Chapter 4

Great! Now, let's modify the application that we created in the previous chapter to
import the data in Appery.io. We start by copying our project and our spider named
easy (easy.py) to a spider named tomobile (tomobile.py). We also edit the file to
set its name to tomobile:

$ 1s

properties scrapy.cfg

$ cat properties/spiders/tomobile.py

class ToMobileSpider (CrawlSpider) :
name = 'tomobile'

allowed domains = ["scrapybook.s3.amazonaws.com"]

Start on the first index page
start urls = (
'http://scrapybook.s3.amazonaws.com/properties/"

'index 00000.html',

The code from this chapter is in the ch04 directory
—on GitHub.

One caveat you may have just noticed is that we don't use our web server (http://
web:9312) as we did in the previous chapter. We use a publicly available copy of the
site that I keep on http://scrapybook.s3.amazonaws . com. Using it, exceptionally
in this chapter, our images and URLs are publicly available, which allows us to share
our app effortlessly.

We will use an Appery.io pipeline to insert the data. Scrapy pipelines are typically
small Python classes that postprocess, clean, and store Scrapy items. We will discuss
them in depth in Chapter 8, Programming Scrapy. For now, you can install it with
easy install or pip, but if you use our Vagrant dev machine, you don't need to do
anything because it's already installed:

$ sudo easy install -U scrapyapperyio
or

$ sudo pip install --upgrade scrapyapperyio

[67]

http://scrapybook.s3.amazonaws.com

From Scrapy to a Mobile App

At this point, you will have to modify a little bit of the main Scrapy settings file to
add the API key that you copied earlier. We are going to discuss settings in depth
in Chapter 7, Configuration and Management. For now, all we need to do is append the
following lines in properties/settings.py

ITEM PIPELINES = {'scrapyapperyio.ApperyIoPipeline': 300}

APPERYIO DB ID = '<<Your API KEY here>>'
APPERYIO USERNAME = 'root'
APPERYIO PASSWORD = 'pass'
APPERYIO COLLECTION NAME = 'properties'

Don't forget to replace the ApPERYIO DB _ID with the API key. Also make sure that
your settings have the same username and password as the one that you used when
you created a database user in Appery.io. To start filling up Appery.io's database
with data, start a Scrapy crawl as usual:

$ scrapy crawl tomobile -s CLOSESPIDER ITEMCOUNT=90
INFO: Scrapy 1.0.3 started (bot: properties)

INFO: Enabled item pipelines: ApperyIoPipeline
INFO: Spider opened

DEBUG: Crawled (200) <GET https://api.appery.io/rest/1l/db/login?username=
root&password=pass>

DEBUG: Crawled (200) <POST https://api.appery.io/rest/1l/db/collections/
properties>

INFO: Dumping Scrapy stats:
{'downloader/response count': 215,
'item scraped count': 105,
-}

INFO: Spider closed (closespider itemcount)

The output this time is slightly different. You can see the ApperyIoPipeline item
pipeline getting enabled in one of the first few lines; but most notably, you will
notice that for about 100 items scrapped, there were about 200 requests/responses.
This is because the Appery.io pipeline makes an extra request per item to the
Appery.io servers in order to write each item. These requests also appear in the logs
with an api . appery.io URL.

[68]

api.appery.io

Chapter 4

Rename Delete Security and permissions Manage indexes 2 Change

Collections

id title price dgcriptjon url image_u ris
S43aeal.. Vegetari.. 203.23 semitoo.. httpiuisc.. htpoisc..
S43aeal... John Ma... 152.8 setgard... httpiisc... httpeiisc...
543aga0.. |Caledonl.. 197.78 followdn... hupifisc... | hoped/sc..
543aeal.. | Morden.. 2002 underm... httpifisc... httpefisc...

The properties collection is filled in with data

If we head back to Appery.io, we will see the properties collection (1) filled in
with data (2).

Creating a mobile application

Staring a new mobile application is trivial. We just click on the Apps tab (1) and then
the Create new app green button (2). We will name this application properties (3)
and click the Create button (4) to create it:

Ditiliases Server Cnde Sen =
- Import database services ®

Select database services to import

CREATE NEW ~/) |

Select collection services to import

Page 5 8
Dialog
L]
i Thermea
L]
CsSs5
q Delete 9
g & Service - e
* i JavaScript Query
B : > e
10

Creating a new mobile application and a database connection

[69]

From Scrapy to a Mobile App

Creating a database access service

The number of options when you start the new application may be a bit
overwhelming. Using the Appery.io application editor, one can write complex
applications, but for our purposes, we will keep things simple. What we are looking
for, to start with, is creating a service that gives us access to the Scrapy database from
our application. In order to do this, we click on the square green CREATE NEW
button (5), and then we select Database Services (6). A new dialog box appears that
lets us chose where we want to connect to. We select the scrapy database (7). We
won't use most of the options in this menu bar but just click to expand the properties
section (8) and then select List (9). Behind the scenes, this writes code for us that
makes the data that we crawled with Scrapy available on the web. We finish by
clicking the Import selected services button (10).

Setting up the user interface

Take a deep breath. We are now going to create all the visual elements of our app.
We will work within the DESIGN tab of their editor:

‘properties €« r Start - | startScreen

startScreen / moblleheader »» PROPERTIES - Header

z
CREATENEW v/ 2~ conrols * OPERATIONS
2 o
= s c ses Zeemies
» @ projrs - Button Group Buttans

= CUSTOM

DATA

Ge) |

Setting up the user interface

[70]

Chapter 4

From the tree on the left of the page, we expand the Pages folder (1) and then click
on startScreen (2). The Ul editor will open this page, and we can add a few controls.
Let's edit the title to familiarize ourselves a bit with the editor. Click on the caption
header (3), and then you will notice that the properties section on the right of the
screen is being updated to show the header's properties, among which is the Text
property. Change that to Scrapy App. You will see the header in the middle screen
updating accordingly.

Then, we will add a grid component. To do this, drag and drop a Grid control from
the left palette (5). You will notice that it has two rows. We only need one row for
our purposes; select the grid that we just added. You will know that the grid is
selected when it's gray on the thumbnails section at the top of the mobile view (6).
If it isn't, click on it in order to select it. Then the properties on the right side will be
updated with grid's properties. Just edit the Rows property and set it to 1 and then
click Apply (7, 8). Now, the grid will be updated to have only one row.

Finally drag and drop a few more controls inside the grid. First add an image control
on the left side of the grid (9), then a link on the right side of the grid (10), and finally,
a label just under the link (11).

That's more than enough in terms of layout. We will now feed data from the
database to the user interface.

[71]

From Scrapy to a Mobile App

Mapping data to the User Interface

Until now, we've spent most of our time in the DESIGN tab setting up the visuals
of our application. In order to link available data to controls, we switch to the
DATA tab (1):

<« Start startScreen

3

z |
9 Add ddLa:mur % | scrapy_properties_Jist_service i
uw
g1 :
= L
Name e ey~ H
1| Mapping action editor: restservice, Success avent @:
< v | restservicel i 6 :
= s Page o Page i
g Sterage serage
| Before send: m Mapping X E B Service resgonis [i el
| Sendieresponse Tapaed o Colapse - oo 1
Success: LR Mopping X : Yt . B oz @
; ¥ - S —
o (I : - i -0 - D
$ e - sty
3 wrce 5 = metsietnk
. | -. ;
! sescrption -0 Tee ED
ot e e T ST e - -0)
i image e e
: K motselate 9
] Ter (@D
Vakde

LS starsereen

PALETTE <« I / legrid 23 PROPERTIES - Label

@

Save a5 CUSTOM COMPAnent

- CUSTOM

nput Textares Text Labse!

A Link * COMMON ;

e B == — '.
el e Name mobhilelabel 9]
)

@ Ve ® :

)

i

)

i

)

'

s oo 8
- Radin Margin 1 9 P 0 :
COMPONENT EVENT ORDER TALS 9 snowil 0] 4
(s(aﬂS:reen :| | oad s invoke serve + | Datascurce | reswservicel =) E

Mapping data to the user interface

We select Service (2) as the data source type. The service that we created previously
is the only one available and gets automatically selected. so we can proceed to
clicking the Add button (3). The service properties will be listed just below it. As
soon as you press the Add button, you will notice events, such as Before send and
Success. We will customize what happens when a call to the service succeeds by
clicking on the Mapping button that is next to Success.

[72]

Chapter 4

The Mapping action editor opens, and this is where we will do all our wiring. This
editor has two sides. On the left are the fields available in the service's responses.
On the right, you will find the properties for the Ul controls that we added in the
previous step. You will notice an Expand all link on both sides. Click on it to see all
the data and controls that are available. You then need to perform the following five
mappings (5) by dragging and dropping from the left side to the right:

Response | Component Property | Notes

S[i] mobilegrid_2 This makes a for loop that creates and sets
up each row.

title mobilelink_8 Text This sets the text for the link.

price mobilelabel 9 | Text This sets the price on the text field.

image_ mobileimage 7 | Asset This loads the image from the URL on the

urls image container.

url mobilelink 8 URL This sets the URL for a link. When the user
clicks on it, the associated page loads.

Mappings between database fields and User
Interface controls

The numbers on the preceding table may be slightly different in your case, but as
there's only one of each type of control, the odds of something going wrong are
minimal. By setting these mappings, we tell Appery.io to write all the code behind
the scenes that will load the controls with values when the database query succeeds.
You can then click on Save and return (6) to continue.

This gets us back to the DATA tab. We need to return to the Ul editor, so we click
on the DESIGN tab (7). On the lower part of the screen, you will notice an EVENTS
section (8) that was always there but has just been expanded. With the EVENTS
section, we make Appery.io do things as responses to Ul events. This brings us to
the final step that we need to perform. This is to make our app call the service and
retrieve data as soon as the Ul loads. In order to do so, we choose startScreen as a
component; we keep the default Load option for the event. We then select Invoke
service as an action and leave Datasource as the default restservicel option (9).

We click Save (10), and that's all we had to do for this mobile application.

[73]

From Scrapy to a Mobile App

Testing, sharing, and exporting your

mobile app

We are now ready to test our app. All we have to do is click on the TEST button at
the top of the Ul builder (1):

Refresh Remove frame

set unique family well

£334.39pw
website court warehouse pool free seven utility

balham depending cupboard elephant check
nice bedroom offered

Lots South
Leyionstone
Warren

387.78

EVENT

Load

Urgent Work Roof
Flat Porter Dont

Excellent
338.98

This is the application running in your browser

The mobile application runs in your browser. The links are active (2) and ready

to navigate. You can preview different mobile screen resolutions and device
orientations. You can also click on the View on Phone button to display a QR code
that you can scan with your mobile device and preview the application there. You
just share the link that will be provided, and others are able to play with the app in
their browsers.

[74]

Chapter 4

With just a few clicks, we organized and presented the data we scraped with Scrapy on
a mobile application. You may want to further customize this application by following
the Appery.io tutorials at http: //devcenter.appery.io/tutorials/. When you are
ready, Appery.io also gives you lots of export options via the EXPORT button:

EXPORT v

a. HTML/JS/CSS Eclipse project Binary (.apk) I
::é HTML/S/CSS xCode project Binary (.ipa)
== HTML/JS/CSS VS Project Binary (.xap)
B HTMLYS/CSS

Appery.io plug-in

You can export your application for most major mobile platforms

You can export project files to perform further development on your favorite IDE or
get a binary that you can publish on each platform's mobile marketplace.

Summary

Using these two tools, Scrapy and Appery.io, we have a system that scrapes a
website and inserts data to a database. We also have a RESTful API and a simple
mobile application for Android and iOS. For advanced features and further
development, you can dive deeper into these platforms, outsource part of the
development to field experts, or research alternatives. At this point, you have a little
product to demonstrate application concepts with minimal coding.

You will notice that our app looks quite good given its extremely short development
time. It has realistic data instead of Lorem Ipsum placeholders, and the links

work and do something meaningful. We successfully built a minimum viable
product that respects its ecosystem (source websites) and returns value back to

it in the form of traffic.

We are now ready to find out how to use Scrapy spiders to extract data under more
complex scenarios.

[75]

http://devcenter.appery.io/tutorials/

Quick Spider Recipes

In Chapter 3, Basic Crawling, we focused on how to extract information from pages
and store them into Items. What we learned covers the most common Scrapy use
cases, and it should be enough to get you up and running. In this chapter, we will
examine more specialized cases in order to become more familiar with the two
most important Scrapy classes —Request and Response —the two R's on the URIM
scraping model we presented in Chapter 3, Basic Crawling.

[77]

Quick Spider Recipes

A spider that logs in

Quite often, you may find yourself wanting to extract data from websites that have

a login mechanism. In the most common case, a website will require you to provide

a username and a password in order to log in. We are going to use the example that
you can find in: http://web:9312/dynamic (from our dev machine) or http://
localhost:9312/dynamic (from your host's web browser). If you use the username,
"user", and password, "pass", you will get access to a page with three links of property
pages. The question now is how do you perform the same operation with Scrapy?

Elements | Network | Sources Timeline Profiles Resources Audits Con)

Welcome E 3
& 0O
L c localhost:9312/dynamic ‘@ © w5 | View a3 = | B Preserve log B Disable cache | No throttling ;
i Filter Hide data URLs @ XHR J5 €55 Img Media Fur{l
- B i
b" ElCﬂme, please l()gln 1 Name Headers | Preview Response Cookies Timing
i | login ¥ General
2 [| gated Remote Address: 127.9.8.1:9312 [
el T Request URL: http://localhost:9312/dynamic/ login |
1] Jmieo e Request Method: POST :
sase { Status Code: © 382 Found +—— 5 :
1 i ¥ Response Headers view soug
Login : Content-Length: 286
1 Content-Type: text/htm arset=utf-g
= =1 Date: Wed, 82 Dec 2015 158 GMT
(3 Elements | Ne | Sources Timeline Profiles Location: /dynamic/gated

] 4
® © | = 5 | View: = = | @Preservelog BDisal \ SUEVATE FHLEDeYeR 3 20
¢ >R L ad]
view sofrce view URL encoded

Filter Hide data URLs (00 XHR! ¥ Form Data
e b st e N e e e user: user

N .
'R O Elements | Network | Sources Timeline Profiles Resources Audits Consale PRES: pae
of submit: Login
'@ ©® = T view 3= ™ | @ Preserve log EDisable cache | No throttling -
i et T A ———
i 6 Hide data URLs (1) XHR J5 €35 Img Media Font Doc ¥
| Name % | Headers Prcvlr_? Response Cookles Timing
L legin * General
| gared * Response ers (4)
¥ Request Heldders view source

{ | favicon.ico £
H Accept: lexlﬂutml.nwlhm(:un!anm's-ml.abuln:annnf:nl;ur&

E Accept-Encoding: gzip, deflatee”s.

' Accept-Language: en-Us, ¢ +B,elig=0.6 H
£ Cache-Control: no-c. H
. Connection: keep-a, H
¥ Cookie: TWISTED_S Bbf 9BaGbdc |

Requests and Responses while logging in on a website

Let's use the Google Chrome debugger and try to understand how login works. First
of all, we go to the Network tab (1). Then, we fill in the username and password and
click Login (2). If the username and password are correct, you will see a page with
three links. If there was a mistake, you will see an error page.

[78]

Chapter 5

As soon as you push the Login button, on the Google Chrome debugger
Network tab, you will see a request with Request Method: POST to
http://localhost:9312/dynamic/login.

Previous chapters' requests were GET-type requests, which are
most often used to retrieve data that doesn't change, such as
\\J . . .
~ simple web pages, and images. POST-type requests are typically
used when we want to retrieve data that depends on the data
that we sent to the server, such as the username and password
in this example.

If you click on it (3), you can inspect the data that was sent to the server, including
Form Data (4), which will have the username and the password that you entered. All
this data was sent as text to the server. Chrome just groups them nicely and shows
them to us. The server responds with 302 Found (5) that redirects us to a new page:
/dynamic/gated. This page has links that appear only after a successful login. If
you try to visit http://localhost:9312/dynamic/gated directly without entering
the correct username and password, the server would find out that you cheated
and redirect you to an error page: http://localhost:9312/dynamic/error. How
does the server know you and your password? If you click on gated on the left of
the debugger (6), you will notice a Cookie value (8) that is set under the Request
Headers section (7).

HTTP cookies are some, usually short, pieces of text or numbers
o that servers send to browsers. In turn, browsers send them back
~ to servers in every subsequent request in order to identify you,
Q the user, and your session. This allows you to perform complex
operations that require server-side state information, such as
the contents of your basket or your username and password.

Summarizing, a single operation, such as logging in, may involve several server
round-trips, including POST-requests, and HTTP redirects. Scrapy handles most of
these operations automatically, and the code that we need to write is simple.

We start with the spider named easy from Chapter 3, Basic Crawling, and we create
a new spider named login by renaming the file and changing the name property
inside the spider (it should look like this):

class LoginSpider (CrawlSpider) :
name = 'login'

[79]

Quick Spider Recipes

A\l

~ The code from this chapter is in ch05 directory in github.
this example in particular will be in ch05/properties.

We need to send the initial request that logs in by performing a POST request on
http://localhost:9312/dynamic/login. We do this with Scrapy's FormrRequest
class. This class is similar to Request from Chapter 3, Basic Crawling, but with an extra
formdata argument that we use to pass form data (user and pass). To use this class,
we have to import it first with:

from scrapy.http import FormRequest

We then replace the start_urls statement with a start_requests () method.
We do this because in this case, we need to start with something a bit more custom
than just a few URLs. More specifically, we create and return a Formrequest from
this function:

Start with a login request
def start requests(self):

return [
FormRequest (
"http://web:9312/dynamic/login",
formdata={"user": "user", "pass": "pass"}

)1

That's it really. The default parse () of crawlSpider (the base class of our
LoginSpider) handles Response and uses our Rules and LinkExtractors exactly
as it did in Chapter 3, Basic Crawling. We have so little extra code because Scrapy
handles cookies transparently for us, and as soon as we log in, it passes them on to
subsequent requests in exactly the same manner as a browser. We can run this using
scrapy crawl as usual:

$ scrapy crawl login

INFO: Scrapy 1.0.3 started (bot: properties)

DEBUG: Redirecting (302) to <GET .../gated> from <POST .../login >
DEBUG: Crawled (200) <GET .../data.php>

DEBUG: Crawled (200) <GET .../property 000001.html> (referer: .../data.
php)

DEBUG: Scraped from <200 .../property 000001.html>

[80]

Chapter 5

{'address': [u'Plaistow, London'],
'date': [datetime.datetime (2015, 11, 25, 12, 7, 27, 120119)1],
'description': [u'features'],

'image urls': [u'http://web:9312/images/i02.jpg']l,

INFO: Closing spider (finished)
INFO: Dumping Scrapy stats:
{...
'downloader/request method count/GET': 4,

'downloader/request method count/POST': 1,

'item scraped count': 3,

We can notice the redirection from dynamic/login to dynamic/gated on the log and
then a scrape of Items as usual. In the statistics, we see one POST request and four
GET requests; one for dynamic/gated index and three for property pages.

M In this example, we don't protect the property pages
Q themselves but just the links to these pages. The code
would be the same in either case.

If we used the wrong user/pass, we would get a redirect to a page with no
item URLs and the process would terminate at that point, as you can see in the
following run:

$ scrapy crawl login

INFO: Scrapy 1.0.3 started (bot: properties)

DEBUG: Redirecting (302) to <GET .../dynamic/error > from <POST .../
dynamic/login>
DEBUG: Crawled (200) <GET .../dynamic/error>

INFO: Spider closed (closespider itemcount)

[81]

Quick Spider Recipes

This was a simple login example that demonstrates essential login mechanisms. Most
websites will likely have slightly more complex mechanisms that Scrapy also handles
with ease. Some sites, for example, require you to pass some form variables from the
form page to the login page while performing the POST request in order to confirm
that cookies are enabled, and also to make it a bit more difficult for you to try to
check with brute-force thousands of user/pass combinations.

m

€« => C _D localhost:9312/dynamic/nonce

Welcome, please login

Login

I O || Elements | Network Sources Timeline Profiles Resourc

<html>
» <head>..</head>
v <body>
<hl=Welcome, please login</hl=>
v <form method="post" action="/dynamic/nonce-login'>
P <p>.</p>
P <p>.</p>
» <p class="submit">..</p>
</form=>
</body>
</html>

Request and Response on a more advanced login case using nonce

[82]

Chapter 5

For example, if you visit http://localhost:9312/dynamic/nonce, you will see

a page that looks identical, but if you use Chrome's Debugger, you will notice that
the form in this page has a hidden field called nonce. When you submit this form
(to http://localhost:9312/dynamic/nonce-1login), the login won't be successful
unless you pass not only the correct user/pass, but also the exact nonce value that
server gave you when you visited this login page. There is no way for you to guess
that value as it typically will be random and single-use. This means that in order

to successfully log in, you now need two requests. You have to visit the form page
and then the login page and pass through some data. As usual, Scrapy has built-in
functionality that helps.

We create a NonceLoginSpider spider that is similar to the previous one. Now, in
start_requests (), we are going to return a simple Request (don't forget to import
it) to our form page, and will manually handle the response by setting its callback
property to our handler method named parse_welcome (). In parse_welcome (),
we use the helper from_response () method of the FormrRequest object to create
FormRequest that is pre-populated with all the fields and values from the original
form. FormRequest . from_response () roughly emulates a submit click on the first
form on the page with all the fields left blank.

o It's worth spending some time familiarizing yourself with the
~ documentation of from_response (). It has many useful
CZE features like formname and formnumber that helps you
select the form you want if there's more than one in a page.

What makes this very useful to us is that it effortlessly includes, verbatim, all the
hidden fields of that form. All we need to do is to use the formdata argument to fill
in the user and pass fields and return the Formrequest. Here is the relevant code:

Start on the welcome page
def start requests(self):
return [
Request (
"http://web:9312/dynamic/nonce",
callback=self.parse_welcome)

]

Post welcome page's first form with the given user/pass
def parse welcome (self, response):
return FormRequest.from response (
response,
formdata={"user": "user", "pass": "pass"}

[83]

Quick Spider Recipes

We can run this spider as usual:

$ scrapy crawl noncelogin

INFO: Scrapy 1.0.3 started (bot: properties)

DEBUG: Crawled (200) <GET .../dynamic/nonce>
DEBUG: Redirecting (302) to <GET .../dynamic/gated > from <POST .../
dynamic/login-nonce>

DEBUG: Crawled (200) <GET .../dynamic/gated>

INFO: Dumping Scrapy stats:

{...

'downloader/request method count/GET': 5,

'downloader/request method count/POST': 1,

'item scraped count': 3,

We can see the first GET request to /dynamic/nonce page, and then POST, and
redirection on the /dynamic/nonce-login page that leads us to /dynamic/gated as
it did before. This concludes our login discussion. This example used two steps to log
in. With enough patience, one can form arbitrary long chains that are able to perform
almost every login operation.

A spider that uses JSON APIs and AJAX
pages

Sometimes, you will find yourself exploring pages with data that you'll be unable to
find on the HTML of the page. For example, if you visit http://localhost:9312/
static/ and right-click inspect element (1, 2) somewhere in the page you will see
the DOM tree with all the usual HTML elements. On the other hand, if you use
scrapy shell or right-click on View Page Source (3, 4) in Chrome, you will see that
the HTML code for this page doesn't contain any information relevant to properties.
Where does this data come from?

[84]

Chapter 5

o gomrme

R © wosuects et o o 331 G NN
« beter bermondsey e kenningion drive acton seven rm WOSE8312/static/ :
+ better own o top. inspj iclickslss
e @1.right clicks ; ;

Open Link in Now Tab : . g g 3. right click
* bettervery hse shi Opan Link in New Window \westminster residential eleetric click
iy SMveUnkAs. dband clean peaple brompton european K
* betiersloane c0sY. con ik Address . 1y will
s hetter eecnashw % 2. P i i L g
T N o Sawe com for “better | (6L Westficld size hill sudbury war
i B T aitigs plan wembley flatt Raipad 4
! : RCATHIN
i Save As .
Speech which Print...
Saarch With Google iemork Sources Timeline Profiles Resol Translal English
E“l”‘;’r"w‘ 3"":‘:" View Page Source
o MMunes as 8 Spoken Track |
] W PR e S R G SR e S e
adie Sremers i h c view-source:localhost:9312/static/
............................ Insg
L:htm1>

£t pir dedEn e TRl Tt O rOt=SUTP-8"> :
+ localhost-0312/properties/property_000005 himl title>Scrapy Book Tutorial Example</title>!

= script sre="jguery.min.is®></seript>
E ® O Elements | Sources Timeline Profiles Resources Audits Consol soript types"text/javasoript">
80 m i ew: = ™ @ Preserve log @ Disable cache = No throttling wi J//<1[CDATA[

| ®(function() {

vide dara uris () xur s '8, here!son Do |

$.getJSON(“../properties/api.json”,
var ul = §(""); 1
$.each{data, function{ key,!

I Name x i <" [

: Headers Preview Response Cftherata var link = ${'<a />
+ || static/ 6 w [{id: le: “better bermondsey €5 kennington drive af . No data here (!) link.text(val.title]
: jm% > d: B, title: "better bermondgfy ec kennington driy | var id = "000000" +;
A 7 ¢ {id: 1, title: “better own n gbp westminster resider ' link.attr("href”, “.
E'“! apl , title: “better chisgek exceptionally sq bad . var 14 = $1'');

1 3, title: "better
. title: “"better

broadband clean people |
hse shared massive reall
. title: "better ef upper westfield size
. title: "better amenities harlesden plar
» title: “better sloane cosy avenue"} |
8, title: "better sydenham designed palace”} !
tter regent ub which™} |
O oL A0 fidy VA $580e: Uhattas adein stfrsetivae semnshil

i || favicon.ico

Request and Response on pages that load JSON objects dynamically

In these cases your next step is, as usual, to open the Network tab of Chrome's
debugger (5) to find out what's going on. In the list on the left, we can see all the
requests that Chrome performed to load this page. In this simple page, there are
only three requests: static/ that we already checked, jquery.min.js that retrieves the
code for a popular Javascript framework, and api.json which seems interesting. If
we click on it (6) and we then click the Preview tab on the right (7), we will notice
that it contains the data we have been looking for. Indeed http://localhost:9312/
properties/api.json contains property IDs and names (8), as follows:
i
"idn: o,
"title": "better set unique family well"

{
"id": 29,
"title": "better portered mile"

b

1

This is a very simple example of a JSON API. More complex APIs may require you
to log in, use POST requests, or return more interesting data structures. In any case,
JSON is one of the easiest formats to parse because you don't have to write any
XPath expressions to extract data from it.

[85]

Quick Spider Recipes

Python provides a great JSON parsing library. When we import json, we can use
json.loads (response.body) to parse JSON and convert it to an equivalent Python
object consisting of Python primitives, lists, and dicts.

Let's do this by copying manual . py from Chapter 3, Basic Crawling. This is the best
option to start with in this case as we need to manually build property URLs and
Request objects from IDs that we find in the JSON object. We rename the file to api .
py, rename the spider class to ApiSpider and name it api. Our new start_urls
should be the J[SON API URL:

start_urls = (
'http://web:9312/properties/api.json’',
)

If you need to do POST requests or more complex operations, you can use the
start_requests () method and the techniques we saw in previous sections. At this
point, Scrapy will open this URL and call our parse () method with Response as an
argument. We can import json and use the following code to parse the JSON object:

def parse(self, response):
base url = "http://web:9312/properties/"
js = json.loads (response.body)
for item in js:
id = item["id"]
url = base url + "property %06d.html" % id
yield Request (url, callback=self.parse item)

The preceding code uses json. loads (response.body) to parse the Response JSON
object to a Python list that then it iterates through. For each item in the list, we put
together a URL consisting of three parts: base url, property %06dand .html.base_
url is a URL prefix that was defined previously. $06d is a very useful piece of Python
syntax that allows us to create new strings by combining Python variables. In this case,
$06d will be replaced with the value of the id variable (the one after the % at the end
of the line). id will be treated as a number (3d means treat it as a number) and it will
be extended to six characters by prepending 0's if necessary. If id has, for example, the
value 5, $06d will be replaced with 000005, whereas if id happens to be 34322, $06d
will be replaced with 034322. The end result is perfectly valid URLs for our properties.
We use this URL to form a new Request object that we yield exactly as we did in
Chapter 3, Basic Crawling. We can run this example as usual with scrapy crawl:

$ scrapy crawl api

INFO: Scrapy 1.0.3 started (bot: properties)

DEBUG: Crawled (200) <GET ...properties/api.json>

[86]

Chapter 5

DEBUG: Crawled (200) <GET .../property 000029.html>

INFO: Closing spider (finished)
INFO: Dumping Scrapy stats:

'downloader/request count': 31,

'item scraped count': 30,

You might notice in the stats at the end, 31 Requests — one for each item as well as
an initial one for api.json.

Passing arguments between responses

In many cases, you will have interesting information on your JSON APIs that you
will want to store to your Item. To demonstrate this case, in our example, for a given
property, the JSON API returns its title prepended with "better". If property's title is
"Covent Garden" for example, the API will have "Better Covent Garden" as its title.
Let's assume that we want to store these "better" titles in our Items. How do we pass
information from our parse () to our parse item() method?

You won't be surprised to hear that we can do this by setting something in the
Request that parse () generates. We can then retrieve this from the Response that
parse_item() receives. Request has a dict named meta that is directly accessible on
Response. For our example, let's set a title value on this dict to store the title from the
JSON object:

title = item["title"]
yield Request (url, meta={"title": title},callback=self.parse item)

Inside parse_item (), we can use this value instead of the XPath expression that we
used to have:

l.add value('title', response.metal['title'],
MapCompose (unicode.strip, unicode.title))

You will notice that we switched from calling add_xpath () to add_value ()
because we don't need to use any XPath for that field any more. We can now run
the new spider with scrapy crawl, and we will see titles from api . json on our
PropertyItems.

[87]

Quick Spider Recipes

A 30-times faster property spider

There is a tendency when you start with a framework to use, maybe, the most
sophisticated and, typically, the most complex way for anything you do. You will
likely find yourself doing that with Scrapy too. Just before you go crazy with XPath
and technology, it is worth to pause for a moment and wonder; is the way I chose the
easiest way to extract data from this website?

You can have orders-of-magnitude savings if you avoid scraping every single listing
page if you can extract about the same information from index pages.

Please keep in mind that many websites offer a different number
M of items on their index pages. For example, a website might be
Q able to give you 10, 50 or 100 listings per index page by tuning
a parameter, such as &show=50. If so, obviously, set it to the
maximum value available.

For example, in our properties case, all the information we need exists in the index
pages. They contain the title, the description, the price and the image. This means
that we can scrape a single index page and extract 30 items and a link to the next
index page. By crawling 100 index pages, we get 3000 items with just 100 requests
instead of 3000. That's just great!

In the actual Gumtree website, the description on the index pages is shorter than the
full description on the listing page. This may be okay or even desirable.

u In many cases, you will have to trade off data quality with
~ number of requests. Many sources throttle the number of
Q requests heavily (more on that in later chapter), so hitting
indices might help you solve an otherwise hard problem.

[88]

Chapter 5

In our example, if we have a look at the HTML of one of the index pages, we will notice
that each listing in the index page has its own node indicated by itemtype="http://
schema.org/Product". Within this node, we have all the information for each property
annotated in exactly the same way as in the detail pages:

. BTN OEETEEET B CEN DD EN UEEE N OB § Jf;::::
t I BT IETE Er BN BN OTEN BN
i I e T w - span. save
ﬁ) [N N H . | . | B
‘@ Earls Court, London *

iwork Sources Timeline Profiles Resources Audits Console

</li=
v=<li=
» <article class="listing-maxi" itemscope itemtype="http://schema.org/Product"
</1li= ————————————————
¥=<li=
v<article class="listing-maxi" itemscop
::before
¥<a class="listing-link" href="/p/ wiiciis. k. sy] el el es Fal o s e Cd
e ol o N~ H ma" itemprop="url">
iibefore
» <div class="1listing-side">.</div>

i1="ad-featured-105:

d="ad-featured-104

<h2 class="1listing-title" itemprop="name">.</h2>
> <p class="listing-description truncate-paragraph
hide-fully-to-m" itemprop="description">.</p>

»<ul class="listing-attributes inline-list hide-fully-to-m">.
> <div class="1listing-location" itemscope itemtype="http://schema.org/Place">..</div>
=<strong class="listing-price txt-emphasis" itemprop="price"=£27@pw

Many properties can be extracted from a single index page

Let's load the first index page in Scrapy shell and play a bit with XPath expressions:

$ scrapy shell http://web:9312/properties/index_00000.html

While within the Scrapy shell, let's try to select everything with the product tag:

>>> p=response.xpath('//*[@itemtype="http://schema.org/Product"]"')
>>> len(p)

30

>>> p

[<Selector xpath='//*[@itemtype="http://schema.org/Product"]' data=u'<li
class="listing-maxi" itemscopeitemt'...]

[89]

Quick Spider Recipes

We notice that we get a list of 30 selector objects, each pointing to one of our
listings. The Selector objects are similar to the Response objects in the sense that we
can use XPath expression on them and get information only from within whatever
they point to. The only caveat is that those expressions should be relevant XPath
expressions. Relevant XPath expressions are identical to the ones that we've seen
already but with a'." dot prepended to them. Let's see how this works by extracting
a title from, for example, the fourth listing using the . //* [@itemprop="name"] [1]/
text () relevant XPath expression:

>>> selector = pl[3]

>>> selector

<Selector xpath='//*[@itemtype="http://schema.org/Product"]' ... '>
>>> selector.xpath('.//* [@itemprop="name"] [1]/text()"') .extract ()

[u'l fun broadband clean people brompton european']

We can use a for loop on the list of Selector objects to extract information for all 30
items of an index page.

To do so, we start again from our manual . py file from Chapter 3, Basic Crawling, and
name the new spider "fast" on a file named fast .py. We reuse most of the code with
small changes in the parse () and parse_item() methods. The updated methods are
as follows:

def parse(self, response):
Get the next index URLs and yield Requests
next sel = response.xpath('//*[contains(@class, "next")]//@href")
for url in next sel.extract():
yield Request (urlparse.urljoin(response.url, url))

Iterate through products and create PropertiesItems
selectors = response.xpath(

'//* [@itemtype="http://schema.org/Product"] ")
for selector in selectors:

yield self.parse item(selector, response)

There are no changes in the first part of the code that yields the next index Request.
The only difference lies in the second part where instead of using yield to create
Requests for the detail pages, we iterate through selectors and call our parse_
item (). This is also quite similar to our original code, as follows:

def parse item(self, selector, response):
Create the loader using the selector
1 = ItemLoader (item=PropertiesItem(), selector=selector)

Load fields using XPath expressions

[90]

Chapter 5

l.add _xpath('title', './/*[@itemprop="name"] [1]/text ()",
MapCompose (unicode.strip, unicode.title))

l.add_xpath('price', './/*[@itemprop="price"] [1]/text ()",
MapCompose (lambda i: i.replace(',', ''), float),
re='[,.0-9]+")

1l.add xpath('description',
'.//*[@itemprop="description"] [1] /text ()",
MapCompose (unicode.strip), Join())

l.add xpath('address',
'.//*[@itemtype="http://schema.org/Place"]"’

"1 /% /text O,

MapCompose (unicode.strip))
make url = lambda i: urlparse.urljoin(response.url, 1)
1l.add_xpath('image urls', './/*[@itemprop="image"] [1]/@src',

MapCompose (make url))

Housekeeping fields

l.add_xpath('url', './/*[@itemprop="url"] [1]/@href',
MapCompose (make url))

.add_value('project', self.settings.get ('BOT NAME'))

.add_value('spider', self.name)

.add_value('server',6 socket.gethostname())

.add _value('date', datetime.datetime.now())

o e

return 1l.load item()
The slight changes that we made are as follows:

* ItemLoader nOw uses selector as a source rather than Response. This is a
very convenient feature of the ItemLoader API, allowing us to extract from
the currently selected segment instead of the entire page.

» XPath expressions turned to relative XPath by prepending the dot (.).

u It so happened that in our case, our XPath expressions were
~ identical in the detail and the index pages. This won't always
Q be the case and you may have to redevelop your XPath
expressions to match the structure of your index pages.

* We have to compile the URL of Item ourselves. Before response .url was
giving us the URL for the listing page. Now, it gives the URL of the index
page because this was the page that we crawled. We have to extract the
URL of the listing using our familiar . //* [@itemprop="url"] [1] /@href
XPath expression and then convert it to an absolute URL with our usual
MapCompose Processor.

[91]

Quick Spider Recipes

Small changes have generated huge savings. Now, we can run this spider with the
following code:

$ scrapy crawl fast -s CLOSESPIDER PAGECOUNT=3

INFO: Dumping Scrapy stats:
'downloader/request count': 3,

'‘item scraped count': 90,...

As promised, with just three requests, we scraped 90 items. We would need 93
requests to do the same if we didn't hit the index. This is brilliant!

If you want to use scrapy parse to debug, you would now have to set the spider
argument, as follows:

$ scrapy parse --spider=fast http://web:9312/properties/index 00000.html

>>> STATUS DEPTH LEVEL 1 <<<
Scraped ItemS —------- - oo oo
[{*address': [u'Angel, London'l],

. 30 items...
RequestsS —-------m oo oo -
[<GET http://web:9312/properties/index 00001.html>]

Exactly as we expected, parse () returns 30 Items and one Request to the next index
page. Feel free to experiment with scrapy parse by, for example, passing - -depth=2.

A spider that crawls based on an Excel file

Most of the time you have one spider per source web-site, but there are cases where you
want to scrape data from many websites and the only thing that changes between them
is the XPath expressions you use. In these cases, it feels like overkill to have a spider for
every site. Can you crawl through them all with a single spider? The answer is yes.

Let's create a new project for this experiment as the items that we crawl are very
different (actually we won't define any in this project!). I assume that we were in the
properties directory of chos. Let's go one level up, as follows:

$ pwd
/root/book/ch05/properties
$ cd ..

$ pwd

/root/book/ch05

[92]

Chapter 5

We can create a new project named generic and a spider named fromcsv:

$ scrapy startproject generic
$ cd generic

$ scrapy genspider fromcsv example.com

Now let's create a . csv file with what we want to extract. We can use a spreadsheet
program, such as Microsoft Excel, to create this . csv file. Fill in a few URLs and
XPath expressions as shown in the following figure and then save it as todo.csv

in spider's directory (the one with scrapy.cfg). To save as . csv, chose CSV file
(Windows) as file format on the save dialog;:

=] A B C
1 |url name price
2 | httpyfweb:5312 fstatic/a.html | /= [@id="itemTitle"] ftext]) S @id="prclsum”]/text()
3 | httpyfweb:5312 fstatic/b.html | fhlftext]) ffspan/strong/text()
4 | http:yfweb:5312 fstatic/c.html | //*[@id="product-desc”]/span/text()

todo.csv contains URLs and XPath expressions

Great! If it all went fine, you should be able to see the file on your terminal:

$ cat todo.csv

url,name,price
a.html,"//*[@id=""itemTitle""]/text()","//*[@id=""prcIsum""] /text ()"
b.html,//hl/text(),//span/strong/text ()
c.html,"//*[@id=""product-desc""] /span/text ()"

Python has built-in libraries for . csv files. We just have to import csv, and we can
then use the following straightforward code to read the lines one by one as dict. If
we open a Python prompt on the current directory, we can try the following:

$ pwd

/root/book/ch05/generic2

$ python

>>> import csv

>>> with open("todo.csv", "rU") as f:
reader = csv.DictReader (f)
for line in reader:

print line

[93]

Quick Spider Recipes

The first line from the file will be treated automatically as a header and from that
the names of the keys for the dict will be deduced. For each subsequent line, we
get a dict containing the data. We iterate each row with a for loop. If we run the
preceding code, we get the following output:

{rurl': ' http://a.html', 'price': '//*[@id="prcIsum"]/text()"',
'name': '//*[@id="itemTitle"]/text () '}

{rurl': ' http://b.html', 'price': '//span/strong/text()', 'name': '//
hl/text () '}

{rurl': ' http://c.html', 'price': '', 'name': '//*[@id="product-

desc"] /span/text () '}

This is great. Let's now edit our generic/spiders/fromcsv.py spider. We will use
the URLs from the . csv file, and we don't want any domain restrictions. Thus, the
first thing to do is to remove start_urls and allowed_domains. Then we will read
the .csv file.

Since we want to start with URLs that we don't know in advance but we read from a
file instead, we will implement a start_requests () method. For each row, we will
create Request and yield it. We will also store field names and XPaths from csv in
request .meta in order to use them in our parse () function. Then, we use an Item
and an ItemLoader to populate Item's fields. Here's the full code:

import csv

import scrapy

from scrapy.http import Request

from scrapy.loader import ItemLoader
from scrapy.item import Item, Field

class FromcsvSpider (scrapy.Spider) :
name = "fromcsv"

def start requests(self):
with open("todo.csv", "rU") as f:
reader = csv.DictReader (f)
for line in reader:
request = Request (line.pop('url'))
request.meta['fields'] = line
yield request

def parse(self, response):
item = Item()

1 = ItemLoader (item=item, response=response)
for name, xpath in response.meta['fields'].iteritems() :
if xpath:

[94]

Chapter 5

item.fields [name] = Field()
1l.add xpath(name, xpath)
return 1l.load item()

Let's crawl and save the output to an out . csv file:

$ scrapy crawl fromcsv -o out.csv

INFO: Scrapy 0.0.3 started (bot: generic)

DEBUG: Scraped from <200 a.html>

{'name': [u'My item'], 'price': [u'l28']}

DEBUG: Scraped from <200 b.html>

{'name': [u'Getting interesting'], 'price': [u'300']1}
DEBUG: Scraped from <200 c.html>

{'name': [u'Buy this now'l}

INFO: Spider closed (finished)
$ cat out.csv

price,name

128,My item

300,Getting interesting

,Buy this now
This is as neat and straightforward as it gets!

There are some things you may have noticed in the code. Since we don't define
project-wide Items for this project, we have to provide one to ItemLoader manually
as follows:

item = Item()
1 = ItemLoader(item=item, response=response)

We also add fields dynamically using the fields member variable of 1tem. To add a
new field dynamically and have it populated by our ItemLoader, all we have to do
is the following:

item.fields[name] = Field()
1l.add xpath(name, xpath)

[95]

Quick Spider Recipes

We can finally make our code a bit nicer. Hardcoding todo. csv isn't very good
practice. Scrapy gives us a very convenient way to pass arguments to spiders. If we
pass an -a command-line argument, for example, -a variable=value, a spider
property is set for us and we are able to retrieve it with self.variable. In order to
check for the variable and use a default if it isn't provided, we use the getattr ()
Python method: getattr (self, 'variable', 'default').Overall, we replace
our original with open. .. statement with the following one:

with open(getattr(self, "file", "todo.csv"), "rU") as f:

Now, todo.csv is the default value unless it's overridden by setting a source file
explicitly with an -a argument. Given a second file, another_todo.csv, we can run
the following;:

$ scrapy crawl fromcsv -a file=another todo.csv -o out.csv

Summary

In this chapter, we dived a bit deeper into the internals of Scrapy spiders. We used
FormRequest to log in, passed variables around with meta of Request/Response,
used relevant XPaths and Selectors, used . csv files as sources, and much more.

We are now ready to see how we can deploy our spiders in the Scrapinghub cloud
in the brief Chapter 6, Deploying to Scrapinghub before we move onto reviewing the
wealth of Scrapy settings in Chapter 7, Configuration and Management.

[96]

Deploying to Scrapinghub

In the last few chapters, we took a look at how to develop Scrapy spiders. As soon

as we're satisfied with their functionality, we have two options. If all we want is to
use them for a single scrape, we may be okay with letting them run for some time

on our dev machine. On the other hand, quite often, we need to run scraping jobs
periodically. We may use cloud servers from Amazon, RackSpace, or any other
provider, but this requires some setup, configuration and maintenance. This is where
Scrapinghub comes into play.

Scapinghub is the Amazon of Scrapy hosting—a cloud Scrapy infrastructure
provider that is built by lead Scrapy developers. It is a paid service, but they provide
a free tier with no need for a credit card. If you want to have your Scrapy crawler
running on a professionally set up and maintained infrastructure within minutes,
then this chapter is for you.

[97]

Deploying to Scrapinghub
Signing up, signing in, and starting
a project

The first step is to open an account on http: //scrapinghub.com/. All we need is an
e-mail address and a password. After clicking on the link in the confirmation e-mail,
we can log in to the service. The first page that we see is our profile dashboard. We
don't have any projects, so we click on the + Service button (1) to create one:

Emhub Search +* Motifications Help = Status Changelog @ scrapybook
i Organizations & Services Add an organization
& scrapybook organization m

Add new service to organization

& Scrapy Cloud M Portia :ii: Crawlera

E properties | i
oo
| %% scrapybook organization mj
é? Scrapy Clou 4 ®
& properties

H— Yowroew Proiprt o !

Creating a new project with scrapinghub

We can name our project properties (2) and click on the Create button (3). Then, we
click on the new link in the homepage (4) to open the project.

[98]

http://scrapinghub.com/

Chapter 6

scrapinghub search
properties Scrapy Cloud
project id: 28814
organization: scrapybook
0 spiders, 0 members
N Pending Jo}
Iﬁobs th e
Spiders
Collections m e n u
Usage
Raparts Running Jo
Activity
Periodic Jobs
\ Settings

The main menu

The project dashboard is the most important screen for our project. In the menu, on
the left, we can see several sections. Jobs and Spiders sections provide information
about our runs and spiders, respectively. Periodic Jobs enables us to schedule
recurrent crawls. The other four sections are not that useful for us right now.

scrapinghub

properties

project id: 28814
organization: scrapybook
0 spiders, 0 members

Jobs
Spiders
Collections
Usage
Reports
Activity
Periodic |
Settings
Data Retention
Eggs
Items
Members

Scrapy Deploy

Sea k2 Notifications Help ~

Scrapy Cloud properties Settings Scrapy Deploy

Copy and paste the following lines into your project's sc
Project: properties

[deploy]
url = httgs://dash.scrapinghub.com/api/scrapyd/

3. Copy this

Spider deployment settings

We can go directly to the Settings section (1). In contrast to many websites' settings,
Scrapinghub's setting provide lots of functionality one should really be aware of.
Right now, we are mostly interested in the Scrapy Deploy section (2).

[99]

Deploying to Scrapinghub

Deploying our spiders and
scheduling runs

We will deploy directly from our dev machine. In order to do so, we just have to
copy the lines from the Scrapy Deploy page (3) and put them on scrapy.cfg of our
project, replacing the default [deploy] section. You will note that we don't need

to set a password. As an example, we will use the properties project from Chapter

4, From Scrapy to a Mobile App. The reason that we use that spider is that we need
our target data to be accessible from the Web exactly as we used to back in that
chapter. Before we use it, we restore the original settings.py file by removing any
references to the Appery.io pipeline:

The code from this chapter is in the ch06 directory. This
=" example in particular is in the ch06 /properties directory.
$ pwd
/root/book/ch06/properties
$ 1s

properties scrapy.cfg

$ cat scrapy.cfg

[settings]

default = properties.settings

Project: properties

[deployl]

url = http://dash.scrapinghub.com/api/scrapyd/
username = 180128bc7al..... 50e8290db£f3b0
password =

project = 28814

In order to deploy the spider, we will use the shub tool provided by Scrapinghub.
We can install it with pip install shub, and it is already installed on our dev
machine. We can log in to Scrapinghub using shub login, as follows:

$ shub login

Insert your Scrapinghub API key : 180128bc7a0..... 50e8290db£f3b0

Success.

[100]

Chapter 6

We already copied and pasted our API key on the scrapy . c£g file, but we can also find
it by clicking on our username on the upper-right side on Scrapinghub's website and
then API Key. In any case, we are now ready to deploy the spider using shub deploy:
$ shub deploy

Packing version 1449092838

Deploying to project "28814" in {"status": "ok", "project": 28814,
"version": "1449092838", "spiders": 1}

Run your spiders at: https://dash.scrapinghub.com/p/28814/

Scrapy packs all the spiders from this project and uploads them to Scrapinghub.
We will notice two new directories and a file. These are auxiliary, and we can safely
delete them if we wish although typically I don't mind them:

$ 1s

build project.egg-info properties scrapy.cfgsetup.py

$ rm -rf build project.egg-info setup.py

Now, if we click on the Spiders section (1) in Scrapinghub, we will find the tomobile
spider that we've just deployed:

[Scrapingnub Search > Notifications Help ~

properties Scrapy Cloud properties | Spiders
project id: 28813
organization: scrapybi.«1< Spiders

1 spiders, 0 mempers

2

Jobs Spider name Archived spiders
I Spiders
ider Last Run *
Collections
tomobile --
Usage
Reports

Activity 10 4 Spiders per page

Periodic Jobs

Cattimae

Selecting the spider

[101]

Deploying to Scrapinghub

If we click on it (2), we get to the spider dashboard. This has lots of information, but
all we need to do is click the green Schedule button (3) on the top-right corner, and
then the second Schedule button (4) on the popup.

m Go to Portia e B S e O S S s
i Schedule Spider

i
3 ! Current version:
! Spiders
__
tomobile
Priority

Normal

Running Jokz (1) 5 : \
% :

{ Job Spider Iumsl Mests Errors Log IlunllmeE m

1/1 gmeblle. 423 391 0 L

(51— 7 (Complesdjobs®

Completed Jobs (1)

Job Spider Yms o
tomobile
/1 889087760 14

Remove Restart

Scheduling a spider run

After a few seconds, we will notice a new row on the Running Jobs section of the
page and a bit later the number of Requests and Items increasing (5).

M You will likely not reduce scraping speed compared to your dev
Q runs. Scrapyhub uses an algorithm to estimate the number of
requests per second that you can perform without getting banned.

Let it run for a while, and then select the checkbox of this job (6) and click Stop (7).

After a few more seconds our job will end up on the Completed Jobs section. In
order to inspect scraped items, we can click on the number of items link (8).

Accessing our items

This takes us to the job dashboard page. From this page we can inspect our items (9)
and make sure that they look okay. We can also filter them with the controls above
those items. As we scroll down the page, more items get automatically loaded.

[102]

Chapter 6

(S:f.lm«(lnud properties | Spiders | tomobile | Job) *——v 11 [L.‘c._m][nm.;,., \ It
(_‘ch Items (799) Requests (1620) Log (22) Stuls_) *—_ 10 Gera
CSV

Filter by Field: t i r * Al ltems P update
JSON
ltem 0 2015-12-02 21:4%:10 UTC 9 JSON Lines a
XML

same G 13 12

description smoking
reception refurbished studlo length selection newingron fi de Random

price 280.03 Latest
url http:/ fscrapybook.53.amazonaws.com/ properties/ pr

address Chiswick, London

date 1449092934903

image_urls hitp://scrapybook.s3.amazonaws.com/images/il3.jpg

project properties

server hw-shared-02-54

Inspecting and exporting items

If something went wrong, we can find useful information on our Requests and

Log just above Items (10). We can navigate back to the spider or project using the
breadcrumbs at the top (11). Of course, we can download our items in the usual CSV,
JSON, and JSON Lines formats by clicking on the green Items button on the top left
(12) and then selecting the appropriate option (13).

Another way to access our items is through Scrapinghub's Items API. All we need to
do is have a look at the URL of this job's or items' page. It will look similar to this:

https://dash.scrapinghub.com/p/28814/job/1/1/

On this URL, 28814 is the project number (we have also set this in the scrapy . cfg file
before) then the first 1 is the number/ID of this spider (the one named "tomobile"),
and the second 1 is the number of the job. Using these three numbers in this order, we
can use curl from our console to retrieve our items by making a request to https://
storage.scrapinghub.com/items/<project id>/<spider id>/<job ids> and
using our username/ API key to authenticate, as follows:

$ curl -u 180128bc7a0..... 50e8290db£f3b0: https://storage.scrapinghub.com/
items/28814/1/1
{" type":"PropertiesItem", "description": ["same\r\nsmoking\r\nr...

{" type":"PropertiesItem", "description": ["british bit keep eve...

If it asks for a password, we can leave it blank. Having programmatic access to our
data allows us to write applications that use Scrapinghub as a data storage backend.
Please keep in mind though that data won't be stored indefinitely but for a limited
time depending on our subscription plan (seven days for the free plan).

[103]

Deploying to Scrapinghub

Scheduling recurring crawls

I guess that by now you won't be surprised to hear that scheduling recurrent crawls
is a matter of just a few clicks.

scrapinghub Search + Motifications Help » Status Changelog @ scrapybook &
pro penje s Scrapy Cloud properties Periodic Jobs
project id: 28814
Urgar;izaliun: scrapybook Spiders m
1 spiders, 0 members R e [
Month i Add Periodic Job Bd Actions
Jobs 1
SBider 1 Scripts | Spiders Choose Month
piders H
Collections ' omobile Every month
No scripts, {
Usage , Tags Choose Day of Week
Reports : pe 1o add tags Every day =
Activity i
I Periodic Jobs . Priority Choose Day of Month
Settings Normal ¥ 4 Every day E
---—---——--——--—-------------------------------:' Arguments © Choose Hour P e s
Every hour

Choose Minutes
(i1}

Scheduling recurrent crawls

We just go to the Periodic Jobs section (1), click Add (2), set the spider (3), adjust the
crawling frequency (4), and finally click Save (5).

Summary

In this chapter, we had our first experience with deploying a Scrapy project to the
cloud using Scrapinghub. We scheduled a run and collected thousands of items
that we were able to browse and extract easily by using the APL In the following
chapters, we will keep building our knowledge up to the level of setting up a small
Scrapinghub-like server for ourselves. We start in the next chapter by exploring
configuration and management.

[104]

Configuration and
Management

We just saw how easy it is to develop a simple spider with Scrapy and use it to
extract data from the Web. Scrapy comes with lots of utilities and functionality that
is made available through its settings. For many software frameworks, settings are
the "geeky stuff" that fine tune how the system works. For Scrapy, settings are one of
the most fundamental mechanisms, which, beyond tuning and configuration, enable
functionality and allow us to extend the framework. We don't aim to compete with
the excellent Scrapy documentation but supplement it by helping you navigate the
settings landscape faster and find the ones that are most relevant to you. Please read
the details on the documentation before you move your changes to production.

[105]

Configuration and Management

Using Scrapy settings

With Scrapy, you can modify settings in five levels of increasing priority. We will see
each of them in turn. The first level is the default settings. You wouldn't typically need
to modify the default settings but scrapy/settings/default_settings.py (in your
system's Scrapy source code or Scrapy's GitHub) is certainly an interesting read. The
default settings get refined at command level. Practically speaking, you shouldn't ever
have to worry about this unless you are implementing custom commands. More often
than not, we modify settings just after the command level on our project's <project_
name>/settings.py file. Those settings apply on our current project only. This level
is the most convenient because settings.py gets packaged when we deploy the
project in a cloud service, and since it's a file, we can adjust tens of settings easily

with our favourite text editor. The next level is its per-spider settings level. By using a
custom_settings attribute in our spider definitions, we can easily customize settings
per spider. This would allow us, for example, to enable or disable Item Pipelines for

a given spider. Finally, for some last-minute modifications, we can pass settings on
the command line using the -s command-line parameter. We have already done this
several times by setting, for example -s CLOSESPIDER PAGECOUNT=3, which enables
the close spider extension and closes the spider early. In this level, we may want to set
API secrets, passwords, and so on. Don't store these things in settings.py because
most likely, you don't want them to accidentally end up checked in to some

public repository.

Throughout this section, we will examine some very important commonly-used
settings. To get a feeling of different types, try the following with any random project:

$ scrapy settings --get CONCURRENT REQUESTS
16

What you get is the default value. Then, modify your project's <project_names>/
settings.py file and set a value for CONCURENT REQUESTS, for example, 14. The
preceding scrapy settings command will give you the value that you just set—don't
forget to revert it. Then, by setting the argument explicitly from the command line you
get the following:

$ scrapy settings --get CONCURRENT REQUESTS -s CONCURRENT REQUESTS=19
19

The preceding output hints at an interesting thing. scrapy crawl and scrapy
settings are just commands. Every command uses the methodology that we just
described to load settings. An example of this is as follows:

$ scrapy shell -s CONCURRENT REQUESTS=19
>>> settings.getint (' CONCURRENT REQUESTS')
19

[106]

Chapter 7

Whenever you need to find out what the effective value for a setting is within

your project, use one of the preceding methods. We will now have a closer look at
Scrapy's settings.

Essential settings

Scrapy has so many settings that categorizing them becomes an urgent necessity. We
start with the most essential settings that we summarize in the following diagram.
They give you awareness of the important system features and you may find
yourself adjusting them somewhat frequently.

~ DEPTH_LIMIT

LOG_LEVEL Depih | DEFTH PRIORITY
LOGSTATS_INTERVAL - SCHEDULER_DISK_QUEUE
LOG_ENABLED Logging (1 9 _ SCHEDULER_MEMORY QUEUE
LOG_FILE ~ e } ROBOTSTXT_OBEY
LOG_STDOUT ~ 7' ,'/ - COOKIES ENABLED
STATS_DUMP /Q / Crawling style | REFERER_ENABLED
DOWNLOADER_STATS — B USER_AGENT
DEFTH_STATS Stata Analysis - DEFAULT_REQUEST HEADERS
DEPTH_STATS VERBOSE — |\ [
STATSMAILER_RCPTS — |9='fPU’
TELNETCONSOLE ENABLED -\ | | FEED_URI
TELNETCONSOLE_PORT -/ \ FEED_FORMAT
{ gﬁ% FEED_STORE_EMPTY
\ | Feeds FEED_EXPORT_FIELDS
CONCURRENT REQUESTS | FEED. URI PARAMS
CONCURRENT_REQUESTS_PER_DOMAIN | |
CONCURRENT REQUESTS PER_IP L
CONCURRENT_ITEMS g | I' ~ IMAGES_STORE
DOWNLOAD_ TIMEOUT ! IMAGES_EXPIRES
DOWNLOAD_DELAY Performance , . IMAGES_THUMBS
RANDOMIZE DOWNLOAD DELAY Essential (~ Images URLS_FIELD
DNSCACHE, ENABLED settings EJ RESULT_FIELD
‘ J MIN_HEIGHT
o i / [l Media download - IMAGES MIN_WIDTH
CLOSESPIDER ERRORCOUNT — ' / I ~ FILES_STORE
CLOSESPIDER_ITEMCOUNT _ -~ g \ L Fites } FILES_EXPIRES
CLOSESPIDER_PAGECOUNT — / \ FILES_URLS_FIELD
crosesriner_tmeour | Closing | | ‘- FILES_RESULT_FIELD
1
\
/ \
HTTPCACHE_ENAELED / | -
HTTPCACHE. DIR / | .. [AWS_ACCESS_KEY_ID
. / \ e AWS_SECRET_ACCESS_KEY
HTTPCACHE POLICY - / \ AWS
HTTFCACHE_STORAGE 2 N
HTTPCACHE DBEM_MODULE - 9 v
HTTPCACHE_EXPIRATION SECS _) "-.‘\
HTTPCACHE_IGNORE_HTTP_CODES - Http Cache) hitp_proxy 8
HTTFCACHE_IGNORE_MISSING - AN w https_praxy = Envir ab
HTTPCACHE_IGNORE_SCHEMES - Prosying no_praxy S

HTTPCACHE_GZIP

Essential Scrapy settings

Analysis

By using those settings you can configure the way Scrapy provides performance and
debugging information via logs, statistics, and the telnet facility.

[107]

Configuration and Management

Logging

Scrapy has different levels of logs based on their severity: DEBUG (lowest level), INFO,
WARNING, ERROR, and CRITICAL (highest level). Beyond that, there's a SILENT level
that you can use to get no logging whatsoever. You can restrict the log file to only
accept logs above a certain level by setting .0G_LEVEL to the minimum desired level.
We often set this value to INFO because DEBUG is a bit too verbose. One very useful
Scrapy extension is the Log Stats extension, which prints the number of items and
pages scraped per minute. Logging frequency is set with the LOGSTATS INTERVAL
setting to a default value of 60 seconds. This may be a bit too infrequent. While
developing, I like to set that to five seconds because most runs are short. Logs

are written to the file that is set in Log_FILE. Unless set, the output will go to the
standard error except if logging gets explicitly disabled by setting the LOG_ENABLED
setting to False. Finally, you can tell Scrapy to record all of its standard output (for
example, "print" messages) to the log by setting LOG_STDOUT to true.

Stats

STATS_DUMP is enabled by default, and it dumps values from the Stats Collector to
the log once the spider is finished. You can control whether stats are recorded for the
downloader by setting DOWNLOADER_STATS to False. You can also control whether
stats are collected for site depth through the DEPTH STATS setting. For more detailed
information on depth, set DEPTH_STATS_VERBOSE to True. STATSMAILER_RCPTS is a
list (for example, set to ['mye@mail.com']) of e-mails to send stats to when a crawl
finishes. You won't adjust these settings that often but they can occasionally help
with debugging.

Telnet

Scrapy includes a built-in telnet console that gives you a Python shell to the
running Scrapy process. TELNETCONSOLE_ENABLED is enabled by default, while
TELNETCONSOLE_PORT determines the port(s) that is used to connect to the console.
You may need to alter them in case of a conflict.

Example 1 — using telnet

There will be cases where you would like to have a look on the internal status of
Scrapy while it is running. Let's see how we can do that with the telnet console:

The code from this chapter is in the ch07 directory. This
s example in particular is in the ch07/properties directory.

[108]

Chapter 7

$ pwd
/root/book/ch07/properties

$ 1s

properties scrapy.cfg

Start a crawl as follows:

$ scrapy crawl fast

[scrapy] DEBUG: Telnet console listening on 127.0.0.1:6023:6023

The preceding message means that telnet is activated and listening in port 6023.
Now on another terminal, use the telnet command to connect to it:
$ telnet localhost 6023

>>>

Now, this console gives you a Python console inside Scrapy. You can inspect several
components, such as the engine using the engine variable, but in order to get a quick
overview of the status, you can use the est () command:

>>> est()

Execution engine status

time () -engine.start time : 5.73892092705
engine.has capacity () : False

len (engine.downloader.active) : 8

len (engine.slot.inprogress) : 10

len (engine.scraper.slot.active) : 2

We will explore a few of the metrics there in Chapter 10, Understanding Scrapy's
Performance. You will notice that you are still running this inside the Scrapy
engine. Let's assume that you use the following command:

>>> import time

>>> time.sleep(l) # Don't do this!

You will notice a short pause in the other terminal. Certainly this console isn't the
right place to calculate the first million digits of Pi. Some other interesting things you
can do in the console are to pause, continue, and stop the crawl. You may find these
and the terminal in general very useful while working with Scrapy sessions in
remote machines:

[109]

Configuration and Management

>>> engine.pause|()
>>> engine.unpause()
>>> engine.stop ()

Connection closed by foreign host.

Performance

We will have a detailed look at these settings in Chapter 10, Understanding Scrapy's
Performance, but here is a little summary. Performance settings let you adjust the
performance characteristics of Scrapy to your particular workload. CONCURRENT _
REQUESTS sets the maximum number of requests to be performed simultaneously.
This mostly protects your server's outbound capacity in case you are crawling many
different websites (domains/IPs). Unless that's the case, you will typically find
CONCURRENT REQUESTS_PER_DOMAIN and CONCURRENT REQUESTS_PER_IP more
restrictive. These two protect remote servers by limiting the number of simultaneous
requests for each unique domain or IP address, respectively. If CONCURRENT
REQUESTS_PER_IP is non-zero, CONCURRENT REQUESTS_PER DOMAIN gets ignored.
These settings are not per second. If CONCURRENT REQUESTS = 16 and the average
request takes a quarter of a second, your limit is 16 / 0.25 = 64 requests per second.
CONCURRENT _ITEMS sets the maximum number of items from each response that

can be processed simultaneously. You may find this setting way less useful than it
seems because quite often there's a single Item per page/request. The default value
of 100 is also quite arbitrary. If you reduce it to, for example, 10 or 1 you might even
see performance gains depending on the number of Items/request as well as how
complex your pipelines are. You will also note that as this value is per request, if you
have a limit of CONCURRENT REQUESTS = 16, CONCURRENT_ITEMS = 100 might mean up
to 1600 items concurrently trying to be written in your databases, and so on. I would
prefer a little bit more conservative value for this setting in general.

For downloads, DOWNLOAD TIMEOUT determines the amount of time the downloader
will wait before canceling a request. This is 180 seconds by default, which by all
means seems excessive (with 16 concurrent requests this would mean five pages/
minute for a site that is down). I would recommend reducing it to, for example,

10 seconds if you have timeout issues. By default, Scrapy sets the delay between
downloads to zero to maximize scraping speed. You can modify this to apply a more
conservative download speed using the DOWNLOAD_DELAY setting. There are websites
that measure the frequency of requests as an indication of "bot" behavior. By setting
DOWNLOAD_DELAY, you also enable a £50% randomizer on download delay. You can
disable this feature by setting RANDOMIZE _DOWNLOAD_DELAY to False.

Finally, for faster DNS lookups, an in-memory DNS cache is enabled by default via
the DNSCACHE_ENABLED setting.

[110]

Chapter 7

Stopping crawls early

Scrapy's CloseSpider extension automatically stops a spider crawl when a condition
is met. You can configure the spider to close after a period of time, after a number

of items have been scraped, after a number of responses have been received, or after
a number of errors have occurred using the CLOSESPIDER TIMEOUT (in seconds),
CLOSESPIDER_ITEMCOUNT, CLOSESPIDER_PAGECOUNT, and CLOSESPIDER ERRORCOUNT
settings, respectively. You will usually set them from the command line while
running the spider as we've done a few times in previous chapters:

$ scrapy crawl fast -s CLOSESPIDER ITEMCOUNT=10
$ scrapy crawl fast -s CLOSESPIDER PAGECOUNT=10
$ scrapy crawl fast -s CLOSESPIDER TIMEOUT=10

HTTP caching and working offline

Scrapy's HttpCacheMiddleware component (deactivated by default) provides a
low-level cache for HTTP requests and responses. If enabled, the cache stores every
request and its corresponding response. By setting HTTPCACHE POLICY to scrapy.
contrib.httpcache.RFC2616Policy, we can enable a way more sophisticated
caching policy that respects website's hints according to REC2616. To enable this
cache, set HTTPCACHE_ENABLED to True and HTTPCACHE_DIR to a directory on the
filesystem (using a relative path will create the directory in the project's data folder).

You can optionally specify a database backend for your cached files by setting

the storage backend class HTTPCACHE _STORAGE to scrapy.contrib.httpcache.
DbmCacheStorage and, optionally, adjusting the HTTPCACHE_DBM_MODULE setting
(defaults to anydbm). There are a few more settings that fine-tune cache's behavior
but the defaults are likely to serve you fine.

Example 2 — working offline by using the cache

Let's assume that you run the following code:

$ scrapy crawl fast -s LOG LEVEL=INFO -s CLOSESPIDER ITEMCOUNT=5000

You will notice that it takes about a minute to complete. If you didn't have access to
the web server though, you would be unable to crawl anything. Let's assume that
you now run the crawl again as follows:

$ scrapy crawl fast -s LOG_LEVEL=INFO -s CLOSESPIDER ITEMCOUNT=5000 -s
HTTPCACHE ENABLED=1

INFO: Enabled downloader middlewares:...*HttpCacheMiddleware*

[111]

Configuration and Management

You will notice that Ht tpcacheMiddleware got enabled, and if you look into the
hidden directories on your current directory you will find a new . scrapy directory
as follows:

$ tree .scrapy | head
.scrapy
L— httpcache
L easy

— o0

| — 002054968919£f13763a7292¢c1907caf06d45a4810

| | — meta

| | — pickled meta

| | — request body

| | — request headers

I

— response body

Now if you rerun your scrape even in the case when you don't have access to the
web server for a bit fewer items, you will notice it finishing faster:

$ scrapy crawl fast -s LOG LEVEL=INFO -s CLOSESPIDER ITEMCOUNT=4500 -s
HTTPCACHE ENABLED=1

We use a bit fewer items as a limit because when stopping using CLOSESPIDER_
ITEMCOUNT, we often read a few more pages before the crawler stops completely, and
we wouldn't like to hit ones not available in our cache. To clean the cache, just delete the
cache directory:

$ rm -rf .scrapy

Crawling style

Scrapy lets you adjust how it chooses which pages to crawl first. You can set a
maximum depth in the DEPTH_LIMIT setting, with 0 meaning no limit. Requests can
be assigned priorities based on their depth through the DEPTH_PRIORITY setting.
Most notably this allows you to perform a Breadth First Crawl by setting this value
to a positive number and switching scheduler's queues from LIFO to FIFO:

DEPTH PRIORITY = 1
SCHEDULER _DISK QUEUE = 'scrapy.squeue.PickleFifoDiskQueue'

SCHEDULER MEMORY QUEUE = 'scrapy.squeue.FifoMemoryQueue'

[112]

Chapter 7

This is useful when you crawl, for example, a news portal that has the most recent
news closer to the home page while each news page has links to other related news.
The default Scrapy behavior would be to go as deeply as possible in the first few news
stories in the home page and only after that continue with subsequent front-page
news. BFO order would crawl top-level news before proceeding further, and when
combined with a DEPTH_LIMIT, such as 3, it might allow you to quickly scan the latest
news on a portal.

Sites declare their crawler policies and hint at uninteresting parts of their structure
with a web-standard robots. txt file in their root directory. Scrapy can take it into
consideration if you set the ROBOTSTXT_OBEY setting to True. If you enable it, keep it
in mind while debugging in case you notice any unexpected behavior.

The cookiesMiddleware transparently takes care of all cookie-related operations,
enabling among others, session tracking, which allows you to log in, and so

on. If you want to have more "stealth" crawling, you can disable this by setting
COOKIES_ENABLED to False. Disabling cookies also slightly reduces the bandwidth
that you use and might speed up your crawling a little bit depending on the
website. Similarly, the REFERER ENABLED setting is True by default, enabling
RefererMiddleware, which populates Referer headers. You can define custom
headers using DEFAULT_REQUEST_HEADERS. You may find this useful for weird sites
that ban you unless you have particular request headers. Finally, the automatically
generated settings.py file recommends that we set USER_AGENT. This defaults to
the Scrapy version, but we should change it to something that allows website owners
to be able to contact us.

Feeds

Feeds let you export the data that is scraped by Scrapy to the local filesystem or to a
remote server. The location of the feed is determined by FEED URI.FEED URI and may
have named parameters. For example, scrapy crawl fast -o "% (name)s_% (time)
s.3j1" will automatically have the current time and spider name (fast) filled in on
the output file. If you needed a custom parameter, such as % (foo) s, feed exporter
will expect you to provide a foo attribute in your spider. The storage of the feed,

such as S3, FTP, or local filesystem is defined in the URI as well. For example, FEED
URI='s3://mybucket/file.json' will upload your file to Amazon's S3 using your
Amazon credentials (AWS_ACCESS_KEY_ID and AWS_SECRET ACCESS_KEY). The format
of the feed —JSON, JSON Lines, CSV, and XML —is determined by FEED_FORMAT. If it
is not set, Scrapy will guess it according to the extension of FEED_URI. You can choose
to export empty feeds by setting FEED STORE_EMPTY to true. You can also choose to
export only certain fields using the FEED_EXPORT FIELDS setting. This is particularly
useful for . csv files that feature fixed header columns. Finally, FEED URI_PARAMS is
used to define a function to postprocess any parameters to FEED_URI.

[113]

Configuration and Management

Downloading media

Scrapy can download media content using the Image Pipeline, which can also convert
images to different formats, generate thumbnails, and filter images based on size.

The IMAGES_STORE setting sets the directory where images are stored (using a relative
path will create a directory in the project's root folder). The URLs for the images for
each Itemshould be in its image urls field (this can be overridden by the IMAGES_
URLS_FIELD setting) and filenames for the downloaded images will be set to a new
images field (this can be overridden by the IMAGES_RESULT FIELD setting). You can
filter out smaller images by setting IMAGES_MIN WIDTH and IMAGES_MIN_ HEIGHT.
IMAGES_EXPIRES determines the number of days that images will be kept in the
cache before they expire. For thumbnail generation, the IMAGES_THUMBS setting lets
you define one or more thumbnails to generate along with their dimensions. For
instance, you could have Scrapy generate one icon-sized thumbnail and one medium
thumbnail for each downloaded image.

Other media

You can download other media files using the Files Pipeline. Similarly to images,
FILES_STORE determines where files get downloaded and FILES_EXPIRES determines
the number of days that files are retained. The FILES_URLS_FIELD and FILES
RESULT_FIELD settings have similar functionality to their IMAGES * counterparts.
Both the files and image pipelines can be active at the same time without conflict.

Example 3 — downloading images

In order to use image functions, we have to install the image package with sudo pip
install image. In our dev machine, this has already been done for us. To enable
the Image Pipeline, you just have to edit your project's settings.py file and add a
few settings. The first one is including scrapy.pipelines.images.ImagesPipeline
on your ITEM PIPELINES. Also, set IMAGES_STORE to a relative path "images", and
optionally a description for some thumbnails by setting IMAGES_THUMBS, as follows:

ITEM PIPELINES = {

'scrapy.pipelines.images.ImagesPipeline': 1,
}
IMAGES_STORE = 'images'
IMAGES THUMBS = { 'small': (30, 30) }

We already have an image_urls field set appropriately for our Item, so we are ready
to run it as follows:

[114]

Chapter 7

$ scrapy crawl fast -s CLOSESPIDER ITEMCOUNT=90

DEBUG: Scraped from <200 http://http://web:9312/.../index 00003.html/
property 000001.html>{

'image urls': [u'http://web:9312/images/i02.jpg']l,
'images': [{'checksum': 'c5b29f4b223218e5b5beece79fe31510",
‘path': 'full/705a3112e67...alf.jpg’,
'url': 'http://web:9312/images/i02.jpg'}],

$ tree images

images

— full

| — 0abf072604d£23b3be3ac51c9509999fa92ea3ll.jpg
| — 1520131b5cc5£656bc683ddf5eab9b63el2c45b2. jpg

L— thumbs
L— small
F—— 0abf072604df23b3be3ac51c9509999fa92ea3ll. jpg
F—— 1520131b5cc5£656bc683ddf5eab9b63el2c45b2. jpg

We see that the images were successfully downloaded and thumbnails were created.
The JPG names for the main files get stored in the images field as expected. It's easy
to infer thumbnails' paths. To clean the images we can use rm -rf images.

Amazon Web Services

Scrapy has built-in support to access Amazon web services. You can store your AWS
access key in the AWS_ACCESS_KEY_ID setting, and you can store your secret key in
the AWS_SECRET_ACCESS_KEY setting. Both of these settings are empty by default.
They are used as follows:

* When you download URLs that start with s3:// (that instead of http://,
and so on)

* When you use s3:// paths to store files or thumbnails with the
media pipelines

* When you store your output Item feed on ans3:// directory

It's a good idea to NOT store these settings in your settings.py file in case it
becomes public one day for any reason.

[115]

Configuration and Management

Using proxies and crawlers

Scrapy's HttpProxyMiddleware component lets you use the proxy settings that are
defined by the http_proxy, https_proxy, and no_proxy environment variables in
accordance with the Unix convention. This component is enabled by default.

Example 4 — using proxies and Crawlera's
clever proxy

DynDNS (or any similar service) provides a free online tool to check your current
IP address. Using a Scrapy shell, we'll make a request to checkip.dyndns.org and
examine the response to find our current IP address:

$ scrapy shell http://checkip.dyndns.org
>>> response.body

'<html><head><title>Current IP Check</title></head><body>Current IP
Address: XXX.XXX.XXX.xxx</body></html>\r\n'

>>> exit()

To start proxying requests, exit the shell and use the export command to set a new
proxy. You can test a free proxy by searching through HMA's public proxy list
(http://proxylist.hidemyass.com/). For example, let's assume that from this list,
we chose the proxy with IP 10.10.1.1 and port 80 (not a real one —replace it with
your own), we have the following:

$ # First check if you already use a proxy

$ env | grep http proxy

$ # We should have nothing. Now let's set a proxy
$ export http proxy=http://10.10.1.1:80

Rerun the Scrapy shell, as we just did, and you will see that the request was
performed using a different IP. You will also notice that it will typically be quite
slower, and in some cases it won't be successful, in which case you could try another
proxy. To disable the proxy, exit the Scrapy shell and unset http_ proxy (or restore
its previous value).

Crawlera is a service by Scrapinghub and lead developers of Scrapy that acts

like a very clever proxy. Apart from using a large pool of IPs behind the scenes
to route your requests, it also adjusts the delays and retries failures to give you a
stable stream of successful responses as much as possible while remaining as fast
as possible. It's essentially a scraper's dream come true, and you can use it just by
setting the http_proxy environment variable as before:

$ export http proxy=myusername:mypassword@proxy.crawlera.com:8010

[116]

checkip.dyndns.org
http://proxylist.hidemyass.com/

Chapter 7

Beyond HTTP proxy, Crawlera can also be used via its own middleware component
for Scrapy.

Further settings

We will now explore some less common aspects of Scrapy and settings related to
extending Scrapy, which we will see in more detail in later chapters.

~ RETRY_ENABLED

|- RETRY_TIMES

- RETRY_HTTP_CODES

- RETRY_PRIORITY_ADJUST
REDIRECT_ENABLED

BOT_NAME - -
NEWSFIDER_MODULE — - REDIRECT_MAX_TIMES
SPIDER_MODULES (- REDIRECT_MAX_METAREFRESH_DELAY
TEMPLATES_DIR Ve 0o |- REDIRECT_PRIORITY_ADJUST
DEFAULT ITEM_CLASS - ’ - METAREFRESH ENABLED
EDITOR Downloading | ey pepresi_maxpeLay

- HTTPFERROR_ALLOWED_ CODES
| ~ URLLENGTH_LIMIT
i - COMPRESSION_ENAELED

SCRAPY_SETTINGE _MODULE j
SCRAPY_PROJECT -

Environment variables

MAIL_FROM - |
MAIL_HOST II - AJAXCRAWL_ENABLED
MAIL_PORT {
MAIL_USER @ |
MAIL_PASS Mail | AUTOTHROTTLE,_ENABLED
MAIL 115 | AUTOTHROTTLE. START DELAY
MAIL_SSL | AUTOTHROTTLE_MAX_DELAY

\ | Autothrottle AUTOTHROTTLE._DEBUG

ITEM_PIPELINES -
SPIDER. MIDDLEWARES - Further
SPIDER_CONTRACTS - settings
EXTENSIONS - MEMUSAGE_WARNING_MB
FEED_EXPORTERS |\ — MEMUSAGE_LIMIT_MEB
FEED_STORAGES | I Memoryusage | MEMUSAGE_NOTIFY_MAIL
f \ 3 MEMDERUG_ENABLED

DOWNLOAD_HANDLERS -

DOWNLOADER_MIDDLEWARES _|

COMMANDS_MODULE / |

EXTENSIONS BASE -,

ITEM_FIPELINES_BASE -,
DOWNLOADER_MIDDLEWARES BASE

DOWNLOAD_HANDLERS BASE Base Classes —

SPIDER.MIDDLEWARES BASE -

SPIDER_CONTRACTS_BASE -

FEED _EXPORTERS _BASE \
DOWNLOADER \ @ [_ DUPEFILTER_DEBUG

SCHEDULER COOKIES_DEBUG

STATS_CLASS Debugging -
ITEM_PROCESSOR
LOG_FORMATTER
DUPEFILTER_CLASS
SPIDER_LOADER_CLASS
DOWNLOADER_HTTPCLIENTFACTORY
DOWNLOADER_CLIENTCONTEXTFACTORY

[N L MEMDEBUG NOTIFY

3 ENCODING
‘ DATEFORMAT
Logging | LOG_FORMAT

Extending

Classes

Further Scrapy settings

[117]

Configuration and Management

Project-related settings

Under this umbrella, you will find housekeeping settings related to a specific project,
such as BOT_NAME, SPIDER_MODULES, and so on. It's good to have a quick look at
them in the documentation because they may increase your productivity for specific
use cases, but typically, Scrapy's startproject and genspider commands provide
sensible defaults and you may be okay without ever explicitly changing them.
Mail-related settings, such as MAIL_FROM, allow you to configure the MailSender
class, which is currently used to mail stats (see also: STATSMAILER RCPTS) and
memory usage (see also: MEMUSAGE NOTIFY MAIL). There are also two environment
variables, SCRAPY SETTINGS_ MODULE and SCRAPY_ PROJECT, that allow you to fine
tune the way a Scrapy project integrates within, for example, a Django project.
scrapy . cfg also allows you to adjust the name of your settings module.

Extending Scrapy settings

These are settings that allow you to extend and modify almost every aspect of
Scrapy. The king of these settings is definitely ITEM PIPELINES. It allows you to
use Item Processing Pipelines on your projects. We will see many such examples in
Chapter 9, Pipeline Recipies. Beyond pipelines, we can extend Scrapy in various ways,
some of them are summarized in Chapter 8, Programming Scrapy. COMMANDS _MODULE
allows us to add custom commands. For example, let's assume that we add in a
properties/hi.py file to the following:

from scrapy.commands import ScrapyCommand
class Command (ScrapyCommand) :
default settings = {'LOG_ENABLED': False}
def run(self, args, opts):
print ("hello")

As soon as we add COMMANDS MODULE='properties.hi' onour settings.py file,
we activate this trivial command making it show up in Scrapy's help and run with
scrapy hi. The settings that are defined in a command's default_settings get
merged into a project's settings overriding the defaults but with lower priority to
settings that defined on your settings.py file or set in the command line.

Scrapy uses the -_BASE dictionaries (for example, FEED_EXPORTERS_BASE) to store
default values for various framework extensions and then allows us to customize
them in our settings.py file and command line by setting their non-_BASE versions
of them (for example, FEED_EXPORTERS).

[118]

Chapter 7

Finally, Scrapy uses settings, such as DOWNLOADER or SCHEDULER, which hold
package/ class names for essential components of the system. We could potentially
inherit from the default downloader (scrapy.core.downloader.Downloader),
overload a few methods, and then set our custom class on the DOWNLOADER setting.
This allows developers to experiment wildly with experimental features and eases
automated testing, but you shouldn't ever have to modify them unless you really
know what you're doing.

Fine-tuning downloading

The RETRY_* REDIRECT ¥ and METAREFRESH_* settings configure the Retry, Redirect
and Meta-Refresh middleware, respectively. For example, REDIRECT PRIORITY
ADJUST set to 2 means that every time there's a redirect, the new request will be
scheduled after all non-redirected requests get served, and REDIRECT MAX_TIMES

set to 20 means that after 20 redirects the downloader will give up and return
whatever it has. It's nice to be aware of these settings in case you crawl some ill-cased
websites, but the default values will serve you fine in most cases. The same applies to
HTTPERROR_ALLOWED_CODES and URLLENGTH_LIMIT.

Autothrottle extension settings

The AUTOTHROTTLE_* settings enable and configure the autothrottle extension. This
comes with a great promise, but in practice, I find that it tends to be somewhat
conservative and difficult to tune. It uses download latencies to get a feeling of how
loaded our and the target server are and adjusts downloader's delay accordingly. If
you have a hard time finding the best value for DOWNLOAD_DELAY (defaults to 0), you
should find this module useful.

Memory UsageExtension settings

The MEMUSAGE_* settings enable and configure the memory usage extension. This
shuts down the spider when it exceeds a memory limit. This could be useful in

a shared environment where processes have to be very polite. More often, you
may find it useful to receive just its warning e-mail by disabling the shut down
functionality by setting MEMUSAGE_LIMIT_MB to 0. This extension works only on
Unix-like platforms.

[119]

Configuration and Management

MEMDEBUG_ENABLED and MEMDEBUG_NOTIFY enable and configure the memory
debugger extension, printing the number of live references on spider close. Overall,
I would say that chasing memory leaks isn't fun or easy (okay, it might be a bit fun).
Read the excellent documentation on Debugging memory leaks with trackref, but most
importantly, I would suggest keeping your crawls relatively short, batched, and in
accordance with your server's capacity. I think there's no good reason to run batches
of more than a few thousand pages or more than a few minutes long,.

Logging and debugging

Finally, there are a few logging and debugging functions. LOG_ENCODING, LOG_
DATEFORMAT and LOG_FORMAT let you fine tune your logging formats, which you
may find useful if you intend to use log-management solutions, such as Splunk, or
Logstash, and Kibana. DUPEFILTER_DEBUG and COOKIES_DEBUG will help you debug
relatively complex situations where you get less than expected requests, or your
sessions get lost unexpectedly.

Summary

By reading this chapter, I'm sure you appreciate the depth and breadth of the
functionality that you get using Scrapy when compared with a crawler that you
might write from scratch. If you need to fine-tune or extend Scrapy's functionality,
you have plenty of options, as we will see in the following chapters.

[120]

Programming Scrapy

Up to this point, we wrote spiders whose main responsibility is to define the

way we crawl data sources and how we extract information from them. Beyond
spiders, Scrapy provides mechanisms that allow us to fine-tune most aspects of its
functionality. For example, you may often find yourself dealing with some of the
following problems:

1.

You copy and paste lots of code among spiders of the same project. The
repeated code is more related to data (for example, performing calculations
on fields) rather than data sources.

You have to write scripts that postprocess 1tems doing things like dropping
duplicate entries or postprocessing values.

You have repeated code across projects to deal with infrastructure.

For example, you might need to log in and transfer files to proprietary
repositories, add Items to databases, or trigger postprocessing operations
when crawls complete.

You find aspects of Scrapy that are not exactly as you wish, and you need to
apply customizations or workarounds on many of your projects.

Scrapy developers designed its architecture in a way that allows us to solve such
recurrent problems. We will investigate this architecture later in this chapter.
First though, let's start with an introduction to the engine that powers Scrapy. It's
called Twisted.

[121]

Programming Scrapy

Scrapy is a Twisted application

Scrapy is a scraping application built using the Twisted Python framework. Twisted
is indeed somewhat unusual because it's event-driven and encourages us to write
asynchronous code. Getting used to it takes some time, but we will make our task
easier by studying only the parts of it that are relevant to Scrapy. We will also be a
bit relaxed in terms of error handling. The full code on GitHub has more thorough
error handling, but we will skip it for this book.

Let's start from the beginning. What makes Twisted different is its main mantra.

[% Do not, under any circumstances, write code that blocks.]

The implications are severe. Code that might block includes:

e Code that accesses files, databases or the Web

* Code that spawns new processes and consumes their output, for example,
running shell commands

* Code that performs hacky system-level operations, for example, waiting for
system queues

Twisted provides us with methods that allow us to perform all these and many more
without blocking code execution.

To showcase the difference, let's assume that we have a typical synchronous scrapping
application. It has, for example, four threads, and at a given moment, three of them

are blocked waiting for responses, and one of them is blocked performing a database
write access to persist an Item. Atany given moment, it's quite unlikely to find a
general-purpose thread of a scrapping application doing anything else but waiting

for some blocking operation to complete. When blocking operations complete, some
computations may take place for a few microseconds and then threads block again on
other blocking operations that likely last for at least a few milliseconds. Overall the
server isn't idle because it runs tens of applications utilizing thousands of threads, thus,
after some careful tuning, CPUs remain reasonably utilized.

[122]

Chapter 8

Multithreading (4 threads):

> Thread 1: blocked on web request #330
g Thread 2: blocked on database access #79
- Thread 3: blocked on web request #330

Thread 4: blocked on web request #312
3~

]
3
-
J
]
d

Twisted (1 thread):
Thread 1: blocked waiting for any of the

] resources to become available

Multithreaded code versus Twisted asynchronous code

Twisted/Scrapy's approach favors using a single thread as much as possible. It uses
modern Operating System's I/ O multiplexing functions (see select (), poll(),

and epoll()) as a "hanger". Where we would typically have a blocking operation,

for example result = i_block (), Twisted provides us with an alternative
implementation that returns immediately. However, it doesn't return the actual value
but a hook, for example deferred = i_dont_block (), where we can hang whatever
functionality we want to run whenever the value becomes available (for example,
deferred.addCallback (process_result)). A Twisted application is made of chains
of such deferred operations. The single main Twisted thread is called a Twisted Event
Reactor thread and it monitors the hanger until some resource becomes available (for
example, a server response to our Requests). When this happens, it fires the topmost
deferred in the chain, which performs some computations and, in turn, fires the next
one. Some of these deferreds might initiate further I/ O operations, which will bring
the chain of deferreds back to the hanger and free the CPU to perform other work, if
available. Since we are single-threaded, we don't suffer the costs of context switches
and save resources (like memory) that extra threads require. In other words, using
this nonblocking infrastructure, we get performance that is similar to if we had
thousands of threads, while using a single one.

[123]

Programming Scrapy

To be perfectly honest, OS developers have been optimizing thread operations for
decades making them very fast. The performance argument is not as strong as it used
to be. One thing that everyone can agree on though, is that writing correct thread-
safe code for complex applications is very difficult. After you get over the initial
shock of having to think in terms of deferreds/callbacks, you will find Twisted code
significantly simpler than threaded code. The inlineCallbacks generator utility
makes code even simpler. We will explore them further in the following sections.

Arguably, the most successful nonblocking I/O system until now
is Node.js, mainly because it started with high performance/
concurrency in mind, and nobody argued about whether that's a
» good or bad thing. Every Node.js application uses just nonblocking
% APIs. In the Java world, Netty is probably the most successful NIO
Vs . D

framework powering applications, such as Apache Storm and
Spark. C++11's std: : future and std: : promise (quite similar to
deferreds) make it easier to write asynchronous code using libraries,
such as libevent or plain POSIX.

Deferreds and deferred chains

Deferreds are the most essential mechanism that Twisted offers to help us write
asynchronous code. Twisted APIs use deferreds to allow us to define sequences of
actions that take place when certain events occur. Let's have a look at them.

You can get all the source code of this book from GitHub. To
download this code go to git clone https://github.com/
M scalingexcellence/scrapybook
Q The full code from this chapter will be in the ch08 directory, and
for this example in particular, in the ch08/deferreds.py file,
and you can run it with . /deferreds.py 0.

You can use a Python console to run the following experiments interactively:

$ python

>>> from twisted.internet import defer
>>> # Experiment 1

>>> d = defer.Deferred()

>>> d.called

False

>>> d.callback(3)

>>> d.called

True

[124]

https://github.com/scalingexcellence/scrapybook
https://github.com/scalingexcellence/scrapybook

Chapter 8

>>> d.result
3

What we see is that Deferred is essentially a thing representing a value that we
don't have immediately. When we fire d (call its callback method) it's called state
becomes True, and the result attribute is set to the value that we set on the callback:

>>> # Experiment 2
>>> d = defer.Deferred()
>>> def foo(v):

print "foo called"

return v+1

>>> d.addCallback (foo)
<Deferred at O0x7f...>
>>> d.called

False

>>> d.callback(3)

foo called

>>> d.called

True

>>> d.result

4

The most powerful feature of deferreds is that we can chain other operations to be
called when a value is set. In the last example, we add a foo () function as a callback
for d. When we fire d by calling callback (3), function foo () gets called printing the
message, and the value that it returns is set as the final result value for a:

>>> # Experiment 3
>>> def status(*ds):
e return [(getattr(d, 'result', "N/A"), len(d.callbacks)) for 4 in
ds]
>>> def b _callback(arg):
print "b callback called with arg =", arg
return b
>>> def on_done(arg):
print "on done called with arg =", arg

return arg

>>> # Experiment 3.a
defer.Deferred()
defer.Deferred()

>>> a

>>> b

[125]

Programming Scrapy

>>> a.addCallback (b _callback) .addCallback (on_ done)
>>> status(a, b)

[('n/ar+, 2), ('N/A', 0)]

>>> a.callback(3)

b callback called with arg = 3

>>> status(a, b)

[(<Deferred at 0x10e7209e0>, 1), ('N/A', 1)]
>>> b.callback (4)

on done called with arg = 4

>>> status(a, b)

[(4, 0), (Nome, 0)]

This example gets us to more complex deferred behaviors. We see a normal
deferred, a, set up exactly as before, but now it has two callbacks. The first one is

b _callback (), which returns a b deferred instead of a value. The second one is the
on_done () printing function. We also have a little status () function that prints

the status of deferreds. After the initial setup in both cases, we have the same state,
[('N/A', 2), ('N/A', 0)], meaning that both deferreds haven't been fired, and
the first one has two callbacks, while the second one has none. Then, if we fire a first,
we get into a weird [(<Deferred at 0x10e7209e0>, 1), ('N/A', 1)] state,
which shows that a now has a value, which is a deferred (the b deferred actually),
and it also has a single callback, which is reasonable because b_callback () has
already been called and only on_done () is left. The unexpected fact is that b now has
a callback. Indeed a registered behind the scenes a callback, which will update its
value as soon as b gets fired. Once this happens, on_done () also gets called and the
final stateis [(4, 0), (None, 0)], which is exactly what we expected:

Experiment 3.b
a = defer.Deferred()
>>> b = defer.Deferred()
a.addCallback (b _callback) .addCallback (on done)
>>> status(a, b)
[('n/a*, 2), ('N/A', 0)]
>>> b.callback (4)
>>> status(a, b)
[('N/AY, 2), (4, 0)]
>>> a.callback(3)
b callback called with arg = 3
on done called with arg = 4
>>> status(a, b)
[(4, 0), (Nome, 0)]

[126]

Chapter 8

On the other hand, if b gets fired before a as experiment 3 .b shows, the status
becomes [('N/A', 2), (4, 0)],and then when a gets fired both callbacks get
called and the final state ends up being the same as before. It's interesting to note that
regardless of the order, the result is the same. The only difference between the two
cases is that in the first case, the value of b value remains deferred for a bit longer
because it gets fired second, while in the second example, b gets fired first and from
that point on its value is used immediately when needed.

At this point, you have a quite good understanding of what deferreds are and how
they can be chained and used to represent values that aren't yet available. We finish
our exploration with a fourth example showing you how to fire something that
depends on a number of other deferreds. This in Twisted is implemented using the
defer.DeferredList class:

>>> # Experiment 4
>>> deferreds = [defer.Deferred() for i in xrange(5)]
>>> join = defer.DeferredList (deferreds)
>>> join.addCallback (on_done)
>>> for i in xrange(4):
deferreds[i] .callback(i)
>>> deferreds[4] .callback(4)
on _done called with arg = [(True, 0), (True, 1), (True, 2),
(True, 3), (True, 4)]

What we notice is that it doesn't matter that four out of five get fired with the for
statement, on_done () doesn't get called until all the deferreds in the list get fired,
that is, after our final deferreds [4] .callback () call. The argument for on_done ()
is a list of tuples where each tuple corresponds to a deferred and contains True for
success or False for failure and deferred's value.

Understanding Twisted and nonblocking
/0 — a Python tale

Now that we have a grasp of the primitives, let me tell you a little Python story. All
characters appearing in this work are fictitious. Any resemblance to real persons is
purely coincidental:

~*~ Twisted - A Python tale ~*~
from time import sleep

Hello, I'm a developer and I mainly setup Wordpress.
def install wordpress (customer) :

[127]

Programming Scrapy

Our hosting company Threads Ltd. is bad. I start installation

and. ..

I
def

print "Start installation for", customer

...then wait till the installation finishes successfully. It is
boring and I'm spending most of my time waiting while consuming
resources (memory and some CPU cycles). It's because the process
is *blocking*.

sleep(3)

print "All done for", customer

do this all day long for our customers
developer day (customers) :
for customer in customers:

install wordpress (customer)

developer day(["Bill", "Elon", "Steve", "Mark"])

Let's run it:

$./deferreds.py 1

-- Running example 1 ------

Start installation for Bill

All

done for Bill

Start installation

* Elapsed time: 12.03 seconds

What we get is sequential execution. Four customers with three seconds processing
each means twelve seconds overall. This doesn't scale very well, so we add some
threading in our second example:

import threading

The company grew. We now have many customers and I can't handle

the

workload. We are now 5 developers doing exactly the same thing.

def

developers day (customers) :

But we now have to synchronize... a.k.a. bureaucracy
lock = threading.Lock ()
#
def dev_day(id) :
print "Goodmorning from developer", id

Yuck - I hate locks...
lock.acquire ()
while customers:
customer = customers.pop (0)
lock.release ()

[128]

Chapter 8

My Python is less readable

install wordpress (customer)

lock.acquire ()
lock.release()

print "Bye from developer", id
We go to work in the morning
devs = [threading.Thread(target=dev day, args=(i,)) for i in
range (5)]
[dev.start () for dev in devs]

We leave for the evening
[dev.join() for dev in devs]

We now get more done in the same time but our dev process got more
complex. As we grew we spend more time managing queues than doing dev
work. We even had occasional deadlocks when processes got extremely
complex. The fact is that we are still mostly pressing buttons and
waiting but now we also spend some time in meetings.

H H H H FHF

)

developers day(["Customer %d" % i for i in xrange(15)1])

Let's run it as follows:

$./deferreds.py 2

------ Running example 2 ------

Goodmorning from developer 0Goodmorning from developer
1Start installation forGoodmorning from developer 2

Goodmorning from developer 3Customer 0

from developerCustomer 13 3Bye from developer 2

* Elapsed time: 9.02 seconds

What you get is parallel execution using five worker threads. 15 customers with
three seconds processing each means 45 seconds overall, but with five workers in
parallel it ends up taking just nine seconds. The code got a bit ugly though. Instead
of focusing on the algorithm or business logic, now a good fraction of the code is
there just to manage concurrency. Additionally, output became something between
messy and unreadable. It's quite hard to get even easy multithreaded code perfectly
right, which leads us to Twisted:

For years we thought this was all there was... We kept hiring more
developers, more managers and buying servers. We were trying harder
optimising processes and fire-fighting while getting mediocre
performance in return. Till luckily one day our hosting

company decided to increase their fees and we decided to

switch to Twisted Ltd.!

H oH H H H H

[129]

Programming Scrapy

from twisted.internet import reactor
from twisted.internet import defer
from twisted.internet import task

Twisted has a slightly different approach
def schedule install (customer) :
They are calling us back when a Wordpress installation completes.
They connected the caller recognition system with our CRM and
we know exactly what a call is about and what has to be done
next.
#
We now design processes of what has to happen on certain events.
def schedule install wordpress() :
def on done() :
print "Callback: Finished installation for", customer
print "Scheduling: Installation for", customer
return task.deferLater (reactor, 3, on done)
#
def all done():
print "All done for", customer

For each customer, we schedule these processes on the CRM
and that

is all our chief-Twisted developer has to do
= schedule install wordpress ()
.addCallback (all done)

H Q4 O HH HF

return d

Yes, we don't need many developers anymore or any synchronization.
~~ Super-powered Twisted developer ~~
def twisted developer day (customers) :
print "Goodmorning from Twisted developer"
#
Here's what has to be done today
work = [schedule install (customer) for customer in customers]
Turn off the lights when done
join = defer.DeferredList (work)
join.addCallback (lambda : reactor.stop())
#

print "Bye from Twisted developer!"

[130]

Chapter 8

Even his day is particularly short!

)

twisted developer day(["Customer %d" % i for i in xrange(15)])

Reactor, our secretary uses the CRM and follows-up on events!
reactor.run()

Let's run it:

$./deferreds.py 3
------ Running example 3 ------
Goodmorning from Twisted developer

Scheduling: Installation for Customer 0

Scheduling: Installation for Customer 14

Bye from Twisted developer!

Callback: Finished installation for Customer 0
All done for Customer 0

Callback: Finished installation for Customer 1

All done for Customer 1

All done for Customer 14

* Elapsed time: 3.18 seconds

What we get is perfect working code and nicely looking output while using no
threads. We process all 15 customers in parallel, that is, 45 seconds computation in
just three seconds! The trick is that we replaced all blocking calls to sleep () with its
Twisted counterpart task.deferLater () and callback functions. As processing now
takes place somewhere else, we can effortlessly serve 15 customers simultaneously.

I mentioned that the preceding processing is now being done
somewhere else. Is this cheating? The answer is no. Algorithmic
computation still happens in CPUs but CPU operations are
* very fast nowadays when compared to disk and the network
% operations. As a result bringing data to CPUs and sending
g data from one CPUs or storage to another take most of the
time. We save all this time for our CPUs using nonblocking
I/O operations. They, exactly like task.deferLater (), use
callbacks that get fired when data transfers complete.

[131]

Programming Scrapy

Another very important thing to notice is the Goodmorning from Twisted
developer and Bye from Twisted developer! messages. They are printed
instantly when our code starts. If our code reaches that point so early, when does our
application really run? The answer is that a Twisted application (including Scrapy)
runs entirely within reactor. run()! By the time you call that method, you must have
every possible deferred chain your application is expected to use in place (equivalent
to setting up steps and processes in the CRM system in the preceding story). Your
reactor.run () (the secretary) performs the event monitoring and fires callbacks.

The main rule of the reactor is; I can do anything as long as
= it's a fast nonblocking operation.

Excellent! The code doesn't have any threading nonsense but still these callback
functions look a bit ugly. This leads us to the next example:

Twisted gave us utilities that make our code way more readable!
@defer.inlineCallbacks
def inline_install (customer) :

print "Scheduling: Installation for", customer

yield task.deferLater (reactor, 3, lambda: None)

print "Callback: Finished installation for", customer

print "All done for", customer

def twisted developer day (customers) :
same as previously but using inline install()
instead of schedule_install()

°

twisted developer day(["Customer %d" % i for i in xrange(15)])
reactor.run()

Let's run it as follows:

$./deferreds.py 4

exactly the same as before

The preceding code does exactly the same as the previous one but looks nicer. The
inlineCallbacks generator makes the code of inline install () pause and
resume using a few Python mechanisms. inline_install () becomes a deferred
and gets executed in parallel for every customer. Every time we yield, execution
pauses on the current instance of inline install () and resumes when the deferred
that we yielded gets fired.

[132]

Chapter 8

The only problem that we have now is that if instead of 15 customers, we had, for
example 10000, this code would shamelessly start 10000 simultaneous sequences of
processing (call it HTTP requests, database write operations, and so on). This may be
okay or it could cause all sorts of failures. In massively concurrent applications such
as Scrapy, we often have to limit the amount of concurrency to acceptable levels.

In this example, we can do this using a task.Cooperator (). Scrapy uses the same
mechanism to limit the amount of concurrency in item processing pipelines (the
CONCURRENT_ITEMS setting):

@defer.inlineCallbacks
def inline_install (customer) :
same as above

The new "problem" is that we have to manage all this concurrency to
avoid causing problems to others, but this is a nice problem to have.
def twisted developer day (customers) :

print "Goodmorning from Twisted developer"

work = (inline_ install (customer) for customer in customers)

#

We use the Cooperator mechanism to make the secretary not

service more than 5 customers simultaneously.

coop = task.Cooperator ()

join = defer.DeferredList ([coop.coiterate(work) for i in xrange(5)])

#
join.addCallback (lambda : reactor.stop())
print "Bye from Twisted developer!"

°

twisted developer day(["Customer %d" % i for i in xrange(15)])
reactor.run ()

We are now more lean than ever, our customers happy, our hosting
bills ridiculously low and our performance stellar.

~*~ THE END ~*~

Let's run it:

$./deferreds.py 5

------ Running example 5 ------
Goodmorning from Twisted developer

Bye from Twisted developer!

Scheduling: Installation for Customer 0

Callback: Finished installation for Customer 4

[133]

Programming Scrapy

All done for Customer 4

Scheduling: Installation for Customer 5

Callback: Finished installation for Customer 14
All done for Customer 14

* Elapsed time: 9.19 seconds

What we observe is that we now have something that is similar to five processing
slots for customers. Processing for a new customer doesn't start unless there's an
empty slot, which, effectively, in our case that customer processing time is always
the same (three seconds), leads to batches of five customers at a time. We end up
with the same performance with our threaded example but now using just one
thread while enjoying simpler and more correct code.

Congratulations, you had a—frankly put— quite intense introduction to Twisted and
nonblocking I/O programming.

Overview of Scrapy architecture

The following diagram summarizes Scrapy's architecture:

process_spider_input() process_item() open_spider()

close_spider()

process_spider_output()
process_spider_exception()

process_start_requests()

Responses
s}sanbay

Downloader
<

process_request()
Downloader Middleware _‘
process_response() Extensions
process_exception()

Scrapy's architecture

[134]

Chapter 8

You may notice three familiar types of objects upon which this architecture operates;
Requests, Responses, and Items. Our spiders lie right at the core of the architecture.
They create Requests, process Responses, and generate Items and more Requests.

Each Item generated by a spider is postprocessed by a sequence of Item Pipelines
using their process_item() method. Typically, process_item() modifies Items
and passes them to the subsequent pipelines by returning them. Occasionally (for
example, in the case of a duplicate or invalid data), we may need to drop an Item,
and we do so by raising a DropItem exception. In this case, subsequent pipelines
won't receive it. If we also provide an open_spider () and/or close_spider ()
method, it will get called on spider open and close, respectively. That's an opportunity
for initializations and cleanups. Item Pipelines are typically used to perform problem
domain or infrastructure operations, such as cleaning up data, or inserting Items into
databases. You will also find yourself reusing them to great extent between projects,
especially if they deal with your infrastructure's specifics. The Appery.io pipeline that
we used in Chapter 4, From Scrapy to a Mobile App, is an example of an Item Pipeline
that performs infrastructure work, that is, with minimal configuration it uploads
Items to Appery.io.

We typically send Requests from our Spiders and get back Responses and it

just works. Scrapy takes care of cookies, authentication, caching, and so on, in a
transparent manner, and all we need to do is occasionally adjust a few settings. Most
of this functionality is implemented in the form of downloader middlewares. They
are often quite sophisticated and highly technical dealing with Request /Response
internals. You may create custom ones to make Scrapy work exactly the way you
want it to in terms of Request processing. A typical successful middleware will be
reused across many projects and likely provide functionality that is useful to many
Scrapy developers, thus, it would be nice to be shared with the community. You
won't write a downloader middleware very often. If you want to have a look at the
default downloader middlewares, check the DOWNLOADER MIDDLEWARES_BASE setting
in settings/default_settings.py in Scrapy's GitHub.

Downloader is the engine that performs the actual downloads. You will never have
to modify this unless you are a Scrapy contributor.

[135]

Programming Scrapy

Every now and then you might have to write Spider middlewares. They process
Requests just after the spider and before any downloader middleware and Responses
in the opposite order. With a downloader middleware you may, for example, decide
to rewrite all your URLs to use HTTPS instead of HTTP regardless of what a spider
extracts from pages. It implements functionality that is specific to your project's needs
and shared across all spiders. The main thing that differentiates between downloader
middlewares and spider middlewares is that when a downloader middleware gets a
Request, it should return a single Response. On the other hand, it's okay for spider
middleware to drop Requests if they don't like them or, for example, emit many
Requests for each input Request if this serves your application's purpose. You could
say that spider middlewares are for Requests and Responses what item pipelines are
for Ttems. Spider middlewares receive Items as well but typically don't modify them
because this can be done more easily with an item pipeline. If you want to have a look
at the default spider middlewares, check the SPIDER_MIDDLEWARES_ BASE setting in
settings/default_settings.py in Scrapy's git.

Finally, there are extensions. Extensions are quite common —actually the next most
common thing after Item Pipelines. They are plain classes that get loaded at crawl
startup and can access settings, the crawler, register callbacks to signals, and define
their own signals. Signals is an essential Scrapy API that allows callbacks to be called
when something happens in the system, for example, an Item gets crawled, dropped,
or when a spider opens. There are lots of useful predefined signals, and we will see
some of them later. Extensions are a Jack of all trades in the sense that they allow
you to write every utility you can possibly imagine but without really giving you
any help(like, for example, the process_item() method of Item Pipelines). We have

to hook to signals and implement the functionality we need ourselves. For example,
stopping the crawl after a specific number of pages or Items is implemented

with an extension. If you want to have a look at the default extensions, check the
EXTENSIONS_BASE setting in settings/default_settings.py in Scrapy's git.

Middleware

+from_crawler(in crawler) q |
+from_settings(in settings)
: DownloaderMiddleware
+process_request(in request, in spider)
Extension +process_response()
+process_exception()

SpiderMiddleware

ItemPipeline +process_spider_input(in response, in spider)

+process_spider_output(in response, in result, in spider)
+process_item(in item, in spider) | [*Process_spider_exception(in response, in exception, in spider)
+open_spider(in spider) +process_start_requests(in start_requests, in spider)
+close_spider(in spider)

Middleware hierarchy

[136]

Chapter 8

A bit more strictly speaking, Scrapy treats all these classes as middlewares (managed
by decedents of the MiddlewareManager class) and allows us to initialize them from
a Crawler or a Settings object by implementing the from crawler () or from
settings () class-methods, respectively. Since one can get the settings easily from
Crawler (crawler.settings), from crawler () is way more popular. If one doesn't
need Settings or Crawler, it's fine not to implement them.

Here is a table that can help you decide what the best mechanism for a given
problem is:

Problem Solution

Something that is specific to the website that I'm crawling. | Modify your Spider.

Modifying or storing Items—domain-specific, may be Write an Item Pipeline.
reused across projects.

Modifying or dropping Requests/Responses —domain- | Write a spider middleware.
specific, may be reused across projects.

Executing Requests/Responses — generic, for example, Write a downloader
to support some custom login scheme or a special way to middleware.
handle cookies.

All other problems. Write an extension.

Example 1 - a very simple pipeline

Let's assume that we have an application with several spiders, which provide the
crawl date in the usual Python format. Our databases require it in string format in
order to index it. We don't want to edit our spiders because there are many of them.
How can we do it? A very simple pipeline can postprocess our items and perform
the conversion we need. Let's see how this works:

from datetime import datetime

class TidyUp (object) :
def process item(self, item, spider):
item['date'] = map(datetime.isoformat, item['date'])
return item

As you can see, this is nothing more than a simple class with a process_item()
method. This is all we need for this simple pipeline. We can reuse the spiders from
Chapter 3, Basic Crawling, and add the preceding code in a tidyup.py file inside a
pipelines directory.

[137]

Programming Scrapy

We can put this item pipeline's code anywhere we want,
A but a separate directory is a good idea.

We now have to edit our project's settings.py file and set ITEM PIPELINES to:
ITEM PIPELINES = {'properties.pipelines.tidyup.TidyUp': 100 }

The number 100 on preceding dict defines the order in which pipelines are going to
be connected. If another pipeline has a smaller number, it will process Items prior to
this pipeline.

Al

~ The full code for this example is in the ch08/properties
folder on GitHub.

We are now ready to run our spider:

$ scrapy crawl easy -s CLOSESPIDER ITEMCOUNT=90
INFO: Enabled item pipelines: TidyUp
DEBUG: Scraped from <200 ...property 000060.html>

'date': ['2015-11-08T14:47:04.148968'],

As we expected, the date is now formatted as an ISO string.

Signals

Signals provide a mechanism to add callbacks to events that happen in the system,
such as when a spider opens, or when an item gets scraped. You can hook to them
using the crawler.signals.connect () method (an example of using it can be
found in the next section). There are just 11 of them and maybe the easiest way

to understand them is to see them in action. I created a project where I created an
extension that hooks to every available signal. I also created one Item Pipeline, one
Downloader and one spider middleware, which also logs every method invocation.
The spider it uses is very simple. It just yields two items and then raises an exception:

def parse(self, response):
for i in range(2):
item = HooksasyncItem()
item['name'] = "Hello %d" % 1
yield item
raise Exception("dead")

[138]

Chapter 8

On the second item, I've configured the Item Pipeline to raise a DropItem exception.

1
QQ The full code for this example is in the ch08/hooksasync

folder on GitHub.

Using this project, we can get a better understanding of when certain signals get sent.
Take a look at the comments between the log lines of the following execution (lines
have been omitted for brevity):

$ scrapy crawl test

... many lines ...

First we get those two signals...

INFO: Extension, signals.spider opened fired

INFO: Extension, signals.engine started fired

Then for each URL we get a request scheduled signal

INFO: Extension, signals.request scheduled fired

...# when download completes we get response downloaded

INFO: Extension, signals.response downloaded fired

INFO: DownloaderMiddlewareprocess response called for example.com
Work between response downloaded and response received

INFO: Extension, signals.response received fired

INFO: SpiderMiddlewareprocess spider input called for example.com
here our parse() method gets called... and then SpiderMiddleware used
INFO: SpiderMiddlewareprocess spider output called for example.com
For every Item that goes through pipelines successfully...

INFO: Extension, signals.item scraped fired

For every Item that gets dropped using the DropItem exception...
INFO: Extension, signals.item dropped fired

If your spider throws something else...

INFO: Extension, signals.spider error fired

... the above process repeats for each URL

... till we run out of them. then...

INFO: Extension, signals.spider idle fired

by hooking spider idle you can schedule further Requests. If you don't

the spider closes.

[139]

Programming Scrapy

INFO: Closing spider (finished)

INFO: Extension, signals.spider closed fired
... stats get printed

and finally engine gets stopped.

INFO: Extension, signals.engine stopped fired

It may feel a bit limited to have just 11 signals, but every Scrapy default middleware
is implemented using just them, so they must be sufficient. Please note that

from every signal except spider_idle, spider_error, request_scheduled,
response_received, and response_downloaded, you can also return deferreds
instead of actual values.

Example 2 - an extension that measures
throughput and latencies

It's interesting to measure how throughput (in items per second) and latencies (time
since schedule and time after download) change as we add pipelines in Chapter 9,
Pipeline Recipes.

There is already a Scrapy extension that measures throughput, the Log Stats
extension (scrapy/extensions/logstats.py in scrapy's GitHub), and we use it
as a starting point. In order to measure latencies, we hook the request_scheduled,
response_received, and item_scraped signals. We timestamp each and subtract
the appropriate to calculate latencies that we accumulated to calculate averages. By
observing the callback arguments that these signals provide, we notice something
annoying. item_scraped gets just Responses, request_scheduled gets just the
Requests, and response_received gets both. Luckily, we don't have to do any
hacking to pass-through values. Every Response has a Request member, which
points back to its Request and even better it has meta dict that we saw in Chapter
5, Quick Spider Recipes, which is the same as the original Requests' no matter if there
were any redirects. Excellent, we can store our timestamps there!

Actually, this wasn't my idea. The same mechanism is used
by the AutoThrottle extension (scrapy/extensions/
4 throttle.py)—using request.meta.get ('download
@@@‘\ latency') where download_latency is calculated by the
’ scrapy/core/downloader/webclient.py downloader.
The fastest way to improve at writing middlewares is by
familiarizing yourself with Scrapy's default middlewares' code.

[140]

Chapter 8

Here is the code for our extension:

class Latencies (object) :
@classmethod
def from crawler(cls, crawler):
return cls(crawler)

def init (self, crawler):
self.crawler = crawler
self.interval = crawler.settings.getfloat ('LATENCIES INTERVAL')
if not self.interval:
raise NotConfigured
cs = crawler.signals
cs.connect (self. spider opened, signal=signals.spider opened)
cs.connect (self. spider closed, signal=signals.spider closed)

cs.connect (self. request scheduled, signal=signals.request
scheduled)

cs.connect (self. response received, signal=signals.response
received)

cs.connect (self. item scraped, signal=signals.item_ scraped)
self.latency, self.proc_ latency, self.items = 0, 0, O

def spider opened(self, spider):
self.task = task.LoopingCall (self. log, spider)
self.task.start (self.interval)

def spider closed(self, spider, reason):
if self.task.running:

self.task.stop()

def request scheduled(self, request, spider):

request.meta['schedule time'] = time()

def response received(self, response, request, spider):
request.meta['received time'] = time()

def item scraped(self, item, response, spider):
self.latency += time() - response.metal['schedule time']
self.proc_latency += time() - response.meta['received time']

self.items += 1
def log(self, spider):
irate = float (self.items) / self.interval
latency = self.latency / self.items if self.items else 0

[141]

Programming Scrapy

proc_latency = self.proc_latency / self.items if self.items else 0

)

spider.logger.info(("Scraped %d items at %.1f items/s, avg
latency: "

"$.2f s and avg time in pipelines: %.2f s") %
(self.items, irate, latency, proc_latency))

self.latency, self.proc_ latency, self.items = 0, 0, O

The first two methods are very important because they are very typical. They
initialize the middleware using a crawler object. You will find such code on almost
every nontrivial middleware. from_crawler (cls, crawler) is the way of grabbing
the crawler object. Then, we notice inthe __init__ () method accessing crawler.
settings and raise a NotConfigured exception if it isn't set. You will see many
FooBar extensions checking the corresponding FOOBAR ENABLED setting and raise

if it isn't set or if it's False. This is a very common pattern allowing middleware

to be included for convenience in the corresponding settings. py settings (for
example, ITEM_PIPELINES) but being disabled by default, unless explicitly enabled
by their corresponding flag settings. Many default Scrapy middleware (for example,
AutoThrottle or HttpCache) use this pattern. In our case, our extension remains
disabled unless LATENCIES INTERVAL is set.

Abitlaterin __init_ (), we find ourselves registering callbacks for all the signals
we are interested in using crawler.signals.connect (), and we initialize a few
member variables. The rest of the class implements signal handlers. On _spider_
opened (), we initialize a timer that calls our _log () method every LATENCIES_
INTERVAL seconds, and on _spider closed(), we stop that timer. In _request_
scheduled () and _response_received (), we store timestamps in request.

meta, and in _item scraped (), we accumulate the two latencies (from scheduled/
received until now) and increase the number of Items scraped. Our log() method
calculates a few averages, formats and prints a message, and resets the accumulators
to start another sampling period.

[142]

Chapter 8

Whoever has written something similar in a multithreaded
context will appreciate the absence of mutexes in the preceding

code. They may not be particularly complicated in this case,
g but still, writing single-threaded code is easier and scales well

in more complex scenarios.

We can add this extension's code in a latencies.py module at the same level as
settings.py. To enable it, we add two lines in our settings.py:

EXTENSIONS = { 'properties.latencies.Latencies': 500, }
LATENCIES INTERVAL = 5

We can run it as usual:

$ pwd
/root/book/ch08/properties
$ scrapy crawl easy -s CLOSESPIDER ITEMCOUNT=1000 -s LOG LEVEL=INFO

INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
INFO: Scraped 0 items at 0.0 items/sec, average latency: 0.00 sec and
average time in pipelines: 0.00 sec

INFO: Scraped 115 items at 23.0 items/s, avg latency: 0.84 s and avg time
in pipelines: 0.12 s

INFO: Scraped 125 items at 25.0 items/s, avg latency: 0.78 s and avg time
in pipelines: 0.12 s

The first log line comes from the Log Stats extension, while subsequent ones come from
our extension. We can see a throughput of 24 items per second, an average overall
latency of 0.78 sec, and that we are spending almost no time processing after download.
Little's law gives the number of items in our system as N =5-7 =43-0.45=19. No matter
what we set the CONCURRENT_REQUESTS and CONCURRENT REQUESTS_PER_DOMAIN
settings to, despite us not hitting 100% CPU, we don't seem to be able to make it

go above 30 for some weird reason. More on this in Chapter 10, Understanding

Scrapy's Performance.

[143]

Programming Scrapy

Extending beyond middlewares

This section is here for the curious reader more than the practitioner. You certainly
don't need to know these in order to write basic/intermediate Scrapy extensions.

If you have a look at scrapy/settings/default_settings.py you will see quite a few
class names among the default settings. Scrapy extensively uses a dependency-injection-
like mechanism that allows us to customize and extend many of its internal objects. For
example, one may want to support more protocols for URLs beyond file, HTTP, HTTPS,
S3, and FTP that are defined in the DOWNLOAD HANDLERS_BASE setting. To do so, one has
to just create a Download Handler class and add a mapping in the DOWNLOAD HANDLERS
setting. The most difficult part is to discover what the interface for your custom classes
must be (that is, which methods to implement) because most interfaces aren't explicit.
You have to read the source code and see how these classes get used. Your best bet

is starting with an existing implementation and altering it to your satisfaction. That

said, these interfaces become more and more stable with recent versions of Scrapy,

and I attempt to document them along with some core Scrapy classes on the following
diagram (I omit the middleware hierarchy that was presented earlier).

[144]

Chapter 8

scrapy crawl and other I5piderLoader
commands Crawl
«usles» -spider_loader : SpiderLoader +from settings() Scheduler MemoryQueue
| +crawl{in crawler_or_spidercls) +load(in spider_name) -Mgs © l_dermrvuueue
b #stopl) +list()) s ke [+pushi]
CrawlerProcess| +find_by_r request) -dupefilter : BaseDupeFilter +popl)
+from_crawler(] +_len_()
- +has_pending_requests{)
estartl) LegFormatter SpiderLoader +opent) DiskQueue
wclose])
41 dier| +enqueue_request() 1
+ch
led() +next_request() " ::s:;‘ﬂ} 0
Crawler +scraped() +__len__() +;sh“—
stats : Stat.sl’_‘ollel:tor +dropped() +papl)
-spider : Spider
-engine : ExecutionEngine ExecutionEngine BaseDupefFilter
-slgn.als : _Signa.IManager -downloader : Downloader
-settings : Settings
- . -scraper : Scraper 7 [efrom_settings()
-extensions : ExtensionManager ot scheduler : Schedul
: LogFormatter -slot.scheduler : eduler +open()
+close()
+request_seen(in request) RFPDupeFilter
| +loglin request, in spider)
StatsCollector
Downloader
ollector i _ Scraper
< -handlers : DownloadHandlers itemprot : Itempi
o J

MemaoryStatsCollector DownloadHandlers
- - - MiddlewareManager
+download_request|{in request, in spider)
FileDownloadHandler usass +_get_mwilist_from_settings{)
| +from_settings()
L +from_crawler()
DownloadHandler +open_spider()
+close_spider()
FT dl _D downlood_ in request, in spider) Zé
+close() inali
..also 53DownloadHandler,
HttpD which inherits fram
HTTP10DownloadHandler etc.
An interesting extension DownloaderMiddl
is FeedExporter:
T‘u”sﬂ Bas!llemEnpumel
Ll
P +start_exportinglin request, in spider)
L +finish_exporting() serapy check command
R — . +export_item(in item) wsesn
e AN i
1
Isonl ContractsManager
+openi)
+store{) XmilltemExporter nusESH
A T
% :

— — Contract
+pre_processfin response)
+post_process(in output)
+adjust_request_args{in args)

BlockingFeedStorage ...also CsvitemExporter, +add_pre_hook()
PickleltemExparter, add post_hook
MarshalltemExporter, [acdd_past_ il
PprintitemExporter, IL‘
PythonitemExporter etc.
? él ScrapesContract UrlContract
53FeedStorage FTPFeedStorage

[+post_process(in output)

[+adjust_request_args{in args)

ReturnsContract

+post_process(in output)

Scrapy interfaces and core objects

[145]

Programming Scrapy

The core objects are in the upper-left corner. When someone uses scrapy crawl,

a CrawlerProcess object is used to create our familiar Crawler object. The

Crawler object is the most important Scrapy class. It holds settings, signals,

and our spider. It also holds all the extensions in an ExtensionManager object
named extensions. crawler.engine leads us to another very important class,
ExecutionEngine. This holds Scheduler, Downloader, and Scraper. URLs get
scheduled by scheduler, downloaded by Downloader, and postprocessed by
Scraper. It's no wonder that Downloader keeps DownloaderMiddleware and
DownloadHandler, while Scraper holds both spiderMiddleware and ItemPipeline.
The four MiddlewareManager have their own little hierarchy. Output feeds in Scrapy
are implemented as an extension; FeedExporter. It uses two independent hierarchies,
one defining output formats and the other the storage types. This allows us, by
adjusting output URLS, to export to anything from XML files in S3 to Pickle-encoded
output on the console. Both hierarchies can also be extended independently using the
FEED_STORAGES and FEED EXPORTERS settings. Finally contracts that are used by the
scrapy check command have their own hierarchy and can be extended using the
SPIDER_CONTRACTS setting.

Summary

Congratulations, you just completed a quite in-depth introduction to Scrapy and
Twisted programming. You will likely go through this chapter a few times and
use it as a reference. By far, the most popular extension that one needs is Item
Processing Pipelines. We will see how to solve many common problems using
them in the next chapter.

[146]

Pipeline Recipes

In the previous chapter, we explored the programming techniques that we use to
write Scrapy middlewares. In this chapter, we will focus on writing correct and
efficient pipelines by showcasing various common use cases, including consuming
REST APIs, interfacing with databases, performing CPU-intensive tasks, and
interfacing with legacy services.

For this chapter, we will use several new servers that you can see on the right-hand
side of the following diagram:

http:9200

es

hitp:9312

mysql

The system for this chapter

Vagrant should have already set them up for us, and we should be able to ping them
from dev using their hostname, such as ping es or ping mysql. Without further
ado, let's start exploring using REST APIs.

[147]

Pipeline Recipes

Using REST APIs

REST is a set of technologies that is used to create modern web services. Its main
benefit is that it is simpler and more lightweight than SOAP or proprietary web-
service mechanisms. Software designers observed a similarity between the CRUD
(Create, Read, Update, Delete) functionality that web services often provide and
basic HTTP operations (GET, POST, PUT, DELETE). They also observed that much

of the information that is required for a typical web-service call could be compacted
on a resource URL. For example, http://api.mysite.com/customer/johnisa
resource URL that allows us to identify the target server (api.mysite.com), the fact
that I'm trying to perform operations related to customers (table) in that server, and
more specifically something that has to do with someone named john (row — primary
key). This, when combined with other web concepts, such as secure authentication,
being stateless, caching, XML or JSON as payload, and so on, provides a powerful
yet simple, familiar, and effortlessly cross-platform way to provide and consume web
services. It's no wonder that REST took the software industry by storm.

It's quite common some of the functionality that we want to use in a Scrapy pipeline
to be provided in the form of a REST API. In the following sections, we will
understand how to access such functionality.

Using treq

treq is a Python package that tries to be the equivalent of the Python requests
package for Twisted-based applications. It allows us to perform GET, POST, and
other HTTP requests easily. To install it, we use pip install treg, butit's already
preinstalled in our dev.

We prefer treq over Scrapy's Request /crawler.engine.download () API because
it is equally simple, but it has performance benefits as we will see in Chapter 10,
Understanding Scrapy's Performance.

A pipeline that writes to Elasticsearch

We will start with a spider that writes Items on an ES (Elasticsearch) server.

You may feel that starting with ES—even before MySQL —as a persistence mechanism
is a bit unusual, but it's actually the easiest thing one can do. ES can be schema-less,
which means that we can use it without any configuration. treq is also sufficient for
our (very simple) use case. If we need more advanced ES functionality, we should
consider using txes2 and other Python/Twisted ES packages.

[148]

Chapter 9

With our vagrant machine, we already have an ES server running. Let's log in on our
dev and verify that it's running fine:

$ curl http://e=s:9200

{
"name" : "Living Brain",
"cluster name" : "elasticsearch",
"version" : { ... },
"tagline" : "You Know, for Search"
}

We should be able to see the same results by visiting http://localhost:9200 in
our host's browser. If we visit http://localhost:9200/properties/property/
search, we will see a response indicating that ES globally tried but didn't find any
index related to properties. Congratulations, we have just used ES's REST API.

_ Inthe course of this chapter, we are going to insert properties in the
% properties collection. You will likely need to reset the properties
v collection, and you can do this with curl and a DELETE request:

$ curl -XDELETE http://es:9200/properties

The full code of the pipeline implementations for this chapter have extra details
such as more extensive error handling, but I will keep the code here simple by
highlighting the key points.

. You can download the source code of this book from GitHub: git
*‘Q clone https://github.com/scalingexcellence/scrapybook

This chapter is in the ch09 directory and this example in particular is in
ch09/properties/properties/pipelines/es.py.

In essence, this spider consists of just four lines of code:

@defer.inlineCallbacks
def process item(self, item, spider):

data = json.dumps(dict (item), ensure ascii=False) .encode ("utf-
8")

yield treqg.post (self.es url, data)

The first two lines define a standard process_item() method that is able to yield
Deferreds (refer to Chapter 8, Programming Scrapy).

[149]

Pipeline Recipes

The third line prepares our data for insertion. We first convert our Items to dicts.

We then encode them in the JSON format using json.dumps (). ensure_ascii=False
makes the output more compact by not escaping non-ASCII characters. We then encode
these JSON strings to UTE-8, the default encoding according to the JSON standard.

The last line uses the post () method of treq to perform a POST request that inserts
our documents in ElasticSearch. es_url, such as http://es:9200/properties/
property is stored in our settings.py file (the ES_PIPELINE URL setting), and it
provides essential information, such as the IP and port of our ES server (es:9200), the
collection name (properties), and the object type (property) that we want to write to.

In order to enable the pipeline, we have to add it on an ITEM PIPELINES setting
inside settings.py and initialize our ES_PIPELINE_URL setting:

ITEM PIPELINES = {
'properties.pipelines.tidyup.TidyUp': 100,
'properties.pipelines.es.EsWriter': 800,

}

ES PIPELINE URL = 'http://es:9200/properties/property’
After doing so, we can go to the appropriate directory:

$ pwd
/root/book/ch09/properties
$ 1ls

properties scrapy.cfg
Then we can run our spider:

$ scrapy crawl easy -s CLOSESPIDER ITEMCOUNT=90

INFO: Enabled item pipelines: EsWriter...
INFO: Closing spider (closespider itemcount)...

'item scraped count': 106,

If we now visit http://localhost:9200/properties/property/ search, we will

be able to see the number of inserted items in the hits/total field of the response as
well as the first 10 results. We can also add a ?size=100 parameter to get more results.
By adding the g= argument in the search URL, we can search for specific keywords
everywhere or just in certain fields. More relevant results will appear first. For example,
http://localhost:9200/properties/property/ search?g=title:london gives us
properties with "London" in their title. For more complex queries, one can consult ES's
documentation at https://www.elastic.co/guide/en/elasticsearch/reference/
current/query-dsl-query-string-query.html.

[150]

Chapter 9

ES needed no configuration because it auto-detects the schema (types of fields)
from the first property that we provide it. By visiting http://localhost:9200/
properties/, one is able to see the mappings that it has auto-detected.

Let's have a quick look at performance and rerun a scrapy crawl easy -s
CLOSESPIDER ITEMCOUNT=1000 as we did at the end of the last chapter. The average
latency jumped from 0.78 seconds to 0.81 seconds due to the average time in
pipelines increasing from 0.12 seconds to 0.15 seconds. The throughput remains the
same ~25 items per second.

Is it a great idea to use pipelines to insert Items in our datebases? The
answer is no. Usually, databases provide orders of magnitude more
efficient ways to bulk insert entries, and we should definitely use
them instead. This would mean bulking Items and batch inserting
% them or performing inserts as a post-processing step at the end of a
"~ crawl. We will see such approaches in our last chapter. Still, many
people use item pipelines to insert to databases and using Twisted
APIs instead of generic/blocking ones is the right way to implement
this approach.

A pipeline that geocodes using the Google
Geocoding API

We have area names for our properties, and we would like to geocode them, that is,
find their respective coordinates (latitude, longitude). We can use these coordinates
to put properties on maps or order search results according to their distance from a
location. Building such functionality requires complex databases, sophisticated text
matching, and complex spatial computations. Using the Google Geocoding API, we
can avoid developing any of these. Let's try this by opening it in a browser or using
curl to retrieve data for the following URL:

$ curl "https://maps.googleapis.com/maps/api/geocode/json?sensor=false&ad
dress=1london"

{

"results" : [

"formatted address" : "London, UK",

"geometry" : {

"location" : {
"lat"™ : 51.5073509,
"lng" : -0.1277583

[151]

Pipeline Recipes

I

"location type" : "APPROXIMATE",

]I

"status" : "OK"

}

We can see a JSON object, and if we search for "location", we will quickly find the
coordinates of what Google considers the center of London. If we keep searching,
we will see that there are other locations in the same document. The first one is the
most relevant. As a result, results[0] .geometry.location, if it exists, has the
information we need.

The Google Geocoding APl is accessible using the same techniques as before (treq).
With just a few lines, we can find the location of an address (look at geo . py in the
pipelines directory) as follows:

@defer.inlineCallbacks
def geocode(self, address):
endpoint = 'http://web:9312/maps/api/geocode/json’

parms = [('address', address), ('sensor', 'false')]
response = yield treq.get (endpoint, params=parms)
content = yield response.json/()

geo = content['results'] [0] ["geometry"] ["location"]
defer.returnvalue ({"lat": geo["lat"], "lon": geo["lng"]})

This function forms a URL that is similar to the one we used before, but we now point
to a fake implementation that makes execution faster, less intrusive, available offline,
and more predictable. You can use endpoint = 'https://maps.googleapis.com/
maps/api/geocode/json' to hit Google's servers, but please keep in mind that they
have strict limits on the requests they allow. The address and the sensor values are
URL-encoded automatically using the params argument of treq's get () method. treq.
get () returns a deferred, and we yield it in order to resume when a response is
available. A second yield, now on response.json (), is required for us to wait until
response's body is completely loaded and parsed into Python objects. At this point, we
find the location information of the first result, format it as a dict, and return it using
defer.returnvalue () - the appropriate way to return values from methods that use
inlineCallbacks. If anything goes wrong, the method throws exceptions that Scrapy
reports to us.

By using geocode (), process_item () becomes a single line as follows:

item["location"] = yield self.geocode(item["address"] [0])

[152]

Chapter 9

Let's enable this pipeline by adding it to our settings' ITEM PIPELINES with a
priority number that is smaller than ES's so that ES gets our location values:

ITEM PIPELINES = {

'properties.pipelines.geo.GeoPipeline': 400,
Let's run a quick crawl with debug data enabled:
q g

$ scrapy crawl easy -s CLOSESPIDER ITEMCOUNT=90 -L DEBUG
{'address': [u'Greenwich, London'l],

'image urls': [u'http://web:9312/images/i06.jpg'l]l,
'location': {'lat': 51.482577, 'lon': -0.007659},
'price': [1030.0],

We can now see the location field set for our Items. This is great! If we temporarily
run it using the real Google API's URL though, we will soon get exceptions like this:

File "pipelines/geo.py" in geocode (content['status'], address))

Exception: Unexpected status="OVER QUERY LIMIT" for
address="*London"

This is a check that we've put in place in the full code to ensure that the status field
of the Geocoding API's response has the ok value. Unless that's true, the data that
we get back won't have the format we expect and can't be safely used. In this case,
we get the OVER_QUERY_LIMIT status, which clearly indicates that we did something
wrong. This is an important problem that we will likely face in many cases. With
Scrapy's high performance engine, being able to cache and throttle requests to
resources becomes a necessity.

We can visit the Geocoder API's documentation to read about its limits; "Users of the
free API: 2500 requests per 24 hour period, 5 requests per second". Even if we use the paid
version of the Google Geocoding AP], it's also throttled at 10 requests per second,
which means that this discussion is still relevant.

. The implementations that follow may look complex, but they
% have to be judged in context. Creating such components in
s a typical multithreaded environment would require thread
pools and synchronization that leads to quite complex code.

[153]

Pipeline Recipes

Here is a simple and good enough implementation of a throttling engine using
Twisted's techniques:

class Throttler (object) :
def init (self, rate):
self.queue = []
self.looping call = task.LoopingCall (self._allow_one)
self.looping call.start(l. / float(rate))

def stop(self):
self.looping call.stop()

def throttle(self):
d = defer.Deferred()
self.queue.append (d)
return d

def allow_one(self):
if self.queue:
self.queue.pop(0) .callback (None)

This allows us to enqueue Deferreds in a list and fire them one by one each time that
_allow_one () getscalled; allow_one () checks whether the queue is empty and if
it's not, it calls the callback () of the oldest deferred (FIFO). We call allow one()
periodically using Twisted's task.LoopingCall () APL It's easy to use Throttler.
We initialize it in our pipeline's __init__ and clean it up when our spider stops:

class GeoPipeline (object) :
def init (self, stats):
self.throttler = Throttler(5) # 5 Requests per second

def close spider(self, spider):
self.throttler.stop()

Just before we use the resource that we want to throttle (in our case calling
geocode () in process_item()), we yield throttler's throttle () method:

yield self.throttler.throttle()
item["location"] = yield self.geocode (item["address"] [0])

On the first yield, the code will pause and will resume after sufficient time elapses.
For example, if at some point there are 11 deferreds queued, and we have a rate limit
of five requests per second, our code will resume after the queue empties in about
11/5 = 2.2 seconds.

[154]

Chapter 9

Using Throttler, we no longer get errors but our spider is dead slow. We observe
that our demo properties have just a few distinct locations. This is a great opportunity
for caching. We could use a simple Python dict to do this, but we would get race
conditions, which cause spurious API calls. Here is a cache that doesn't have this
problem and demonstrates some interesting features of Python and Twisted:

class DeferredCache (object) :
def init (self, key not found callback) :
self.records = {}
self .deferreds waiting = {}
self.key not found callback = key not found callback

@defer.inlineCallbacks
def find(self, key):
rv = defer.Deferred()

if key in self.deferreds waiting:
self.deferreds waiting[key] .append (rv)
else:
self.deferreds waitinglkey] = [rv]

if not key in self.records:
try:
value = yield self.key not found callback (key)

self.records [key] lambda d: d.callback (value)

except Exception as e:

self.records [key] lambda d: d.errback (e)

action = self.records [key]
for d in self.deferreds waiting.pop (key) :
reactor.callFromThread (action, d)

value = yield rv
defer.returnvValue (value)

This cache looks a bit different to what one would typically expect. It consists of two
components:

* self.deferreds_waiting: This is a queue of deferreds that wait for a value
for a given key

* self.records: Thisis a dict with already seen key-action pairs

[155]

Pipeline Recipes

If we look at the middle of the £ind () implementation, we observe that if we
don't find a key in self.records, we call a predefined callback function to
retrieve the missing value (yield self.key not_found callback (key)). This
callback function may throw an exception. How do we store values or exceptions
in a compact way in Python? Since Python is a functional language, we store little
functions (1ambdas) that call either deferred's callback or errback in self.
records depending on whether there was an exception or not. The value or the
exception gets attached to the 1ambda function while defining it. This attachment
of variables to functions is called closure and is one of the most distinctive and
powerful features of most functional programming languages.

. It's a bit unusual to cache exceptions, but this means that if you look
% up a key for first time and key not found callback (key)
= throws an exception, the same exception will be rethrown in any
subsequent lookup for the same key without performing extra calls.

The rest of the £ind () implementation provides us with a mechanism that helps us
avoid race conditions. If the lookup for a key is already in process, there will be a
record in the self.deferreds waiting dict. In this case, we don't make another
call to key _not_found_callback (), but we just add ourselves to the list of deferreds
waiting for that key. When key_not_found_callback () returns and the value for
this key becomes available, we fire every deferred that is waiting for this key. We
could directly perform action (d) instead of using reactor.callFromThread (), but
then we would have to handle any exceptions that are thrown downstream, and we
would create unnecessary long deferred chains.

It's very easy to use this cache. We initialize itin __init__ () and set the callback
function as one that performs the API call. In process_item(), we look up using the
cache as follows:

def init (self, stats):
self.cache = DeferredCache (self.cache key not found callback)

@defer.inlineCallbacks

def cache key not found callback (self, address):
yield self.throttler.enqueue ()
value = yield self.geocode (address)
defer.returnvValue (value)

@defer.inlineCallbacks

def process item(self, item, spider):
item["location"] = yield self.cache.find(item["address"] [0])
defer.returnvValue (item)

[156]

Chapter 9

The code in Git contains some more error handling code, retries calls in case of failure due
to throttling (a simple while loop), and also contains code that updates spider's statistics.

Al

~ The full code for this example is in ch09/properties/
properties/pipelines/geo2.py.

In order to enable this pipeline, we disable (comment out) our previous
implementation and add this to ITEM PIPELINES in settings.py as follows:

ITEM_PIPELINES = {
'properties.pipelines.tidyup.TidyUp': 100,
'properties.pipelines.es.EsWriter': 800,
DISABLE 'properties.pipelines.geo.GeoPipeline': 400,
'properties.pipelines.geo2.GeoPipeline': 400,

}

We can then run the spider with the following code:

$ scrapy crawl easy -s CLOSESPIDER ITEMCOUNT=1000

Scraped... 15.8 items/s, avg latency: 1.74 s and avg time in pipelines:
0.94 s
Scraped... 32.2 items/s, avg latency: 1.76 s and avg time in pipelines:
0.97 s
Scraped... 25.6 items/s, avg latency: 0.76 s and avg time in pipelines:
0.14 s

: Dumping Scrapy stats:...
'geo _pipeline/misses': 35,
'item scraped count': 1019,

We will observe that the latency of crawling starts high while populating the cache,
but then, it reverts to its previous values. Statistics also indicate 35 misses, which is
the exact number of different locations that are used in the demo dataset. Obviously,
there were 1019 - 35= 984 hits in the case above. If we use the real Google API and
increase the allowed number of API requests per second slightly, for example from
5 to 10 by changing Throttler (5) to Throttler (10), we will get retries recorded
in the geo_pipeline/retries stat. If there are any errors, for example, if a location
can't be found using the API, an exception will be thrown, and this is captured in
the geo_pipeline/errors stat. If the location somehow (we will see how in later
sections) is already set, it will be indicated in the geo_pipeline/already_set stat.
Finally, if we check ES for properties by navigating to http://localhost:9200/
properties/property/ search, we will see entries with location values, such as
{..."location": {"lat": 51.5269736, "lon": -0.0667204}...}, as expected
(make sure you don't see old values by clearing the collection before your run).

[157]

Pipeline Recipes

Enabling geoindexing on Elasticsearch

Now that we have locations, we can, for example, sort the results by distance. Here is
an HTTP POST request (done using curl) that returns properties that have "Angel"
in their title and are sorted by their distance from the point {51.54, -0.19}:

$ curl http://es:9200/properties/property/ search -d '{

"query" : {"term" : { "title" : "angel" } },
"gsort": [{" geo distance": {
"location": {"lat": 51.54, "lon": -0.19},
"order": "asc",
"unit": "km",
"distance type": "plane"

)

The only problem is that if we try to run it, we will see it failing witha "failed to
find mapper for [location] for geo distance based sort" error message
This indicates that our location field doesn't have the proper format for spatial
operations. In order to set the proper type, we will have to manually override the
defaults. First, we save the autodetected mapping in a file as a starting point:

$ curl 'http://es:9200/properties/ mapping/property' > property.txt
Then we edit property. txt as follows:

"location": {"properties":{"lat":{"type":"double"}, "lon": {"type":"d
ouble"}}}

We replace this line of code with the following one:
"location": {"type": "geo point"}

We also delete {"properties":{"mappings": and two }} at the end of the file. We
are then done with the file. We can now delete the old type and create a new one
with our explicit schema as follows:

$ curl -XDELETE 'http://e=s:9200/properties’
$ curl -XPUT 'http://es:9200/properties’

$ curl -XPUT 'http://es:9200/properties/ mapping/property' --data
@property. txt

We can now rerun a quick crawl, and we will be able to run the curl command that
we saw earlier in this section and get results sorted by distance. Our search returns
JSONs with properties with an extra sort field with its distance from the search
point in km.

[158]

Chapter 9

Interfacing databases with standard
Python clients

There are many important databases, including MySQL, PostgreSQL, Oracle, Microsoft
SQL Server, and SQLite, that adhere to the Python Database API Specification 2.0.
Their drivers are often complex and very well tested, and it would be a big waste

if they had to be reimplemented for Twisted. One can use these database clients in
Twisted applications, such as Scrapy using the twisted.enterprise.adbapi library.
We will use MySQL as an example to demonstrate its usage, but the same principles
apply to any other compliant database.

A pipeline that writes to MySQL

MySQL is a great and very popular database. We will write a pipeline that writes
items to it. We already have a MySQL instance running on our virtual environment.
We will need to perform some basic administration using the MySQL command-line
tool, which is also preinstalled on our dev machine, as follows:

$ mysqgl -h mysqgl -uroot -ppass

We will get a MySQL prompt indicated by mysql>, and we can now create a simple
database table with a few fields, as follows:

mysqgl> create database properties;
mysqgl> use properties
mysqgl> CREATE TABLE properties (
url varchar (100) NOT NULL,
title varchar(30),
price DOUBLE,
description varchar(30),
PRIMARY KEY (url)
)i
mysqgl> SELECT * FROM properties LIMIT 10;

Empty set (0.00 sec)

[159]

Pipeline Recipes

Great, now that we have a MySQL database and a table named properties with a
few fields, we are ready to create our pipeline. Keep the MySQL console open as we
will get back to it in a bit to check whether the values were inserted. In case we need
to exit it, we just type exit.

In the course of this section, we are going to insert properties
in the MySQL database. If you need to erase them, use the
%‘ following command:

mysqgl> DELETE FROM properties;

We will use the MySQL client for Python. We will also install a little utility module
that is named dj -database-url to help us parse connection URLSs (it just saves us
from having distinct settings for IP, port, password, and so on.) We can install these
two using pip install dj-database-url MySQL-python, but we have them already
installed in our dev environment. Our MySQL pipeline is very simple, as follows:

from twisted.enterprise import adbapi
class MysglWriter (object) :

def init_ (self, mysqgl url):
conn_kwargs = MysglWriter.parse mysqgl url (mysgl url)
self.dbpool = adbapi.ConnectionPool ('MySQLdb',
charset="'utfsg',
use_unicode=True,
connect timeout=5,
**conn_kwargs)

def close_spider(self, spider):
self.dbpool.close()

@defer.inlineCallbacks
def process item(self, item, spider):
try:
yield self.dbpool.runInteraction(self.do_replace, item)
except:
print traceback.format exc ()

defer.returnvValue (item)

@staticmethod
def do_replace(tx, item):
sgql = ""'"REPLACE INTO properties (url, title, price,

[160]

Chapter 9

description) VALUES (%s,%s,%s,%s)"""
args = (
item["url"] [0] [:100],
item["title"] [0] [:30],
item["price"] [0],
item["description"] [0] .replace ("\r\n", " ") [:30]

tx.execute(sql, args)

1
> The full code for this example is in ch09/properties/
properties/pipelines/mysql.py.

Essentially, most of it is boilerplate spider code. The code that we have omitted

for brevity parses a URL in the format mysql://user:passeip/database that

is contained in the MYSQL_PIPELINE_URL setting to individual arguments. In our
spider's __init__ (), we pass them to adbapi.ConnectionPool (), which uses the
infrastructure of adbapi to initialize a MySQL connection pool. The first argument is
the name of the module that we want to import. In our MySQL case, this is MySQLdb.
We set a few extra arguments for the MySQL client to properly handle Unicode and
timeouts. All these arguments go to the underlying MySQLdb . connect () function
every time adbapi needs to open new connections. On spider close, we call the
close () method for that pool.

Our process_item() method essentially wraps dbpool . runInteraction (). This
method queues a callback method that will be called at some later point when a
Transaction object from one of the connections in the connection pool becomes
available. The Transaction object has an API that is similar to a DB-API cursor. In
our case, the callback method is do_replace (), which is defined a few lines later.
@staticmethod means that the method refers to the class and not a specific class
instance, thus, we can omit the usual self argument. It's good practice to make
methods static if they don't use any members, but even if you forget it, it's okay. This
method prepares a SQL string, a few arguments, and calls the execute () method of
Transaction to perform the insertion. Our SQL uses REPLACE INTO instead of the
more common INSERT INTO to replace existing entries with the same primary key if
they already exist. This is convenient in our case. If we wanted to use SQL that returns
data, such as the SELECT statements, we would use dbpool . runQuery (), and we may
want to change the default cursor that is used by setting the cursorclass argument
of adbapi . ConnectionPool () to, for example, cursorclass=MySQLdb.cursors.
DictCursor as it's more convenient for data retrieval.

[161]

Pipeline Recipes

In order to use this pipeline, we have to add it in our ITEM PIPELINES dict in
settings.py, as well as set the MYSQL._PIPELINE_URL appropriately:

ITEM PIPELINES = {
'properties.pipelines.mysqgl.MysglWriter': 700,

MYSQL PIPELINE URL = 'mysqgl://root:pass@mysqgl/properties’
Execute the following command:
scrapy crawl easy -s CLOSESPIDER ITEMCOUNT=1000

After running this command, we can go back to the MySQL prompt and see the
records on the database as follows:

mysqgl> SELECT COUNT (*) FROM properties;

mysqgl> SELECT * FROM properties LIMIT 4;

Hmmmmmmm e e R ettt S it Hmmmmmmmm oo +
| url | title | price | description
Hmmmmmmm e e R ettt S it Hmmmmmmmm oo +
| http://...0.html | Set Unique Family Well | 334.39 | website c
| http://...1.html | Belsize Marylebone Shopp | 388.03 | features
| http://...2.html | Bathroom Fully Jubilee S | 365.85 | vibrant own
| http://...3.html | Residential Brentford Ot | 238.71 | go court
Hmmmmmmm e e R ettt S it Hmmmmmmmm oo +

4 rows in set (0.00 sec)

The performance, both latency and throughput, remains exactly the same as before.
This is quite impressive.

[162]

Chapter 9

Interfacing services using
Twisted-specific clients

Until now, we saw how to use REST-like APIs using treq. Scrapy can interface

with many other services using Twisted-specific clients. For example, if we want to
interface MongoDB, and we search for "MongoDB Python", we will get PyMongo,
which is blocking/synchronous and shouldn't be used with Twisted unless we use
threads as described in the pipeline that handle blocking operations in a later section.
If we search for "MongoDB Twisted Python", we get txmongo, which is perfectly fine
to use with Twisted and Scrapy. Usually, the communities behind Twisted clients are
smaller, but this is still a better option than writing our own client. We will use such a
Twisted-specific client to interface with the Redis key-value store.

A pipeline that reads/writes to Redis

The Google Geocoding API limit is per-IP. One may have access to multiple IPs

(for example, many servers) and would like to avoid making duplicate requests

for addresses that another machine has already geocoded. This also applies for the
addresses that one has seen recently in previous runs. We wouldn't like to waste our
precious quotas.

Talk to the API vendor to ensure that this is okay with their
policies. You may have to, for example, discard cached records
every few minutes/hours or caching may not be allowed at all.

We can use Redis key-value cache as, essentially, a distributed dict. We already run
a Redis instance in our vagrant environment, and we should be able to connect to it
and perform basic operations using redis-cli from dev:

$ redis-cli -h redis
redis:6379> info keyspace

Keyspace

redis:6379> set key value

OK

redis:6379> info keyspace

Keyspace

db0:keys=1, expires=0,avg ttl=0
redis:6379> FLUSHALL

[163]

Pipeline Recipes

OK
redis:6379> info keyspace
Keyspace

redis:6379> exit

By Googling "Redis Twisted", we find the txredisapi library. What makes it
fundamentally different is that it isn't just a wrapper around synchronous Python
libraries, but this is a proper Twisted library that connects to Redis using reactor.
connectTCP (), implements Twisted protocols, and so on. We use it in a similar
manner to other libraries, but it is bound to be slightly more efficient when used

in a Twisted application. We can install it along with a utility library, dj_redis_
url, which parses Redis configuration URLs, by using pip (sudo pip install
txredisapi dj_redis_url), and as usual, it's preinstalled in our dev.

We initialize our RedisCache pipeline as follows:

from txredisapi import lazyConnectionPool
class RedisCache (object) :

def _ init_ (self, crawler, redis_url, redis_nm) :
self.redis url = redis_url
self.redis_nm = redis_nm

args = RedisCache.parse_redis_url (redis_url)

self.connection = lazyConnectionPool (connectTimeout=5,
replyTimeout=5,
**args)

crawler.signals.connect (
self.item scraped, signal=signals.item scraped)

This pipeline is quite simple. In order to connect with a Redis server, we need the
host, port, and so on, which we all store in a URL format. We parse the format using
our parse_redis_url () method (omitted for brevity). It's also very common to use
a namespace that prefixes our keys, which, in our case, we store in redis_nm. We
then use lazyConnectionPool () of txredisapi to open a connection to the server.

The last line has an interesting function. What we're aiming to do is to wrap the geo-
pipeline with this pipeline. If we don't have a value in Redis, we won't set a value,
and our geo-pipeline will use the API to geocode the address as before. After it does
so, we have to have a way to cache these key-value pairs in Redis, and we do this

by connecting to the signals.item_ scraped signal. The callback we define (our
item_scraped () method, which we will see in a bit) will be called at the very end, at
which point the location will be set.

[164]

Chapter 9

1
‘Q The full code for this example is in ch09/properties/

properties/pipelines/redis.py.

We keep this cache simple by looking up and recording addresses and locations for
every Item. This makes sense for Redis because it very often runs on the same server,
which makes it very fast. If that's not the case one may want to add a dict-based
cache that is similar to the one that we have in our geo-pipeline. This is how we
process incoming Items:

@defer.inlineCallbacks
def process item(self, item, spider):
address = item["address"] [0]

key = self.redis nm + ":" + address
value = yield self.connection.get (key)
if value:

item["location"] = json.loads (value)

defer.returnvValue (item)

This is nothing more than one would expect. We get the address, prefix it, and look it
up in Redis using get () of txredisapi connection. We store JSON-encoded objects
as values in Redis. If a value is set, we use JSON to decode it and set it as a location.

When an Itemreaches the end of all our pipelines, we recapture it in order to store to
Redis location values. Here is how we do this:

from txredisapi import ConnectionError

def item scraped(self, item, spider):
try:
location = item["location"]
value = json.dumps(location, ensure ascii=False)
except KeyError:

return
address = item["address"] [0]
key = self.redis nm + ":" + address
quiet = lambda failure: failure.trap (ConnectionError)

return self.connection.set (key, value) .addErrback (quiet)

[165]

Pipeline Recipes

There are no big surprises here either. If we find a location, we get the address, prefix
it and use them as keys and values for the txredisapi connection's set () methods.
You will notice that this function doesn't use @edefer. inlineCallbacks because it
isn't supported while handling signals.item scraped. This means that we can't
use our very convenient yield for connection.set (), but what we can do is return
a deferred that Scrapy will use to chain any further signal listeners. In any case, if a
connection to Redis can't be made to connection.set (), it will throw an exception.
We can ignore this exception quietly by adding a custom error handler to the
deferred that connection.set () returns. In this error handler, we take the failures
that are passed as arguments, and we tell them to trap () any ConnectionError.
This is a nice feature of Twisted's Deferred API. By using trap () on the expected
exceptions, we can quietly ignore them in a compact form.

To enable this pipeline, all we have to do is add it to our ITEM PIPELINES settings
and provide a REDIS_PIPELINE_URL inside settings.py. It is important to give
this a priority value that sets it before the geo-pipeline otherwise it will be too late to
be useful:

ITEM PIPELINES = {
'properties.pipelines.redis.RedisCache': 300,
'properties.pipelines.geo.GeoPipeline': 400,

REDIS_PIPELINE URL = 'redis://redis:6379'

We can run this spider as usual. The first run will be similar to before, but any
subsequent run will be as follows:

$ scrapy crawl easy -s CLOSESPIDER ITEMCOUNT=100

INFO: Enabled item pipelines: TidyUp, RedisCache, GeoPipeline,
MysglWriter, EsWriter

Scraped... 0.0 items/s, avg latency: 0.00 s, time in pipelines: 0.00 s
Scraped... 21.2 items/s, avg latency: 0.78 s, time in pipelines: 0.15 s
Scraped... 24.2 items/s, avg latency: 0.82 s, time in pipelines: 0.16 s

INFO: Dumping Scrapy stats: {...
'geo pipeline/already set': 106,

'item scraped count': 106,

[166]

Chapter 9

We can see that both the GeoPipeline and the RedisCache are enabled and that
RedisCache comes first. Also notice in the stats geo pipeline/already set:
106. These are items that GeoPipeline finds prepopulated from our Redis cache,
and in all these cases, it won't make a Google API call. If the Redis cache is empty,
you will see a few keys being handled using the Google API as expected. In terms
of performance, what we observe is that the start-behavior that was induced by
GeoPipeline is now gone. Indeed, as we now use the cache, we bypass the five
requests per second API limit. If we use Redis, we should consider using expiring
keys to make our system refresh its cached data periodically.

Interfacing CPU-intensive, blocking, or
legacy functionality

This final section talks about accessing the most non-Twisted-like workloads. Despite
the tremendous benefits of having efficient asynchronous code, it's neither practical
nor realistic to assume that every library will be rewritten for Twisted and Scrapy.
Using Twisted's thread pools and the reactor. spawnProcess () method, we can use
any Python library and binaries that are written in any language.

A pipeline that performs CPU-intensive or

blocking operations

As we highlighted in Chapter 8, Programming Scrapy, the reactor is ideal for short,
nonblocking tasks. What can we do if we have to do something more complex or
something that involves blocking? Twisted provides thread pools that can be used
to execute slow operations in some thread other than the main (Twisted's reactor)
using the reactor.callInThread () API call. This means that the reactor will

keep running its processing and reacting to events while the computation takes
place. Please keep in mind that processing that is happening in the thread pool isn't
thread safe. This means that you have all the traditional synchronization problems
of multithreaded programming when you use global state. Let's start with a simple
version of this pipeline, and we will build towards the complete code:

class UsingBlocking(object) :
@defer.inlineCallbacks
def process item(self, item, spider):
price = item["price"] [0]

out = defer.Deferred()
reactor.callInThread(self. do calculation, price, out)

[167]

Pipeline Recipes

item["price"] [0] = yield out
defer.returnvValue (item)

def do calculation(self, price, out):
new price = price + 1
time.sleep(0.10)
reactor.callFromThread (out.callback, new price)

In the preceding pipeline, we see the basic primitives in action. For every Item, we
extract the price, and we want to process it using the _do_calucation () method.
This method uses time.sleep (), a blocking operation. We will let it run in another
thread using the reactor.callinThread () call. This takes the function to call as
arguments and any number of arguments that pass to our function. Obviously, we
pass the price but we also create and pass a Deferred that is named out. When our
_do_calucation () completes its calculations, we will use the out callback to return
the value. In the next step, we yield this Deferred and set the new value for the
price, and we finally return the Item.

Inside do_calucation (), we notice a trivial calculation —an increase of the price
by one —and then a sleep of 100ms. That's a lot of time, and if called in the reactor
thread, it would prevent us from being able to process more than 10 pages per
second. By running it in another thread, we don't have this problem. Tasks will
queue up in the thread pool waiting for a thread to become available and as soon
as this happens, that thread will sleep for 100ms. The final step is to fire the out
callback. Normally, we could do this using out .callback (new_price), but since
we are now in another thread, it's not safe to do so. If we were doing so, the code of
Deferred and, consequently, Scrapy's functionality would be called from another
thread, which would sooner or later result in corrupted data. Instead of doing this,
we use reactor.callFromThread (), which also takes a function as argument
and any number of extra arguments to be passed to our function. This function
will be queued and called from the reactor thread, which in turn will unblock
process_item() objects yield and resume Scrapy's operation for this Item.

What happens if we have global state, for example counters, moving averages, and
so on, that we need to use in our _do_calucation () ? Let's, for example, add two
variables, beta and delta, as follows:

class UsingBlocking(object) :
def init (self):
self .beta, self.delta = 0, O

def do calculation(self, price, out):
self.beta += 1
time.sleep(0.001)

[168]

Chapter 9

self.delta += 1
new price = price + self.beta - self.delta + 1
assert abs(new price-price-1) < 0.01

time.sleep(0.10) ...

The preceding code is wrong and gives us assertion errors. That's because if a

thread switch happens between self.beta and self.delta, and another thread
resumes calculating the price using these beta/delta values, it will find them in an
inconsistent state (beta being larger than delta), thus, calculate erroneous results.
The short sleep makes this more likely, but even without it, the race condition would
soon demonstrate itself. To prevent this from happening, we have to use a lock, for
example, Python's threading.RLock () recursive lock. Using it, we ensure that no
two threads will execute the critical section it protects at the same time:

class UsingBlocking(object) :
def init (self):

self.lock = threading.RLock ()

def do calculation(self, price, out):
with self.lock:
self.beta += 1

new price = price + self.beta - self.delta + 1

assert abs(new price-price-1) < 0.01

The preceding code is now correct. Please note that we don't need to protect the
entire code but just enough to cover the use of global state.

‘\IQ The full code for this example is in ch09/properties/

properties/pipelines/computation.py.

To use this pipeline, we just have to add it to the ITEM_ PIPELINES setting inside
settings.py as follows:

ITEM PIPELINES = {
'properties.pipelines.computation.UsingBlocking': 500,

We can run the spider as usual. The pipeline latency jumps significantly by 100
ms, as expected, but we will surprisingly find that throughput remains exactly the
same — about 25 items per second.

[169]

Pipeline Recipes

A pipeline that uses binaries or scripts

The most agnostic interface one can have to a piece of legacy functionality is that of
a standalone executable or script. It may take a few seconds to start (for example,
loading data from databases), but after that, it will likely be able to process many
values with a small latency. Even in this case, Twisted has us covered. We can use
the reactor. spawnProcess () API and the relevant protocol . ProcessProtocol to
run executables of any kind. Let's take a look at an example. Our sample script will
be as follows:

#!/bin/bash
trap "" SIGINT

sleep 3

while read line

do

4 per second

sleep 0.25

awk "BEGIN {print 1.20 * $line}"
done

This is a simple bash script. As soon as it starts, it disables Ctrl + C. This is to overcome
a peculiarity of the system that propagates Ctrl + C to subprocesses and terminates
them prematurely causing Scrapy itself to not terminate while waiting indefinitely for
a result from these processes. After disabling Ctrl + C, it sleeps for three seconds to
emulate boot time. Then it reads lines from the input, waits 250ms, and then returns
the resulting price, which is the original that is multiplied by 1.20 as calculated by the
awk Linux command. The maximum throughput that this script could have is
1/250ms = 4 Items per second. Let's test it with a short session as follows:

$ properties/pipelines/legacy.sh

12 <- If you type this quickly you will wait ~3 seconds to get results
14.40

13 <- For further numbers you will notice just a slight delay

15.60

As Ctrl + C has been deactivated, we have to terminate the session with Ctrl + D.
Great! So, how do we use this script from Scrapy? Again, we start with a slightly
simplified version:

class CommandSlot (protocol.ProcessProtocol) :
def init (self, args):

[170]

Chapter 9

self. queue = []
reactor.spawnProcess (self, args[0], args)

def legacy calculate(self, price):
d = defer.Deferred()
self. queue.append(d)
self.transport.write ("%$f\n" % price)
return d

Overriding from protocol.ProcessProtocol
def outReceived(self, data):
""mCalled when new output is received"""
self. queue.pop(0).callback(float (data))

class Pricing(object) :
def init (self):
self.slot = CommandSlot (['properties/pipelines/legacy.sh'])

@defer.inlineCallbacks

def process item(self, item, spider):
item["pri;e"] [0] = yield self.slot.legacy calculate(item["price"] [0])
defer.returnvValue (item)

We find the definitions of a ProcessProtocol named CommandSlot and our
Pricing spider here. Inside _ init (), we create the new Commandslot, which in
its constructor initializes an empty queue and starts a new process using reactor.
spawnProcess (). This call takes as its first argument a ProcessProtocol that

is used to send and receive data from the process. In this case, it's sel1£ because
spawnProcess () is called from within the protocol class. The second argument is
the name of the executable. The third argument, args, keeps all the command-line
arguments for this binary as a sequence of strings.

Inside pipeline's process_item(), we essentially delegate all the work in the

legacy calculate () method of CommandSlot, which returns a Deferred that we
yield. legacy_ calculate () creates a Deferred, enqueues it, and writes the price to
the process using transport.write (). transport is provided by Processprotocol
in order to allow us to communicate with the process. Whenever we receive data
from the process, outReceived () gets called. By enqueuing Deferred and since
processing from our shell script happens in order, we can just pop the oldest
Deferred from the queue and fire it with the received value. That's all. We can
enable this pipeline by adding it to ITEM PIPELINES and running it as usual:

ITEM PIPELINES = {...
'properties.pipelines.legacy.Pricing': 600,

[171]

Pipeline Recipes

If we perform a run, the one thing that we will observe is that the performance

is horrible. As we would expect, our process becomes a bottleneck and limits the
throughput to four Items per second. To increase it, all we need to do is modify the
pipeline slightly to allow multiple such processes to run in parallel, as follows:

class Pricing(object) :
def init (self):
self.concurrency = 16
args = ['properties/pipelines/legacy.sh']
self.slots = [CommandSlot (args)
for 1 in xrange(self.concurrency)]
self.rr = 0

@defer.inlineCallbacks
def process item(self, item, spider):
slot = self.slots[self.rr]
self.rr = (self.rr + 1) % self.concurrency
item["price"] [0] = yield
slot.legacy calculate(item["price"] [0])
defer.returnvValue (item)

This is nothing more than starting 16 instances and sending prices in each of them in
a round-robin fashion. This pipeline now provides a maximum throughput of 16*4 =
64 items per second. We can confirm it with a quick crawl as follows:

$ scrapy crawl easy -s CLOSESPIDER ITEMCOUNT=1000

Scraped... 0.0 items/s, avg latency: 0.00 s and avg time in pipelines:
0.00 s
Scraped... 21.0 items/s, avg latency: 2.20 s and avg time in pipelines:
1.48 s
Scraped... 24.2 items/s, avg latency: 1.16 s and avg time in pipelines:
0.52 s

The latency, as expected, increased by 250 ms, but the throughput is still ~25 items/s.

Please keep in mind that the preceding method uses transport.write () to queue
all the prices in this shell script's input. This may or may not be okay for your
application, especially if it uses way more data than just a few numbers. The full
code on Git enqueues both values and callbacks, and it doesn't send a new value to
the script unless the result for the previous one has been received. You may find this
way friendlier to your legacy applications, but it adds some complexity.

[172]

Chapter 9

Summary

You just studied quite a few sophisticated Scrapy pipelines. By now, you have seen
everything you may need in terms of Twisted programming, and you know how

to implement complex functionality including processing, and storing Items using
Item Processing Pipelines. We saw how performance changes by adding more
pipeline stages in terms of latency and throughput. Usually, latency and throughput
are considered inversely proportional, but this is under the assumption of constant
concurrency (for example, a limited number of threads). In our case, we started with
a concurrency of N=5-T=25-0.77=19, and after adding pipeline stages, we ended

up N =25-3.33=83 with without facing any performance problems. That's the power
of Twisted programming! It's now time to move on to Chapter 10, Understanding
Scrapy's Performance, to make perfect sense of Scrapy's performance.

[173]

10

Understanding Scrapy's
Performance

Generally, it's easy to get performance wrong. With Scrapy, it's not just easy —it's
almost certain because there are quite a few counterintuitive behaviors. Unless

you have a good understanding of Scrapy's internals, you will find yourself
working hard, optimizing performance while getting zero gains. That is part

of the complexity of working with high-performance, low-latency, and highly-
concurrent environments. Amdahl's law still holds true while optimizing bottleneck
performance, but unless you identify the real bottleneck, optimizations on any other
part of the system will not increase the number of items you scrape per second
(throughput). More intuition can be gained by reading the classic The Goal by Dr.
Goldratt, a business book that explains, with some excellent metaphors, the idea of
the bottleneck, latency, and throughput. The same concepts hold identically true

to software too. This chapter will help you identify the bottleneck on your Scrapy
configuration and will help you avoid obvious mistakes.

Please keep in mind that this is a quite advanced chapter and some mathematics are
involved. The calculations are simple and accompanied with diagrams and plots that
demonstrate the same concepts. If you don't like math, just ignore the formulas and
you will still gain a significant insight into how Scrapy's performance works.

[175]

Understanding Scrapy's Performance

Scrapy's engine — an intuitive approach

Parallel systems look a lot like piping systems. In computer science, we use the
queue symbol to represent queues and processing elements (Figure 1. on the left). A
fundamental law for queue systems is Little's law, which asserts that the number of
elements in the queuing system (N) in equilibrium is equal to the throughput of the
system (T) multiplied by the total queuing/service time (S); N =T - S. The other two
forms, T=N/Sand S = N/ T, are also useful for calculations.

Queueing theory Pipes

N=8 R N=16R N=32 R
Little'slaw: N=T"S §=.255 S=.255s $=.255
T=32R/s T=64R/s T=128 R/s

Figure 1. Little's law, queuing systems, and pipes

There's a similar law for the geometry of a pipe (Figure 1. on the right). The volume of a
pipe (V) equals the length of the pipe L multiplied by cross-sectional area (A); V=L - A.

If we imagine length representing service time (L ~ S), volume representing elements
in the processing system (V ~ N), and across-sectional area representing throughput
(A ~ N), then Little's law and the volume formula are the same thing.

Does this analogy make sense? The answer is almost. If we imagine
units of work as small drops of liquid moving with constant speed
inside the pipe, then L ~ S absolutely makes sense because the
longer the pipe, the more time a drop will spend in it. V ~ N also
makes sense because the larger the pipe, the more drops it will be
able to fit in it. Annoyingly, we can also squeeze more drops in a

N pipe by applying more pressure. A ~ T is where the analogy falls

~ over. In pipes, the real throughput, that is, the number of drops

Q that goes in/out of it per second, is called "volumetric flow rate"
and unless special conditions are met (orifices), it is proportional
to A?instead of A. This is because a wider pipe doesn't mean just
more liquid out, but also liquid moving faster because there's
more space between the walls of the pipe. For the purposes of
this chapter though, we can ignore these geeky details and live
in a fantasy world where pressure and speed are constant and
throughput is directly proportional to the cross-sectional area. o

[176]

Chapter 10

Little's law is very similar to the simple volume formula, and this is what makes

this "pipe model" so intuitive and powerful. Let's examine the examples of Figure 1
(on the right) in a bit more detail. Let's assume that the pipe system represents the
downloader of Scrapy. The first one—a very "thin" downloader —may have a total
volume/concurrency level (N) = 8 concurrent requests. The length/latency (S) could
be something, such as S = 250 ms, for a fast website. Given N and S, we can now
calculate the volume/throughput of the processing element T = N/S = 8/0.25 = 32
requests per second.

You will note that latency is mostly out of our control because it depends on the
performance of the remote server and our network's latencies. What we can easily
control is the level of concurrency (N) on the downloader by increasing it from 8 to

16 or 32 parallel requests, as we see in the second and third pipe on Figure 1. With
constant length (outside our control), we can only increase volume by increasing the
cross-section , that is, increasing throughput! In Little's law terms, with 16 Requests in
parallel, we have T = N/S = 16/0.25 = 64 requests per second, and with 32 requests in
parallel, we get T = N/S = 32/0.25 = 128 requests per second. Excellent! It seems like we
can make a system infinitely fast by increasing concurrency. Before we rush to such
conclusions though, we should also consider the effects of cascading queuing systems.

Cascading queuing systems

When you connect several pipes with different cross-sectional areas/throughputs one
after the other, intuitively one can understand that the flow of the overall system will
be limited by the flow of the narrowest (smallest throughput: T) pipe (see Figure 2).

I 7
___’: "—?—’:" T‘l__,":g)

Figure 2. Cascading queuing systems with different capacities

[177]

Understanding Scrapy's Performance

You can also observe that the placement of the narrowest pipe — the bottleneck — defines
how "full" other pipes are. If you think about fullness relating it with the memory
requirements for your system, you realize that the placement of the bottleneck is very
important. It's better to have a configuration that keeps full pipes where one unit of
work costs us little. In Scrapy, a unit of work (crawling a page) consists mostly of a

URL (a few bytes) before the downloader and the URL plus the server's response (way
larger) after it.

N This is why it's wise in a Scrapy system to place the bottleneck
in the downloader.

Identifying the bottleneck

A very important benefit of our piping system metaphor is that it makes the process
of identifying the bottleneck visually intuitive. If you look at Figure 2, you will notice
that everything before "the bottleneck" is full while everything after it isn't.

The good news is that, in most systems, we can monitor how full a queuing system is
using the system's metrics relatively easily. By careful inspection of Scrapy's queues,
we can understand where the bottleneck is, and if it's not in the downloader, we can
adjust the settings in order to make it so. Any improvement that doesn't improve
the bottleneck will give no throughput benefit. The only thing one can achieve

by hacking other parts of the system is to make things worse, likely moving the
bottleneck somewhere else. This feels a bit like tail chasing, and it can take for ages
and make you feel despair. You have to follow a systematic approach, identify the
bottleneck, and "know where to hit with a hammer" before you hack any code or
configuration. As you will see in many cases, including most examples of this book,
the bottleneck is not where one would expect it to be.

[178]

Chapter 10

Scrapy's performance model

Let's return to Scrapy and see its performance model in detail (see Figure 3).

The scheduler
Ten(engine.slot.scheduler.mgs)

Requests / len(engine.slot.scheduler.dqs)
)
2 3
D ° The throttler

& http:
engine.scraper.slot.active_size

@ The downloader
| Ten(engine.downloader.active)
CONCURRENT_REQUESTS
CONCURRENT_REQUESTS_PER_DOMAIN
CONCURRENT_REQUESTS_PER_IP

Server's CPU/ XA . Thescraper
utilization. r R Ten(engine.scraper.slot.active)

Use the Linux 'top’ :
command i
 Items
stats.get_value('item_scraped_count')

The spider Item processing pipelines
engine.scraper.slot.itemproc_size

Figure 3. Scrapy's performance model
Scrapy consists of the following:

* The scheduler: This is where multiple Request get queued until the
downloader is ready to process them. They consist mostly of just URLs and,
thus, are quite compact, which means that having many of them doesn't hurt
that much and allows us to keep the downloader fully utilized in case of
irregular flow of incoming Request.

* The throttler: This is a safety valve that feeds back from the scraper (the
large tank) and if the aggregated size of Response in progress is larger than 5
MB it stops the flow of further Request into the downloader. This can cause
unexpected performance fluctuations.

[179]

Understanding Scrapy's Performance

* The downloader: This is the most important component of Scrapy in terms
of performance. It poses a complex limit on the number of Request it can
perform in parallel. Its delay (the length of the pipe) is equal to the time it
takes the remote server to respond, plus any network/operating system and
Python/Twisted delays. We can adjust the number of parallel Requests, but
we, typically, have little control over delays. The capacity of the downloader
is limited by the CONCURRENT_REQUESTS* settings, as we shall soon see.

* The Spider: This is the part of the scraper that turns Response to Itemand
a further Request. We write these, and typically they aren't a performance
bottleneck as long as we follow the rules.

* Item pipelines: This is the second part of the scraper that we write.
Our spiders might generate hundreds of Items per Request, and only
CONCURRENT_ITEMS will be processed in parallel at a time. This is important
because if, for example, you're doing database accesses in your pipelines,
you might unintentionally flood your database and the default (100) seems
dangerously high.

Both spiders and pipelines should have asynchronous code and may induce as
much latency as necessary but still shouldn't be the bottleneck. Rarely, our spiders/
pipelines do heavy processing. If this is the case, then our server's CPU might
become the bottleneck.

Getting component utilization
using telnet

In order to understand how Requests/Items flow though the pipes, we aren't really
able to measure the flows (although this would be a cool feature). Instead, we can
easily measure how much liquid, that is, Requests/Responses/ Items, exists in each
of Scrapy's processing stages.

Scrapy runs the telnet service via which we can get performance information. We
can connect to it by using the telnet command on port 6023. We then get a Python
prompt inside Scrapy. Be careful, if you do something blocking there, such as time.
sleep (), it will halt the crawler's functionality. Several interesting metrics get
printed by the built-in est () function. Some of them are either very specialized or
can be deduced from a few core metrics. I will only show you the latter in the rest of
the chapter. Let's explore them with an example run. While we run a crawl, we open
a second terminal on our dev machine, telnet on port 6023, and run est ().

[180]

Chapter 10

Al

~ The code from this chapter is in the ch10 directory. This
example in particular is in the ch10/speed directory.

On the first terminal, we run the following code:

$ pwd
/root/book/chl0/speed
$ 1s

scrapy.cfg speed

$ scrapy crawl speed -s SPEED PIPELINE ASYNC DELAY=1
INFO: Scrapy 1.0.3 started (bot: speed)

Don't worry about what this scrapy crawl speed and its arguments mean for now.
We will explain all of them in the rest of the chapter. On the second terminal, run
the following:

$ telnet localhost 6023

>>> est()

len (engine.downloader.active) : 16
len(engine.slot.scheduler.mgs) : 4475
len(engine.scraper.slot.active) : 115
engine.scraper.slot.active size : 117760
engine.scraper.slot.itemproc size : 105

Then press Ctrl + D on the second terminal to exit telnet and get back to the first
terminal, and press Ctrl + C to stop the crawl.

We ignore dgs for now. If you have enabled persistence support
~ by setting the JOBDIR setting, you will also get non-zero dgs
(len(engine.slot.scheduler.dgs)), which you should
add to the size of mgs to follow the rest of analysis.

[181]

Understanding Scrapy's Performance

Let's see what these core metrics mean in this example. mgs indicates that there are
quite a few (4,475 requests) waiting on our scheduler. That's okay. len (engine.
downloader.active) indicates that, right now, there are 16 requests actively being
downloaded by the downloader. This is equal to what we've set for CONCURRENT _
REQUESTS on the settings of this spider so that's excellent. 1en (engine.scraper.
slot.active) tells us that there are 115 Responses actively being processed in the
scraper. The total size of those Responses is 115 kb told to us by (engine.scraper.
slot.active_size).Out of those Responses, 105 Items are currently in process
by our pipelines, (engine.scraper.slot.itemproc_size), which means that the
rest of them (10) are in progress in our spider. Overall —we see that the bottleneck
seems to be the downloader as, before that, we have a huge queue of work (mgs) and
the downloader is fully utilized; after that, we have a high but more or less stable
amount of work (you can confirm this by performing est () a few times).

Another interesting source of information is the stats object—the one that typically
gets printed at the end of a crawl. We can access it at any point as a dict from telnet
via stats.get_stats () and print it nicely using the p () function:

$ p(stats.get stats())
{'downloader/request bytes': 558330,

'item scraped count': 2485,
-}

The most interesting metric for us right now is item_scraped_count, which is
accessible directly through stats.get_value ('item scraped_count'). This tells
us how many items have been scraped up to now and should be increasing with a
rate that is the throughput of the system (Items/second).

Our benchmark system

For Chapter 10, Understanding Scrapy's Performance, I wrote a simple benchmark
system that allows us to evaluate performance under different scenarios. The code
is somewhat cumbersome, and you can find it in speed/spiders/speed.py, but we
won't go into it in depth there.

[182]

Chapter 10

The system consists of the following:

The handlers of the http://localhost:9312/benchmark/ . .. directories on
our web server. We can control the structure (See Figure 4) of the fake website
as well as how quickly pages load by adjusting URL arguments/Scrapy
settings. Don't worry about the details —we will see many examples soon.
For now, you can notice the differences between http://localhost:9312/
benchmark/index?p=1 and http://localhost:9312/benchmark/id:3/
rr:5/index?p=1. The first one loads within half a second and has single
-item detail pages, while the second takes five seconds to load and has three
items per detail page. We can also add some hidden garbage data in pages to
make them a bit heavier. For example, check out http://localhost:9312/
benchmark/ds:100/detail?id0=0. By default (see speed/settings.py),
pages render in SPEED_T_RESPONSE = 0.125 seconds and the fake website has
SPEED TOTAL_ ITEMS = 5000 Items.

1
- &) localhost:9312/index7p=1 <« C localhost:9312/detail 7id0=2
o item 1 . I':%FiEED ITEMS PER_DETAIL
e jtem 2
. m \ useful inf(w
* ?teﬂ SPEED DETAILS PER INDEX PAGE
« jtem S5 . I'm3
next next next next ..SPEED TOTAL_ITEMS psefil info for id- 2
iew- Jocalhost:931... ¢ # =
SPEED_INDEX POINTAHEAD el) view sourcerlocalnos 2
1 <h3>I'm 2</h3><div class="info">useful
info for id: 2</dive<h3>I'm 3</h3>

<div class="info">useful info for id: 3</div>
</1li><h3>I'm 4</h3><div
class="info">useful info for id: 4</div>
<l--
iiiiidididiiiddidddidddd4444444444444444444444
_'Liiiiii“iiiiii.i..'Liiiiiiiiiiiiiiiiiiiiiiiii

11li11i--opEED DETAIL EXTRA SIZE

Figure 4. Our benchmarking server creates a fake website with adjustable structure

A spider, Speedspider, fakes a few ways of retrieving start_requests ()
controlled by the SPEED START REQUESTS_STYLE setting, and provides a
trivial parse_item() method. By default, we feed all starting URLs directly
to Scrapy's scheduler using the crawler.engine.crawl () method.

[183]

Understanding Scrapy's Performance

A pipeline, DummyPipeline, that fakes some processing. It has four different
types of delays that this processing might induce. Blocking/computing/
synchronous delay (SPEED_PIPELINE BLOCKING DELAY — this is bad),
asynchronous delay (SPEED_PIPELINE ASYNC DELAY — this is okay), remote
API call using the treq library (SPEED_PIPELINE API_VIA TREQ-—thisis
okay), and a remote API call using Scrapy's crawler.engine.download ()
(SPEED_PIPELINE_API_VIA DOWNLOADER— this is not that okay). By default,
the pipeline doesn't add any delays.

A set of high performance settings in settings.py. Everything that could
even slightly slow down the system has been disabled. We also disable the
per-domain request limit because we hit our local server only.

A little metrics capture extension that is similar to the one from Chapter 8,
Programming Scrapy. This periodically prints core metrics.

We've already used the system in the previous example, but let's rerun a simulation
while also using Linux's time utility to measure the total execution time. We will see
the core metrics being printed as follows:

$ time scrapy crawl speed

INFO:
INFO:
INFO:
INFO:

INFO:
INFO:

real

s/edule d/load scrape p/line done mem

0 0 0 0 0 0

4938 14 16 0 32 16384

4831 16 6 0 147 6144

119 16 16 0 4849 16384

2 16 12 0 4970 12288
Om46.561s

Column Metric

s/edule len (engine.slot.scheduler.mgs)

d/load len (engine.downloader.active)

scrape len(engine.scraper.slot.active)

p/line engine.scraper.slot.itemproc_size
done stats.get_value('item scraped_count')
mem engine.scraper.slot.active size

[184]

Chapter 10

This level of transparency is remarkable. I've shortened the column names a bit, but
they should still make sense. We start with 5,000 URLs in the scheduler and end up
with 5,000 items in the done column. The downloader is the fully utilized bottleneck
having 16 active Requests consistently with the settings. The scraper, mainly a
spider because pipelines are empty as we see in the p/line column, is somewhat
utilized but not fully as is typically the case past the bottleneck. It takes us 46 seconds
to scrape 5,000 Items with N=16 parallel requests, which means that the average time
per request is 46 - 16/5000 = 147ms instead of our expected 125ms, which is okay.

The standard performance model

The standard performance model holds true when Scrapy is functioning properly
and the downloader is the performance bottleneck. In this case, you will see some
requests in the scheduler, and the maximum number of concurrent requests in
the downloader. The scraper (spider and pipelines) will be lightly loaded and the
number of Responses in progress will not be constantly increasing.

2000 URLs 2000 URLs

® | CONCURRENT_REQUESTS ® | CONCURRENT_REQUESTS
250 ms/req :‘_: / = /
i \"—' ’(‘,T’__/,I \:«4| ’(,J_"__,,‘,I
= | | 62ltems/second ! = | | 123Items/second

= 0—> | | [)

Figure 5. The standard performance model and some experimental results

There are three main settings that control the downloader's capacity: CONCURRENT _
REQUESTS, CONCURRENT REQUESTS_PER_DOMAIN, and CONCURRENT REQUESTS_PER_
1p. The first one gives coarse control. No matter what, there won't be more than
CONCURRENT_REQUESTS active at a given time. On the other hand, if you target a
single domain or relatively few domains, the CONCURRENT REQUESTS_PER_DOMAIN
might limit further the number of active requests. If you set CONCURRENT_REQUESTS_
PER_IP, CONCURRENT_REQUESTS_PER_DOMAIN will get ignored, and the effective limit
will be the number of requests per single (target) IP. In the case of targeting some
shared hosting sites, for example, many domains may point to a single server and
this helps you not hit that server excessively.

[185]

Understanding Scrapy's Performance

To keep our performance exploration simple for now, we disable the per-IP limit
by leaving CONCURRENT_REQUESTS_PER_IP to the default value (0) and setting
CONCURRENT_REQUESTS_PER_DOMAIN to a very large number (1000000). This
combination effectively disables those limits and the downloader's concurrency is
controlled entirely by CONCURRENT REQUESTS.

We expect the throughput of our system to depend on the average time that it takes
to download a page, which includes the remote server's component and our system's
(Linux, Twisted /Python) latencies?,,,..u = fesponse + lovernead - It's also good to account for
some startup and shutdown time. This includes the lag between the time you get a
Response and the time its Items get out on the other end of your pipeline, as well

as the time until you get your first responses and some inferior performance while
caches are cold.

Overall, if you need to complete a job of N Requests and our Spider is properly
tuned, you should be able to complete it in:

) 3 N (l response + Zoverheud) y
%~ CONCURRENT_REQUESTS """

It is somewhat relieving that we don't have control over most of these parameters.
We might be able to control ¢, . slightly using a more powerful server and
similarly ¢,,,,, (which is hardly ever worth the effort because we pay that cost only
once per run). Apart from slight improvements for a given workload of N requests,
all we can seriously tune is the number of CONCURRENT REQUESTS, which quite often
depends on how hard we are allowed to hit remote servers. If we are okay to set it to
a very large number, at some point we will saturate either our server's CPU capacity
or the remote's ability to respond in a timely manner, that s, z,,,,,, will skyrocket
because the target website(s) will be throttling us, ban us, or we just got their

servers down.

Let's run an experiment to check our theory. We will crawl 2,000 items with
respomse €10.1255,0.255,0.55} and CONCURRENT REQUESTS €{8,16,32,64} as follows:
$ for delay in 0.125 0.25 0.50; do for concurrent in 8 16 32 64; do
time scrapy crawl speed -s SPEED TOTAL ITEMS=2000 \
-s CONCURRENT REQUESTS=$concurrent -s SPEED T RESPONSE=$delay

done; done

[186]

Chapter 10

On my laptop, I get the following times (in seconds) for completing 2,000 requests:

CONCURRENT_REQUESTS | 125 msfreq | 250 ms/req | 500 ms/req
8 36.1 67.3 129.7

16 194 35.3 66.1

32 11.1 19.3 34.7

64 74 111 19.0

Warning: geeky calculations ahead! Feel free to skim through this paragraph. We can
see some of those results in Figure 5. By reordering the last equation, we can bring it
to the simple form y =¢ X+t where x = N /CONCURRENT_REQUESTS

overhead start/ stop

and ¥y =1, X+1,.,... Using the least squares (LINEST Excel function) and the

preceding data, we calculate 7, .., =6 ms and £, = 3.18. £y turns out to be a
negligible number but start time is significant and favors long runs with thousands
of URLs. As a result, a very useful formula that we are going to use to approximate

the throughput of the system in Requests/second is the following:

T= N
t

job - tslart/ stop

By running a long job of N Requests, we can measure the ¢, aggregated time and
then it's straightforward to calculate T. ‘

Solving performance problems

Now that we have a thorough understanding of what the expected performance of
our system should be, let's take a look at what we should do in case we don't get

the performance we want. We will present different problematic cases by exploring
symptoms, performing example crawls that reproduce them, discussing the root
cause, and finally providing actions that fix them. The order the cases are presented
in is from higher-level system issues to lower-level Scrapy technical details. This
means that more common cases may appear after less common ones. Please read the
entire chapter before you start exploring your performance issues.

[187]

Understanding Scrapy's Performance

Case #1 — saturated CPU

Symptoms: At some point you will be increasing the level of concurrency, but you
will be getting no performance gains. When you reduce the level of concurrency,
everything works as expected. Your downloader is well utilized, but it seems like the
average time per request is exploding. You find out how loaded the CPU is using the
top command in Unix/Linux, ps on Power Shell, or the Task Manager on Windows,
and it seems quite high.

Example: Let's assume that you run the following command:

$ for concurrent in 25 50 100 150 200; do
time scrapy crawl speed -s SPEED TOTAL ITEMS=5000 \
-s CONCURRENT REQUESTS=$concurrent

done

You get the time it takes to scrape 5,000 URLs. The Expected column is calculated
based on the previously derived formula, and the CPU load is observed with top
(you can run this command on a second terminal to dev):

CONCURRENT_ CPU load
REQUESTS Expected (sec) | Actual (sec) | % of expected
25 29.3 30.34 97 % 52%
50 16.2 18.7 87% 78%
100 9.7 14.1 69% 92%
150 7.5 13.9 54% 100%
200 6.4 14.2 45% 100%
35
— expected 5000 URLs
01y — actual N/

® . CONCURRENT REQUESTS
T LN9 =100
125ms,-“req\ .—_l |
LR
% [| 450 Items/second
B | [

Time for 5000 URLs (seconds)
=

20 40 €0 80 100 120 140 160 180 200
CONCURRENT REQUESTS (Expected: 760 Items/second)

Figure 6. Performance flattens out as you increase concurrency beyond a certain level

[188]

Chapter 10

In our experiment, we hardly perform any processing and that's why we can get
that high concurrencies. In a more sophisticated system, you will most likely see this
behavior earlier.

Discussion: Scrapy heavily uses a single thread and as you reach high levels of
concurrency, the CPU might become the bottleneck. The recommended level of CPU
Scrapy should be using, assuming that you don't use any thread pools, is around
80-90%. Please keep in mind that you can have similar problems with other system
resources, such as network bandwidth, memory, or disk throughput, but all these are
less likely and fall into the general system administration realm, so we won't address
them any further here.

Solution: I will assume that your code is, in general, efficient. You can get
aggregated concurrency larger than CONCURRENT REQUESTS by running many Scrapy
crawlers on the same server. This will help you utilize more of the available cores
especially if other services or other threads from your pipelines don't use them.

If you need even more concurrency, you can use multiple servers (see Chapter 11,
Distributed Crawling with Scrapyd and Real-Time Analytics), in which case you will
likely have more memory, network bandwidth, and hard disk throughput available
as well. Always double-check that CPU usage is your primary constraint.

Case #2 — blocking code

Symptoms: The behavior that you're observing doesn't make any sense. The system is
very slow compared to what you expect and curiously the speed doesn't significantly
change when you change CONCURRENT REQUESTS. The downloader looks almost empty
(way less than CONCURRENT REQUESTS) and the scraper has quite a few Responses.

Example: You can use two benchmark settings, SPEED_SPIDER BLOCKING_DELAY
and SPEED_PIPELINE_BLOCKING DELAY (they have identical effects), to enable a 100-
ms blocking delay per Response. We would expect 100 URLs to take 2-3 seconds at
the given concurrency levels, but we consistently get ~13 seconds irrespective of the
value of CONCURRENT REQUESTS:

for concurrent in 16 32 64; do
time scrapy crawl speed -s SPEED TOTAL ITEMS=100 \
-s CONCURRENT REQUESTS=$concurrent -s SPEED SPIDER BLOCKING DELAY=0.1

done
CONCURRENT_REQUESTS | Total time (sec)
16 13.9
32 13.2
64 129

[189]

Understanding Scrapy's Performance

Discussion: Any trace of blocking code instantly nullifies Scrapy's concurrency and
essentially sets CONCURRENT REQUESTS = 1. Indeed the simple formula; 100 URLs -
100 ms (blocking delay) = 10 seconds + ¢ fully explains the delays that we see.

start/stop 7

CONCURRENT_REQUESTS =1 (?!)

Figure 7. Blocking code invalidates concurrency in unpredictable ways

No matter whether the blocking code is in one of your pipelines or your spider,

you will see scraper being fully utilized and everything before and after it being
empty. This seems to go against the pipeline physics that we talked about before,
but we don't have a parallel system any more, so pipeline rules don't apply. It's so
easy to make this mistake (for example, using blocking APIs) that you will certainly
get this wrong at some point. You will note that a similar discussion applies to
computationally complex code. You should be using multiple threads for such code,
as we've seen in Chapter 9, Pipeline Recipes, or performing it in batch outside Scrapy,
an example of which we will see in Chapter 11, Distributed Crawling with Scrapyd and
Real-Time Analytics.

Solution: I will assume that you inherited the code base, and you have no intuition
on where the blocking code is. If the system can be functional without any pipelines,
then disable your pipelines and check whether the odd behavior persists. If yes, then
your blocking code is in your spider. If not, then enable pipelines one-by-one and

see when the problem starts. If the system can't be functional without everything
running, then add some log messages on each pipeline stage (or interleave dummy
pipelines that print timestamps) in between your functional ones. By checking the
logs, you will easily detect where your system spends most of its time. If you want

a more long-term/reusable solution, you can trace your Requests using dummy
pipelines that add timestamps at each stage to the meta fields of Request. At the end,
hook to the item_ scraped signal and log the timestamps. As soon as you find your
blocking code, convert it to Twisted/asynchronous or use Twisted's thread pools. To
see the effects of this conversion, rerun the previous example while replacing SPEED
PIPELINE BLOCKING_DELAY with SPEED PIPELINE_ASYNC DELAY. The change in
performance is stunning.

[190]

Chapter 10

Case #3 — "garbage" on the downloader

Symptoms: You get way less than the expected throughput. The downloader
sometimes looks like it has more Requests than CONCURRENT REQUESTS.

Example: We simulate downloading 1,000 pages with a 0.25 sec response time.
With the default concurrency of 16, this should take about ~ 19 sec according to our
formulas. We use a pipeline that uses crawler.engine.download () to make an
extra HTTP request to a fake API that responds within one second. You can try it on
http://localhost:9312/benchmark/ar:1/api?text=hello. Let's run a crawl:

$ time scrapy crawl speed -s SPEED TOTAL ITEMS=1000 -s SPEED T
RESPONSE=0.25 -s SPEED API T RESPONSE=1 -s SPEED PIPELINE API VIA
DOWNLOADER=1

s/edule d/load scrape p/line done mem
968 32 32 32 0 32768
952 16 0 0 32 0
936 32 32 32 32 32768

real Om55.151s

This is really weird. Not only did our job take three times more time than expected,
but we also have more than the 16 active requests that CONCURRENT REQUESTS
defines in the downloader (d/1oad). The downloader is clearly the bottleneck
because it seems to work over capacity! Let's rerun the crawl, and on another
console, open a telnet connection to Scrapy. We can then check which Requests are
active on the downloader:

$ telnet localhost 6023
>>> engine.downloader.active

set ([<POST http://web:9312/ar:1/ti:1000/rr:0.25/benchmark/api>, ... 1)

It looks like it does mostly API Requests instead of downloading regular pages.

[191]

Understanding Scrapy's Performance

Discussion: You would expect that nobody uses crawler.engine.download () as it
looks a bit complex to use, but it is used twice in Scrapy's code base for the robots . txt
middleware and the media pipeline. As a result, it's reasonably suggested as a solution
when people need to consume web APIs. Using this is way better than using blocking
APIs such as the popular requests Python package that we saw in the previous
section. It's also slightly simpler to use than understanding Twisted programming and
using treq. Now that this book exists though, this isn't an excuse anymore. Puns aside,
this mistake is quite hard to debug, so proactively take a look at the active requests

on your downloader while investigating performance. If you find API or media URLs
that aren't directly targeted by your crawl, it means that some of your pipelines use
crawler.engine.download () to perform HTTP requests. Our CONCURRENT REQUESTS
limit doesn't apply for these Request, which means that we will likely see the
downloader loaded with more than CONCURRENT REQUESTS, which seems paradoxical
at first sight. Unless the number of spurious Requests falls below CONCURRENT
REQUESTS, no new normal page Requests will be fetched from the scheduler.

downloader pipeline

1000 URLs
] a) 16 input requests run in the
downloader taking 250ms each -

[]
CONCURRENT_REQUESTS= 16

’ . b) As soon as they complete we >
_ pull 16 more and the first ones :',,-' A
— move to the pipeline which injects g%

16 "spurious” 1-sec APl requests,

¢} As soon as the second batch 1-in

i 19]tems[ﬁecond completes (250ms later), we use y
1 the downloader entirely for API
mi A l % requests. The system doesn't
process further input requests

unless the downloader has less

. than 16. Throughput is defined by
(ExpeCtEd‘ 62 |tem$/SECOnd) the 1-sec latency of APl requests. Tout

WL W

P

{

Figure 8. Performance is defined by the spurious API requests

As aresult, it's not a coincidence that the throughput that we get from the system
corresponds to what we would get if our original Request lasted 1 sec (the API
latency) instead of 0.25 sec (the page download latency). This case is especially
confusing because unless API calls are slower than our page requests, we won't
notice any performance degradation.

Solution: We can solve this problem using treq instead of crawler.engine.
download (). You will note that this will skyrocket the scraper's performance, which
might be bad news for your API infrastructure. I would start with a low number

of CONCURRENT REQUESTS and increase gradually to make sure I don't overload the
APl servers.

[192]

Chapter 10

Here's an example of the same run as before but using treq:

$ time scrapy crawl speed -s SPEED TOTAL ITEMS=1000 -s SPEED T
RESPONSE=0.25 -s SPEED API T RESPONSE=1 -s SPEED PIPELINE API VIA TREQ=1

s/edule d/load scrape p/line done mem
936 16 48 32 0 49152
887 16 65 64 32 66560
823 16 65 52 96 66560

real 0ml9.922s

You will observe one very interesting thing. The pipeline (p/1ine) seems to have
many more items than the downloader (d/1oad). That's perfectly fine and it's
interesting to understand why.

1000 URLs ‘

59 Items/second

N
4

- 1000 ms/req -
N=64 req

Figure 9. It's perfectly fine to have long pipelines (check "industrial heat exchanger"
in Google images).

The downloader is fully loaded with 16 Requests as expected. This means that the
throughput of the system is T = N/S = 16/0.25 = 64 Requests per second. We can
confirm this by noticing the increase on the done column. A Request will spend
0.25 sec inside the downloader, but it will spend 1 sec inside the pipeline because
of the slow API request. This means that in the pipeline (p/1ine), we expect to see
onaverage N=T-S=64-1=64 1tems. That's perfectly fine. Does it mean that
the pipeline is now the bottleneck? No because we have no limit on the number

of Responses that we can process simultaneously on our pipelines. As long as the
number doesn't increase indefinitely, we are fine. More on this in the next section.

[193]

Understanding Scrapy's Performance

Case #4 — overflow due to many or large
responses

Symptoms: The downloader works almost at full capacity and after a while it turns
off. This pattern repeats itself. The memory usage of your scraper is high.

Example: Here, we have exactly the same setup as before (using treq), but the
responses are somewhat heavy having about 120 kB of HTML. As you can see, this
takes 31 seconds to complete instead of about 20:

$ time scrapy crawl speed -s SPEED TOTAL ITEMS=1000 -s SPEED T
RESPONSE=0.25 -s SPEED API T RESPONSE=1 -s SPEED PIPELINE API VIA TREQ=1
-s SPEED DETAIL EXTRA SIZE=120000

s/edule d/load scrape p/line done mem
952 16 32 32 0 3842818
917 16 35 35 32 4203080
876 16 41 41 67 4923608
840 4 48 43 108 5764224
805 3 46 27 149 5524048

real Om30.611ls

Discussion: We may naively try to interpret this latency as "it takes more time to
create, transfer, or process pages", but that's not what's happening here. There exists
a hardcoded (at the time of writing) limit for the total size of Responses of max_
active_size = 5000000. Each Response is assumed to have a size equal to the size
of its body and at least 1 kB.

1000 URLs 14

~ T 12

s CONCURRENT_REQUESTS .

_ =16 z

| / ¢

250 ms/req = g°
——1 2 g
[ki i
36 Items/second .

] 15 30

‘_'.’.—]I é : time

Figure 10. Irregular number of Requests on the downloader indicates Response size throttling

[194]

Chapter 10

One important detail here is that this limit is maybe the most subtle and essential
mechanism that Scrapy has to protect itself against slow spiders or pipelines.

If the throughput of any of your pipelines is slower than the throughput of the
downloader, this will eventually happen. It's easy to hit this limit even with small
Responses when we have large pipeline processing time. Here's one such extreme
example of very long pipeline where the problems start after 80 seconds:

$ time scrapy crawl speed -s SPEED TOTAL ITEMS=10000 -s SPEED T
RESPONSE=0.25 -s SPEED PIPELINE ASYNC DELAY=85

Solution: There isn't much you can do for this problem with the existing infrastructure.
It would be nice to be able to clear the body of Response as soon as you don't need it
anymore — likely after your spider, but doing so won't reset Scraper's counters at the
time of writing. All you can really do is try to reduce your pipeline's processing time
effectively reducing the number of Responses in progress in the Scraper. You can
achieve this with traditional optimization: checking whether APIs or databases you
potentially interact with can support your scraper's throughput, profiling the scraper,
moving functionality from your pipelines to batch/postprocessing systems, and
potentially using more powerful servers or distributed crawling.

Case #5 — overflow due to limited/excessive
item concurrency

Symptoms: Your spider creates multiple Items per Response. You get lower than
expected throughput and likely the same on/ off pattern as in the previous case.

Example: Here, we have a slightly unusual setup where we have 1,000 requests that
return pages with 100 items each. The response time is 0.25 sec and there's a 3 sec
item pipeline processing time. We perform several runs with values of CONCURRENT _
ITEMS ranging from 10 to 150:

for concurrent items in 10 20 50 100 150; do

time scrapy crawl speed -s SPEED TOTAL ITEMS=100000 -s \
SPEED T RESPONSE=0.25 -s SPEED ITEMS PER DETAIL=100 -s
SPEED PIPELINE ASYNC DELAY=3 -s \

CONCURRENT ITEMS=$concurrent items

done

s/edule d/load scrape p/line done mem

952 16 32 180 0 243714

[195]

Understanding Scrapy's Performance

920 16 64 640 0 487426
888 16 96 960 0 731138
82
1000 URLs \

®
=]

® | CONCURRENT_REQUESTS
|_ /N @ =16

250 ms/req

o ow w
E 3 @&

Completion time (sec)
b

s &8 2
|
\

15-100 Items/second
60 B0 100 120 140 160
:l ﬁ CONCURRENT ITEMS

=)
-]
-
s

Figure 11. Crawl time as a function of CONCURRENT_ITEMS

Discussion: It's worth noting again that this only applies to cases where your spider
generates many Items per Response. Unless this is the case, you can set CONCURRENT _
ITEMS = 1 and forget about it. It's also worth noting that this is quite a synthetic
example since the throughputs are quite large in the order of 1,300 Items per

second. We get such high throughput due to low and stable latencies, almost no real
processing, and the very low size of Responses. These conditions aren't common.

The first thing that we notice is that, while up to now the scrape and p/1ine columns
used to show the same number, now p/1line shows CONCURRENT ITEMS - scrape. This
is expected because scrape shows Reponses while p/1ine shows Items.

The second interesting thing is the bathtub performance function of Figure 11. The
plot makes it look a bit more dramatic than it really is because the vertical axis

is scaled. On the left side, we have very high latency because we hit the memory
limits we mentioned on the previous section. On the right side, we have too much
concurrency, and we use too much CPU. Getting the optimum exactly right isn't that
important because it can easily shift left or right.

Solution: It's very easy to detect both problematic symptoms of this case. If you

get very high CPU usage, it's good to reduce the number of CONCURRENT_ITEMS. If
you hit the 5 MB Response limit, then your pipeline can't follow your downloader's
throughput and increasing CONCURRENT ITEMS might be able to quickly fix this. If it
doesn't make any difference, then follow the advice in the previous section and ask
yourself twice if the rest of the system is able to support your Scraper's throughput.

[196]

Chapter 10

Case #6 — the downloader doesn't have
enough to do

Symptoms: You increase CONCURRENT REQUESTS, but the downloader can't keep up
and is underutilized. The scheduler is empty.

Example: First of all, let's run an example without the problem. We will switch to a
1 sec response time because this simplifies calculations making downloader throughput
T = N/S = N/1 = CONCURRENT REQUESTS. Let's assume that we run the following;:

$ time scrapy crawl speed -s SPEED TOTAL ITEMS=500 \
-s SPEED_T_RESPONSE:I -s CONCURRENT_REQUESTS=64

s/edule d/load scrape p/line done mem

436 64 0 0 0 0

real Oml0.99s

We get a fully utilized downloader (64 requests) and overall time of 11 seconds,
which matches our model for 500 URLs at 64 requests/second
(S=N/T+t =500/64+3.1=10.91 sec).

start/stop

Now, let's do the same crawl, but instead of providing the URLs from a list, as we
do by default on all those examples, let's use index pages to extract URLs using
SPEED_START REQUESTS_STYLE=UseIndex. This is exactly the mode that we've used
in every other chapter of this book. Each index page by default gives us 20 URLs:

$ time scrapy crawl speed -s SPEED TOTAL ITEMS=500 \
-s SPEED T RESPONSE=1 -s CONCURRENT REQUESTS=64 \
-s SPEED START REQUESTS STYLE=UselIndex

s/edule d/load scrape p/line done mem
0 1 0 0 0 0
0 21 0 0 0 0
0 21 0 0 20 0

real Om32.24s

Clearly this doesn't look anything like the previous case. Somehow, the
downloader runs in less than the maximum capacity and the throughput
isT=N/S-t =500/(32.2-3.1)=17 requests/second.

start/ stop

[197]

Understanding Scrapy's Performance

Discussion: A quick look at the d/1oad column will convince us that the downloader
is underutilized. This is because we don't have enough URLs to feed it. Our scraping
process generates URLs slower than its maximum consuming capacity. In this

case, 20 URLs + 1 for the next index page get generated from each index page. The
throughput couldn't by any means be more than 20 Requests per second because we
don't get source URLs fast enough. This problem is too subtle and easy to overlook.

Solution: If each index page has more than one next page link, we can utilize them
to accelerate our URL generation. If we can find pages that show more results (for
example, 50) per index page even better. We can observe the behavior by running a
few simulations:

$ for details in 10 20 30 40; do for nxtlinks in 1 2 3 4; do

time scrapy crawl speed -s SPEED TOTAL ITEMS=500 -s SPEED T RESPONSE=1 \
-s CONCURRENT REQUESTS=64 -s SPEED START REQUESTS STYLE=UseIndex \

-s SPEED DETAILS PER INDEX PAGE=$details \

-s SPEED INDEX POINTAHEAD=$nxtlinks

done; done

60 - T T T
:) B 1 link

- 1— 2links[{
e
——

— 3 links|]
— 4 links

Throughput (Items/second)

= - 0 L L .
= 1 | 10 15 20 25 30 35 40
— . URLs per Index page
—p

Figure 12. Throughput as a function of details and next page links per index page

[198]

Chapter 10

In Figure 12, we can see how throughput scales with these two parameters. We
observe linear behavior, both in terms of next page links, as well as pages until we
reach the system's limits. You can experiment by reordering the crawler's Rules.

If you are using LIFO (default) order, you might see a small improvement if you
dispatch your index page requests first by putting the Rule that extracts them last
in your list. You can also try to set a higher priority to the Requests that hit the
index. Both techniques don't give impressive improvements, but you can try them
by setting SPEED_INDEX RULE_LAST=1 and SPEED_INDEX_ HIGHER PRIORITY=1,
respectively. Please keep in mind that both these solutions will tend to download
the entire index first (due to high priority), thus, generating lots of URLs in the
scheduler, which will increase memory requirements. They will also give very few
results until they finish with the index. For small indices this might be okay, but for
larger indices, this is certainly undesirable.

An easier and more powerful technique is to shard the index. This requires you

to use more than one initial index URLs that have maximum distance between
them. For example, if the index has 100 pages, you may choose page 1 and 51 as

the starting ones. The crawler is then able to use the next links to traverse the index
effectively in twice the speed. A similar thing can be done if you can find a way

to traverse the index, for example based on the brand of the products or any other
property that is provided to you, and can split the index in roughly equal segments.
You can simulate this using the -s SPEED_INDEX_SHARDS setting:

$ for details in 10 20 30 40; do for shards in 1 2 3 4; do

time scrapy crawl speed -s SPEED TOTAL ITEMS=500 -s SPEED T RESPONSE=1 \
-8 CONCURRENT REQUESTS=64 -s SPEED START REQUESTS STYLE=UseIndex \

-s SPEED DETAILS PER INDEX PAGE=$details -s SPEED INDEX SHARDS=$shards

done; done

The results are better than the previous technique, and I would recommend this
method if it works for you because it's way simpler and cleaner.

Troubleshooting flow

To summarize, Scrapy is designed to have the downloader as a bottleneck. Start with
a low value of CONCURRENT_REQUESTS and increase until just before you hit one of
the following limits:

* CPU usage > 80-90%

* Source website latency increasing excessively

* Memory limit of 5 Mb of Responses in your scraper

[199]

Understanding Scrapy's Performance

At the same time also perform the following:

* Keep at least a few Requests at all times in the scheduler's queues (mqs/dqs)
to prevent the downloader's URL starvation

* Never use any blocking code or CPU-intensive code

Get CPU usage with Yes
Insufficient top and get a few . Try tuning
I — P ? —_—
performance est() and stats C U above 90% - CPU saturation CONCURRENT_ITEMS
values with telnet . .
: No ¥ ~ \ TYes
’ . o :
Yes No Yes - -
Downloader full -~ Downloader doing - Many items per—
?
Not enough URLs é——_ Scheduler cmpLy.. — capacity? AP| requests? — i Iespunse?__
\L' No Yes lNo
Eliminate APl) -
" Downloader ~-_ requests —Scraper Resr}gnses-_)
. switching between > - - increase:
full and empty? Yes - o
Yes ~No B
Slow sp:jucdripupcllne Works fine
Memory throttling Blocking code

Figure 13. Troubleshooting Scrapy's performance problems

Figure 13 summarizes the procedure of diagnosing and repairing Scrapy's
performance problems.

Summary

In this chapter, we tried to give you some interesting cases that highlight the fine
performance implications of Scrapy's architecture. Details might change in future
versions of Scrapy, but the intuition provided by this chapter should remain valid
for a long time and might also help you with any high-concurrency asynchronous
systems that are based on Twisted, Netty Node.js, or similar frameworks.

When it comes to the question of performance in Scrapy, there are three valid
answers: [don't know and I don't care, I don't know but I will find out, or I do know.
As we demonstrated many times in this chapter, the naive answer, "we need more
servers/memory/bandwidth" is most likely irrelevant to Scrapy's performance. One
really needs to understand where the bottleneck is and elevate it.

In our last chapter, Chapter 11, Distributed Crawling with Scrapyd and Real-Time
Analytics, we will focus on elevating the performance further, beyond a single
server's capacity by distributing our crawls across multiple servers.

[200]

11

Distributed Crawling with
Scrapyd and Real-Time
Analytics

We have come a long way. We familiarized ourselves with two fundamental web
technologies, HTML and XPath, and then we started using Scrapy to crawl complex
websites. Later, we gained a much deeper appreciation of the various features that
Scrapy provides us with through its settings, and then we moved to an even deeper
understanding of both Scrapy and Python when we explored its internal architecture
and the asynchronous features of its Twisted engine. In the previous chapter, we
studied Scrapy's performance and learned how to address complex and often
counter-intuitive performance problems.

In this last chapter, I would like to give you some directions on how to further use
this amazing technology to scale beyond a single server. We will soon discover

that crawling is often an "embarrassingly parallel" problem; thus, we can easily

scale horizontally and exploit the resources of multiple servers. In order to do this,
we are going to use a Scrapy middleware as we usually do, but we will also use
Scrapyd —an application that is specially designed to manage Scrapy spider's runs
on remote servers. This will allow us to have on our own servers functionality that is
compatible with the one that we presented in Chapter 6, Deploying to Scrapinghub.

We are finally going to perform real-time analytics on the extracted data with a
simple system that is based on Apache Spark. Apache Spark is a very popular
framework for large-scale data processing. We will use its Spark Streaming API to
present results that get increasingly more accurate as we collect more data. For me,
this final application showcases the power and maturity of Python as a language
because, with just this, we can program the full stack from data extraction to
analytics writing code that is expressive, compact, and efficient.

[201]

Distributed Crawling with Scrapyd and Real-Time Analytics

How does the title of a property affect
the price?

The sample problem that we will try to solve is trying to find out how titles correlate
with the prices of properties. We would expect terms such as "jacuzzi" or "pool" to

be correlated with higher prices, while others such as "discount" with a lower price.
Combining this information with location, for example, may be used to provide us with
real-time alerts on properties that are bargains given their location and description.

What we want to calculate is the shift of the price for a given term:

Shift,, = (Price

term

— Price / Price

properties—with—term properties—without—term)

For example, if the average rent is $1,000, and we observe that properties with
jacuzzi have an average price of $1,300, while properties without it have an average
price of $995, the shift for jacuzzi is Shift,,,., =(1300-995)/1000 =30.5%. If there's a
property with jacuzzi and has just a 5% higher than average price, I would like to
know about it!

Please note that this metric isn't trivial because term effects get aggregated. For
example, titles with both jacuzzi and discount will likely show a combined effect of
these keywords. The more data that we collect and analyze, then the more accurate
our estimates. We will get back to this problem and how we implement a streaming
solution in a minute.

Scrapyd

Right now, we will introduce scrapyd. Scrapyd is an application that allows us to
deploy spiders on a server and schedule crawling jobs using them. Let's get a feeling
of how easy it is to use this. We have it preinstalled in our dev machine, so we

can check this immediately by going back to the code from Chapter 3, Basic Crawling.
The exact same process that we used back then works here with just a single change.

[202]

Chapter 11

Let's first have a look on scrapyd's web interface that we can find at
http://localhost:6800/.

: [Project [Spider | Job [PD| Runtime |Log items]

R R A e d Pending |

‘Scrapyd : i e : "

: : pmpemesj casy |c6582742alcel leS9eeal242ac] 1000a [292 [0:00:28.911F57) MILQEL :

! Available projecysefiroperties ! [properties] |d4dfafabalee] 1e59¢ea0242ac11000a [300 [0:00:03 '}ZIFGG Log [E;EE |

: H Finished ;

J.Qh& __

N])lrectory listing for htems!propertles/easy
* Documentation

ow to schedule a spider? Stae Lonient ype Coulent cwcoding :

H Wﬂmﬂ 548K [text/plain] i
T schedule a spider you need to use the API (this web UL udﬂﬂm.i&IMMWMJl 280K [WXb'p'ﬂIII] }

Example using curl:
curl http://localhost:6800/schedule. json -d project=default -d spiderssomespider :) *— How 10 schedl‘“e

= C | localhost:8800/logs/ entation '

Directory listing for /logs/

::Filename Size Content type Content enci

 properties/
| scrapyd.err OB [text/plain] i Filename Size Content type Content encoding
| scrapyd.log 10K [textplain] W@m 1M [text/plain]

{d4dfufa6alee] leS9eea0242ac11000alog 841K [textplain)

 scrapyd.out OB [text/plain]

Scrapyd's web interface

You can see that it has different sections for Jobs, Items, Logs and Documentation.
It also gives us some instructions on how to schedule jobs using its APL

In order to do so, we must first deploy the spider to the scrapyd server. The first step
is to modify the scrapy. cfg configuration file as follows:

$ pwd

/root/book/ch03/properties

$ cat scrapy.cfg

[settings]

default = properties.settings

[deployl]
url = http://localhost:6800/

project = properties

[203]

Distributed Crawling with Scrapyd and Real-Time Analytics

Essentially, all that we need to do is to uncomment the url line. The default settings
are suitable for us. Now, in order to deploy the spider, we use the scrapyd-deploy
tool that is provided by scrapyd-client. scrapyd-client that used to be part

of Scrapy, but is now a separate module that can be installed with pip install
scrapyd-client (already installed in our dev):

$ scrapyd-deploy
Packing version 1450044699

Deploying to project "properties" in http://localhost:6800/addversion.
json

Server response (200):

{"status": "ok", "project": "properties", "version": "1450044699",
"spiders": 3, "node name": “dev“}

As the deployment was successful, we will be also able to see the project mentioned
in the Available projects section in the main page of the scrapyd web interface.
We can now follow the instructions on the same page to submit a job:

$ curl http://localhost:6800/schedule.json -d project=properties -d
spider=easy

{"status": "ok", "jobid": " d4df...", "node name": "dev"}

If we turn back to the Jobs section of the web interface, we will be able to see the
job running. We can use the jobid schedule. json that returns us to cancel the job
using cancel. json a bit later:

$ curl http://localhost:6800/cancel.json -d project=properties -4
job=d4df. ..

{“status": "ok", "prevstate": "running", "node name": "dev"}

Please do cancel because otherwise you will be wasting computing resources for
a while.

Great! If we visit the Logs section, we will be able to see the logs and on the Items
section the Items that we just crawled. These get cleared periodically to free up
space, so they might not be available after a few crawls.

[204]

Chapter 11

If there's a good reason, such as a conflict, we can change the port using http_port,
which is one of many settings that scrapyd has. It's worth being aware of them by
having a look in scrapyd's documentation at http://scrapyd.readthedocs.org/.
One important setting that we do change in our deployment for this chapter is max_
proc. If you leave it with the default value of 0, scrapyd will allow as many as four
times the number of CPUs that Scrapy jobs run in parallel. As we will be running
many scrapyd servers, most likely in a VM, we set this number to four, allowing up
to four jobs to run in parallel. This has to do with this chapter's needs and in a real
deployment the default value will most likely be fine.

Overview of our distributed system

Designing this system was a great experience for me. I started adding features and
complexity to the point where I had to demand that readers have high-end hardware
to run the examples. What then became an urgent necessity was simplicity —both

in order to keep the hardware requirements realistic and to ensure that this chapter
remains focused on Scrapy.

web

dev scrapyd1..3 - spark
scrapyd:6800 Py ftp:21 pa

Jobs with T
Batches
ba:;tz of of ltems |||

Overview of the system

[205]

http://scrapyd.readthedocs.org/

Distributed Crawling with Scrapyd and Real-Time Analytics

At the end, the system that we are going to use in this chapter will contain our

dev machine and a few more servers. We will use our dev machine to perform the
horizontal crawling of the index and extract batches of URLs. We will then distribute
these URL batches to scrapyd nodes in a round-robin fashion and crawl them.

At the end, the . j1 files with our Items will be transferred to a server running
Apache Spark via FTP. What? FTP? Yes, I have chosen FTP and the local filesystem
over HDEFS or Apache Kafka because of its very low memory requirements and the
fact that it's supported out-of-the-box as a FEED_URI backend by Scrapy. Please keep
in mind that, with just a trivial change in the configuration of scrapyd and Spark,
we can use Amazon S3 to store these files and enjoy redundancy, scalability, and so
on. There would be nothing interesting and on-topic to learn using any more fancy
technologies, though.

. One danger with FTP is that Spark may see incomplete files while their
% upload is in-progress. In order to avoid this, we use Pure-FTPd and a
o callback script that moves uploaded files to /root /items as soon as
the upload completes.

Every few seconds, Spark probes a directory (/root/items), reads any new

files, forms a mini-batch, and performs analytics. We use Apache Spark because

it supports Python as one of its programming languages, and it also supports
streaming. Up to now, we may have been using examples of relatively short-lived
crawls, but many of the real-world crawls don't ever finish. Crawls run indefinitely
24/7 and provide streams of data that get analyzed, and their results just get more
accurate with more data. That's exactly the case that we are going to showcase using
Apache Spark.

There's nothing special about Apache Spark and Scrapy. You are free to
use Map-Reduce, Apache Storm, or any other framework that fits your
"~ needs.

In this chapter, we don't insert Items to databases like ElasticSearch or MySQL. The
techniques that we presented in Chapter 9, Pipeline Recipes, would work in exactly the
same way here, but their performance would be bad. Very few database systems are
happy when you hit them with thousands of write operations per second and that's
what our pipelines would do. If we want to insert in to databases, we have to follow
a process that is similar to the one that we use for Spark, namely batch import the
generated Item files. You can modify our Spark example process to batch import to
any database.

[206]

Chapter 11

One last thing to keep in mind is that this system is not particularly resilient. We
assume that nodes are healthy and that any failures don't have a severe business
impact. Spark has resilient configurations that provide high availability. Scrapy
doesn't provide anything built-in apart from scrapyd's persistent queues, which
means that failed jobs will restart as soon as the node is back. This may or may not
be suitable for your needs. If resilience is important for you, you will have to build
a monitoring and distributed queuing solution (for example, based on Kafka or
RabbitMQ) that will restart failed crawls.

Changes to our spider and middleware

In order to build this system, we need to slightly modify our Scrapy spider and
develop spider middleware. More specifically we will have to perform the following:

* Fine tune crawling the index to perform at maximum speed
* Write a middleware that batches and sends URLs to scrapyd servers

* Use the same middleware to allow batch URLs to be used at start-up

We will try to implement these changes as unobtrusively as possible. Ideally,
the whole operation should be clean, easy to understand, and transparent to the
underlying spider code. This is an infrastructure-level requirement and hacking
(potentially hundreds) of spiders to enable it is a bad idea.

Sharded-index crawling

Our first step is to optimize index crawling to make it as fast as possible. Before we
start, let's set some expectations. Let's assume that our spider will be crawling with
a concurrency of 16, and we measure the latency of the source web server and it is
about 0.25 sec. This gives us a maximum throughput of 16 /0.25 = 64 pages/second.
The index has 50,000 detail pages / 30 details per index page = 1667 index pages.
We expect the index download to take a bit more than 1667 /64 = 26 sec.

Let's start with the spider named easy from Chapter 3, Basic Crawling. We will
comment out the Rule that performs the vertical crawling first (the one with
callback='parse_item') because we just want to crawl the index for now.

[207]

Distributed Crawling with Scrapyd and Real-Time Analytics

You can get all the source code of this book from GitHub. To download

3 this code, go to:
<::l git clone https://github.com/scalingexcellence/scrapybook
The full code from this chapter will be in the ch11 directory.

If we time a scrapy crawl for just 10 pages before any optimizations, we get the
following;:

$ 1s

properties scrapy.cfg

$ pwd

/root/book/chll/properties

$ time scrapy crawl easy -s CLOSESPIDER PAGECOUNT=10

DEBUG: Crawled (200) <GET ...index 00000.html> (referer: None)
DEBUG: Crawled (200) <GET ...index 00001.html> (referer: ...index 00000.
html)

real Om4.099s

If it takes 4 seconds for 10 pages, we have no hope of completing 1,700 pages in 26.
By inspecting the logs, we will realize that each page comes from the previous page's
next link, which means that we process at most one page at any given moment.
Effectively our concurrency is 1. We want to parallelize and get the desired amount
of concurrency (16 concurrent requests). We will shard the index and allow a few
extra shards in order to be confident our crawler doesn't starve for URLs. We will
split the index into 20 segments. Practically, any number above 16 will do and will
increase the speed, but as we get beyond 20 we see diminishing returns. We will
calculate the initial index IDs for each shard with the following expression:

>>> map (lambda x: 1667 * x / 20, range(20))
[o, 83, 166, 250, 333, 416, 500, ... 1166, 1250, 1333, 1416, 1500, 1583]

Consequently, we set our start_urls to the following;:

start _urls = ['http://web:9312/properties/index %05d.html' % id
for id in map(lambda x: 1667 * x / 20, range(20))]

[208]

Chapter 11

This would likely be something very different for your index, so it's not worth

us making it any prettier at this point. If we also set our concurrency settings
(CONCURRENT_REQUESTS, CONCURRENT REQUESTS_PER_DOMAIN) to 16 and we run a
crawl, we now get the following;:

$ time scrapy crawl easy -s CONCURRENT REQUESTS=16 -s CONCURRENT
REQUESTS_PER_DOMAIN:lG

real O0m32.344s

This is close enough to what we wanted. We download 1667 pages / 32 sec = 52
index pages per second, which means that we will generate 52 * 30 = 1560 detail page
URLSs per second. We can now uncomment the vertical crawling Rule and save the
file as a new spider distr. We won't need to make any further changes to the spider's
code, which shows how powerful and nonintrusive the middleware that we are
about to develop is. If we were about to run scrapy crawl with our dev server only,
assuming that we can process detail pages about as fast as index pages, it would take
us no less than 50000 /52 = 16 minutes to complete the crawl.

There are two key takeaways from this section. After studying Chapter 10,
Understanding Scrapy's Performance, we are doing actual engineering. We can
calculate exactly the performance that we can expect from our system and make
sure that we don't stop unless we get it (within reason). The second important thing
to remember is that as index crawling feeds details; crawling the total throughput
will be the minimum of their throughputs. If we generate URLs much faster than
scrapyds can consume them, URLs will be piling up in their queues. On the other
hand, if we generate URLs too slowly, scrapyds will have excess unutilized capacity.

Batching crawl URLs

We are now ready to develop infrastructure that processes detailed URLs that are
aimed at vertical crawling, batches them, and dispatches them to scrapyds instead of
crawling them locally.

If we check Scrapy's architecture in Chapter 8, Programming Scrapy, we can easily
conclude that this is the job for a spider middleware as it implements process_
spider_output (), which processes Requests before they reach the downloader and
has the power to abort them. We limit our implementation to support spiders that
are based on Crawlspider, and we also support only simple GET requests. If we
need more complexity, for example, POST or authenticated Requests, we will have
to develop more complex functionality that propagates arguments, headers, and
potentially relogins at every batch run.

[209]

Distributed Crawling with Scrapyd and Real-Time Analytics

In order to get started, we will have a quick look on Scrapy's GitHub. We will review
the SPIDER_MIDDLEWARES BASE setting to see what reference implementations

Scrapy provides us with in order to reuse as much as we can. Scrapy 1.0 has the
following spider middleware: Ht tpErrorMiddleware, Of fsiteMiddleware,
RefererMiddleware, UrlLengthMiddleware, and DepthMiddleware. After a quick
look at their implementations, we see that 0f fsiteMiddleware (just 60 lines) does
something quite similar to what we want to do. It restricts the URLs to certain domains
according to the allowed_domains spider attribute. Could we use a similar pattern?
Instead of dropping URLs as of fsiteMiddleware does, we will batch them and send
them to scrapyds. It turns out that we can. Here's part of the implementation:

def init (self, crawler):
settings = crawler.settings
self. target = settings.getint ('DISTRIBUTED TARGET RULE', -1)

self. seen = set()
self. urls = []
self. batch size = settings.getint ('DISTRIBUTED BATCH_SIZE', 1000)

def process spider output (self, response, result, spider):
for x in result:
if not isinstance(x, Request):
yield x
else:
rule = x.meta.get ('rule')

if rule == self. target:

self. add to batch(spider, x)
else:

yield x

def add to batch(self, spider, request):
url = request.url
if not url in self. seen:
self. seen.add(url)
self. urls.append (url)
if len(self. urls) >= self. batch size:
self. flush urls(spider)

[210]

Chapter 11

process_spider output () processes both Item and Request. We want to work
only with Request; thus, we yield everything else. If we have a look at the source
code of crawlspider, we notice that the way it maps Request /Response to Rule
is by an integer field named 'rule' on their meta dict. We check this number and
if it points to the Rule that we target (the DISTRIBUTED TARGET_RULE setting), we
call _add_to_batch() to add its URL to the current batch. We then effectively drop
this Request. We yield all other Requests, such as the ones from the next page
links, without change. The _add_to_batch () method implements a de-duplication
mechanism. Unfortunately, the sharding process that we described in the previous
section means that we may extract a few URLs twice. We use _seen set to detect
and drop duplicates. We then add those URLs to the _urls list, and if its size exceeds
_batch_size (the DISTRIBUTED BATCH_SIZE setting), it triggers a call to _flush_
urls (). This method provides the following key functionality:

def init (self, crawler):

self. targets
self. batch =
self. project = settings.get ('BOT NAME')

self. feed uri = settings.get ('DISTRIBUTED TARGET FEED URL', None)
self. scrapyd submits to wait = []

settings.get ("DISTRIBUTED TARGET HOSTS")

o

def flush urls(self, spider):
if not self. urls:
return

°

target = self. targets[(self. batch-1) % len(self. targets)]

data = [
("project", self. project),
("spider", spider.name),
("setting", "FEED URI=%s" % self. feed uri),
("batch", str(self. batch)),
]
json urls = json.dumps(self. urls)
data.append(("setting", "DISTRIBUTED START URLS=%s" % json urls))

)

d = treq.post ("http://%s/schedule.json" % target,
data=data, timeout=5, persistent=False)

self. scrapyd submits to wait.append(d)

self. urls = []
self. batch += 1

[211]

Distributed Crawling with Scrapyd and Real-Time Analytics

First of all, it uses a batch counter (_batch) to decide which scrapyd server to send
the batch to. We keep the available servers in _targets (the DISTRIBUTED TARGET _
HOSTS setting). We then form a POST request to scrapyd's schedule. json. This is

a bit more advanced than the one we performed with curl before because it passes
several carefully selected arguments. Effectively, based on these arguments, scrapyd
will schedule a run that is similar to this one:

scrapy crawl distr \

-s DISTRIBUTED START URLS='[".../property 000000.html", ... I' \
-s FEED URI='ftp://anonymous@spark/% (batch)s % (name)s % (time)s.jl' \
-a batch=1

Beyond project and spider names, we pass a FEED_URI setting to the spider. We get
its value from our own DISTRIBUTED TARGET FEED_URL setting.

Since Scrapy supports FIP, we can have scrapyds upload crawled Itenm files through
an anonymous FTP to our Spark server. The format contains the name of the spider

(% (name) s) and the time (% (time) s). If we were using just these, we may have ended
up with collisions if two files were created at the same time. In order to avoid accidental
overwrites, we also add a % (batch) s parameter. Scrapy doesn't know anything about
batches by default, so we have to find a way to set this value. One interesting property
of scrapyd's schedule. json APl is that every argument that isn't a setting or one of

the few known arguments is passed to spiders as an argument. Spider arguments, by
default, become spider attributes and, interestingly, unknown FEED URI arguments are
looked up on spider's attributes. As a result, by passing a batch argument to schedule.
json, we can use it in FEED URT and avoid collisions.

The last step is to compile a DISTRIBUTED START_ URLS setting with all the detail
URLs of this batch encoded as JSON. There's no particular reason to use this format
other than familiarity and simplicity. Any textual format will do.

Passing lots of data to Scrapy via the command line is, at the very
least, not elegant. At some point you want to store arguments
in a data store (for example, Redis) and just pass Scrapy an ID.
"~ Doing so would require small changes in _flush_urls ()and
process_start requests().

[212]

Chapter 11

We perform the POST request with treq.post (). Scrapyd doesn't handle persistent
connections very well; thus, we disable them with persistent=False. We also set a

5 second timeout —just to be on the safe side. Interestingly, we store the deferred for
this request toa _scrapyd submits_to_wait list that we will talk about it in a second.
To close this function, we reset the urls list and increase the current batch.

Surprisingly, we will find lots of functionality on the close operation handler as
follows:

def init (self, crawler):

crawler.signals.connect (self. closed, signal=signals.spider
closed)

@defer.inlineCallbacks

def closed(self, spider, reason, signal, sender):
Submit any remaining URLS
self. flush urls(spider)

yield defer.DeferredList (self. scrapyd submits to wait)

_closed() is called either because we pressed Ctrl + C or because the crawl
completed. In both cases, we don't want to lose any URLs that belong to the last
batch, which haven't yet been sent. That's why the first thing we do in _closed ()
istocall _flush urls(spider) to flush the last batch. The second problem is that
being nonblocking, any of the treq.post () might or might not have completed

by the time we stop crawling. In order to avoid losing any batches, we use the _
scrapyd submits to wait list that was mentioned earlier, which contains all of the
treq.post () deferreds. We use defer.DeferredList () to wait until all of them
complete. Since _closed () uses @defer.inlineCallbacks, we just yield it and
resume when all requests complete.

Summarizing, jobs with batches of URLs in the DISTRIBUTED_START_URLS setting
are sent to scrapyds, which run the same spider. Obviously, we need somehow to
use this setting to initialize start_urls.

[213]

Distributed Crawling with Scrapyd and Real-Time Analytics

Getting start URLs from settings

You can feel how well tailored to our needs spider middleware is when you
notice that it provides a process_start requests () method, which can be used
to process the start_requests that spiders provide us. We detect whether the
DISTRIBUTED_START_URLS setting is set, and if so, we JSON to decode it and use
its URLs to yield relevant Request. For these requests, we set the _response_
downloaded () method of crawlspider as callback, and we set the meta['rule']
parameter in order to have their Response processed by the appropriate Rule.
Frankly, we look at Scrapy's source code, find the way that crawlspider creates
their Request and do exactly the same. In this case it is:

def init_ (self, crawler):

self. start_urls = settings.get ('DISTRIBUTED_START_ URLS', None)
self.is worker = self. start urls is not None

def process_start_requests(self, start requests, spider):
if not self.is_worker:
for x in start_requests:
yield x
else:
for url in json.loads(self. start urls):
yield Request (url, spider._response_ downloaded,
meta={'rule': self. target})

Our middleware is ready. We enable it and set its settings in our settings.py:

SPIDER_MIDDLEWARES = {
'properties.middlewares.Distributed': 100,
}
DISTRIBUTED_ TARGET RULE = 1
DISTRIBUTED_ BATCH SIZE = 2000
DISTRIBUTED TARGET FEED URL = ("ftp://anonymous@spark/"
"% (batch)s_ % (name)s % (time)s.jl")
DISTRIBUTED TARGET HOSTS = [
"scrapydl:6800",
"scrapyd2:6800",
"scrapyd3:6800",

[214]

Chapter 11

Someone may reasonably argue that DISTRIBUTED TARGET_RULE shouldn't be a
setting as it may differ from one spider to another. You can consider it as a default
value that you can override on your spiders using a custom_settings attribute,
for example:

custom_settings =
'DISTRIBUTED TARGET RULE': 3

}

We don't need this in our case though. We can perform a test run that will crawl a
single page that is provided as a setting;:

$ scrapy crawl distr -s \

DISTRIBUTED START URLS='["http://web:9312/properties/property 000000.html"]"'

After this succeeds, we can try a more ambitious one, which crawls a page and FTPs
it to our Spark server:

scrapy crawl distr -s \
DISTRIBUTED START URLS='["http://web:9312/properties/property 000000.html"]' \
-s FEED URI='ftp://anonymous@spark/%(batch)s % (name)s %(time)s.jl' -a batch=12

If you ssh the Spark server (more on this in a bit), you should be able to see a file,
such as 12_distr date_time.jl, in the /root/items directory.

This is a sample implementation of middleware that allows you to implement
distributed crawling using scrapyd. You can use it as a starting point to implement
one that fits your specific needs. The things you may want to adapt are as follows:

* The type of spiders that you support. An alternative solution that doesn't
limit itself to crawlSpider, may, for example, require your spiders to mark
distributed requests with an appropriate meta and employ callback naming
conventions.

* The way that you pass URLSs to scrapyds. You may want to use domain-
specific knowledge to reduce the amount of information that is passed. For
example, in our case, we could pass just properties' IDs.

* You can use a more elegant solution with a distributed queue to make the
crawler able to recover from failures and allow scrapyds to commit further
URLs to batches.

* You can populate the list of target servers dynamically to support on-
demand scaling.

[215]

Distributed Crawling with Scrapyd and Real-Time Analytics

Deploy your project to scrapyd servers

In order to be able to deploy the spiders to our three scrapyd servers, we have to
add them to our scrapy.cfgq file. Each [deploy:target-name] section on this file
defines a new deployment target:

$ pwd
/root/book/chll/properties
$ cat scrapy.cfg

[deploy:scrapydl]
url = http://scrapydl:6800/
[deploy:scrapyd2]
url = http://scrapyd2:6800/
[deploy:scrapyd3]
url = http://scrapyd3:6800/

You can query the available targets with scrapyd-deploy -1:

$ scrapyd-deploy -1

scrapydl http://scrapydl:6800/
scrapyd2 http://scrapyd2:6800/
scrapyd3 http://scrapyd3:6800/

It's easy to deploy to any of them with scrapyd-deploy <target names:

$ scrapyd-deploy scrapydl

Packing version 1449991257

Deploying to project "properties" in http://scrapydl:6800/addversion.json
Server response (200):

{"status": "ok", "project": "properties", "version": "1449991257",

"spiders": 2, "node name": "scrapydl"}

This process leaves us with a few extra directories and files (build, project.egg-
info, setup.py) that we can safely delete. Essentially what scrapyd-deploy does is
to pack your projects and upload them to the target scrapyd using addversion. json.

[216]

Chapter 11

After this, if we query each of those servers using scrapyd-deploy -L, we can
confirm that the project has been successfully deployed, as follows:

$ scrapyd-deploy -L scrapydl

properties

I also use touch to create three empty files, scrapyd1-3, in the project's directory.
This way scrapyd* expands to the names of the files, which are also the names of
the target servers. You can then deploy to all servers with a bash loop: for i in
scrapyd*; do scrapyd-deploy $i; done

Creating our custom monitoring
command

If you want to monitor the progress of your crawl across many scrapyd servers, you
have to do it manually. This is a nice opportunity for us to exercise everything we've
seen up to now to create a primitive Scrapy command, scrapy monitor, which
monitors a set of scrapyd servers. We will name the file: monitor.py, and we add
COMMANDS_MODULE = 'properties.monitor' toour settings.py. With a quick
look at scrapyd's documentation, the 1istjobs.json API gives us information on
jobs. If we want to find the base URL for a given target, we may correctly guess

that it must be somewhere in the code of scrapyd-deploy so that we can find it in

a single file. If we take a look at https://github.com/scrapy/scrapyd-client/
blob/master/scrapyd-client/scrapyd-deploy, we will quickly notice a _get_
targets () function (its implementation doesn't add a lot of value, so I omit it) that
gives us target names and their base URLs. Awesome! We are ready to implement
the first part of this command as follows:

class Command (ScrapyCommand) :
requires project = True

def run(self, args, opts):
self. to monitor = {}
for name, target in self. get targets().iteritems():
if name in args:
project = self.settings.get ('BOT _NAME')
url = target['url'] + "listjobs.json?project=" + project
self. to monitor[name] = url

1 = task.LoopingCall (self. monitor)
l.start (5) # call every 5 seconds

reactor.run ()

[217]

https://github.com/scrapy/scrapyd-client/blob/master/scrapyd-client/scrapyd-deploy
https://github.com/scrapy/scrapyd-client/blob/master/scrapyd-client/scrapyd-deploy

Distributed Crawling with Scrapyd and Real-Time Analytics

Given what we've seen up to now, this is fairly easy. It populates a dict _to_
monitor with the names and the API endpoints that we want monitor. We then

use task.LoopingCall () to schedule recurring calls to our monitor () method.
_monitor () uses treqand deferred, and we use @defer.inlineCallbacks to
simplify its implementation. Here it is (omitting some error handling and cosmetics):

@defer.inlineCallbacks
def monitor(self):
all deferreds = []
for name, url in self. to monitor.iteritems():
d = treqg.get(url, timeout=5, persistent=False)
d.addBoth(lambda resp, name: (name, resp), name)
all deferreds.append (d)

all resp = yield defer.DeferredList (all deferreds)

for (success, (name, resp)) in all resp:
json _resp = yield resp.json()
print "$-20s running: %d, finished: %d, pending: %d" %
(name, len(json resp['running']),
len(json resp['finished']), len(json resp['pending']))

These few lines contain almost every Twisted technique that we know. We use treg
to call scrapyd's APl and defer.DeferredList to process all the responses at once.
Once we have all the results in al1_resp, we iterate and retrieve their JSON objects.
treq Response' json () method returns deferred instead of actual values that we
yield to resume with actual values at some point in the future. As a final step, we
print the results. The JSON response contains lists with information on pending,
running, and finished jobs, and we print their length.

Calculating the shift with Apache Spark
streaming

Our Scrapy system is fully functional at this point. Let's take a quick look at Apache
Spark's functionality.

[218]

Chapter 11

The formula Shift,,, that we presented at the beginning of this chapter is nice and
simple, but it can't be implemented efficiently. We can easily calculate Price with two
counters and Price,,, with 2-n,,,, counters, and each new price would have to update
just four of them. Calculating Price,,,, though is very problematic because for every
new price 2-(n,,.~1) counters would have to be updated. For example, we will have

to add a jacuzzi price to every Pprice,,,, counter but the jacuzzi one. This makes the

algorithm infeasible for a large number of terms.

To work around this problem, all we have to notice is that if we add the price of
properties with a term and the price of properties without that same term, we

get the price of all the properties (obviously!) > Price=)’ Price|,,, +_ Price|,,,,. The
average price of properties without a term can, thus, be calculated using inexpensive
operations as follows:

B Z Price| ;0 B z Price —Z Price| ,,

Pri cewithuut -
n

without n— nwith

Using this form, the shift formula becomes the following:

Shif E Price]|,,, E Price—g Price],,, / E Price
1 = —
n

term —
nwith n nwith

Let's see how we implement this. Please keep in mind that this isn't Scrapy code, so
it is very reasonable for it to feel unfamiliar, but you will still most likely be able to
read and understand it with little effort. You can find the application in boostwords.
py. Please note that it also contains lots of complex test code that you can safely
ignore. Its core functionality is as follows:

Monitor the files and give us a DStream of term-price pairs
raw_data = raw_data = ssc.textFileStream(args[1])
word prices = preprocess(raw_data)

Update the counters using Spark's updateStateByKey

running word prices = word prices.updateStateByKey (update state
function)

Calculate shifts out of the counters
shifts = running word prices.transform(to shifts)

Print the results
shifts.foreachRDD (print shifts)

[219]

Distributed Crawling with Scrapyd and Real-Time Analytics

Spark uses something called DStream to represent streams of data. The
textFileStream() method monitors a directory in our filesystem, and when it
detects new files it streams data out of them. Our preprocess () function converts
them to streams of term/ price pairs. We aggregate these pairs on running counters
with Spark's updatestateByKey () method using our update_state_function()
function. We finally calculate shifts by running to_shifts () and print the best
using our print_shifts () function. Most of our functions are trivial and they just
shape data in an efficient-for-Spark way. The most interesting exception is our to_
shifts () function:

def to_shifts(word prices):
(sum0, cnt0) = word prices.values().reduce(add tuples)
avg0 = sum0 / cntoO

def calculate shift((isum, icnt)):
avg with = isum / icnt
avg without = (sum0 - isum) / (cnt0 - icnt)
return (avg with - avg without) / avg0

return word prices.mapValues (calculate shift)

It's really impressive that it follows the formulas so closely. Despite its simplicity,
Spark's mapvalues () makes calculate_shift run efficiently across our (potentially
many) Spark servers with minimum network overhead.

Running a distributed crawl

I, typically, use four terminals to have a complete view of the progress of our
crawl. I want to make this section self-contained, so I also provide the vagrant ssh
commands that you need to open terminals to the relevant servers.

[220]

Chapter 11

CONTAINER 4 MEM USAGE / LIMIT scrapydl

dev 9.02% 68.2 MB / 4,145 GB scrapyd?

es 245.2 / 4,145 GB 2% scrapyd3 running: 4, finished: 12, pending: @
L i 7 f 4.145 GB

redis . S 4.145 GB .

scropydl 204.7 W / 4.145 GB 4.94% vagrant ssh

scropyd2 - £ 4.145 GB .GE%

scropyd3 - 90% . 145 B

scrapybook — root@spark: ~ — s...
+

[propertie
6 [propert 18 with 2
7 [properties.middl tch 19 with
[propert i
[properties.
-12-13 2 [propertie
2015-12-13 [properties.mi by 23 with c o C 3.
2015-12-13 [properties.mi 1 batch 24 with 208 d crapy i -8. 628856061686) ,
2015-12-13 6 [properties.mi 3 i tch 25 with 2 3
[scrapy] INFO: Closi i
7 [properties.midd ing batch 26 with 57@ URLs to scrapydZ:680@
7 [scrapy] INF

oy e nties vagrant 55I_1 spark 7 4 _
¢ _court*) spark-submit book/ch11/boostwords.py items

631865),
vagrant ssh

8 S
; do yd-deploy $i; done
205, 13, 16, 4, 9, 4309000}

47 [scrapy] INFO: Spider closed (finished)
I rootldev:~/book/chll/properties#

Using four terminals to oversee a crawl

With one terminal, 1, I like to monitor the CPU and memory usage across the servers.
This helps with identifying and repairing potential problems. To set it up, I run
the following:

$ alias provider id="vagrant global-status --prune | grep 'docker-
provider' | awk '{print \$1}'"
$ vagrant ssh $(provider id)

$ docker ps --format "{{.Names}}" | xargs docker stats
The first two somewhat complex lines allow us to ssh the docker provider VM. If we

aren't using a VM but we run on a docker-powered Linux machine, we need just the
last line.

[221]

Distributed Crawling with Scrapyd and Real-Time Analytics

The second terminal is also diagnostic 2, and I use it to run scrapy monitor as follows:

$ vagrant ssh
$ cd book/chll/properties

$ scrapy monitor scrapyd*

Please keep in mind that using scrapyd* and the empty files with the server
names, scrapy monitor scrapyd*expandstOScrapy monitor scrapydl
scrapyd2 scrapyd3

The third one, 3, is a terminal to our dev machine from which we kick-off the crawl.
Apart from this, it's mostly idle. To start a new crawl, we perform the following:

$ vagrant ssh

$ cd book/chll/properties

$ for i in scrapyd*; do scrapyd-deploy $i; done
$ scrapy crawl distr

The last two lines are the essential ones. First, we use a for loop and scrapyd-
deploy to deploy the spider to our servers. Then, we start a crawl with scrapy
crawl distr. We can always run smaller crawls using, for example, scrapy crawl
distr -s CLOSESPIDER_PAGECOUNT=100 to crawl about 100 index pages, which
corresponds to about 3,000 detail pages.

Our last terminal, 4, connects with the Spark server, and we use it to run the
streaming analytics job:

$ vagrant ssh spark
$ pwd

/root

$ 1ls

book items

$ spark-submit book/chll/boostwords.py items

Only the last line is essential, and it runs boostwords.py, giving it our local items
directory to monitor. Sometimes, I also use watch 1s -1 items to keep an eye on
the item files as they arrive.

Which exactly are the keywords that most affect prices? I leave this as a surprise for
those who managed to follow this far.

[222]

Chapter 11

System performance

In terms of performance, our results greatly vary depending on our hardware, and
the number of CPUs and memory that we give to our VM. In a real deployment, we
get horizontal scalability allowing us to crawl as fast as our servers allow.

The theoretical maximum that one could get with the given settings is 3 servers - 4
processes/server - 16 requests in parallel - 4 pages/second (as defined by the page
download latencies) = 768 pages/second.

In practice, using a Macbook Pro with 4 GB of RAM and 8 cores allocated to a
VirtualBox VM, I got 50000 URLSs in 2:40, which means about 315 pages/second.

On an Amazon EC2 m4]large instance with 2 vCPUs and 8 GB RAM,, it took

6:12 giving 134 pages/second due to limited CPU capacity. On an Amazon EC2
m4.4xlarge instance with 16 vCPUs and 64 GB RAM, the crawl completed in 1:44
giving 480 pages/second. On the same machine, I doubled the number of scrapyd
instances to 6 (by slightly editing Vagrantfile, scrapy.cfgand settings.py) and
the crawl completed in 1:15 with a speed of 667 pages/second. In this latter case, our
web server seemed to be the bottleneck (this would mean an outage in real life).

The distance between the performance that we get and the theoretical maximum

is more than justified. There are many little latencies that our back-of-the-envelope
calculations don't take into account. Despite the fact that we claim a 250 ms page
load latency, we've already seen in previous chapters that it's larger because, at the
very least, we have additional Twisted and OS latencies. Then there are latencies,
such as the transfer time of our URLs from dev to scrapyds, our crawled Items

to Spark through FTP, and the time (2.5 seconds on average —refer to scrapyd's
poll_interval setting) that it takes scrapyd to discover and schedule jobs. There's
also a start time for both the dev and scrapyd crawls that we don't account for.

I wouldn't try to improve any of these latencies unless I was certain they would
increase throughput. My next step would be to increase the size of the crawl to, for
example, 500k pages, load balance a few web server instances, and discover the next
interesting challenges in our scaling endeavor.

The key take-away

The most important takeaway of this chapter is that if you are about to perform
distributed crawling, always use suitably sized batches.

Depending on how fast your source websites respond, you may have hundreds,
thousands, or tens of thousands of URLs. You would like them to be large enough —in
the few-minutes level —so that any startup costs are amortized sufficiently. On the
other hand, you wouldn't like them to be too large as this would turn a machine failure
to a major risk. In a fault-tolerant distributed system, you would retry failed batches;
and you wouldn't want this to be hours worth of work.

[223]

Distributed Crawling with Scrapyd and Real-Time Analytics

Summary

I hope you have enjoyed this book on Scrapy as much as I did writing it. You now
have a very broad view of Scrapy's capabilities, and you are able to use it for simple
and complex crawling scenarios. You have also gained an appreciation of

the complexities of developing using such a high-performance system and making
the most out of it. By using crawling you can leverage immediate network access to
large real-world datasets on your applications. We have seen the ways to use Scrapy
datasets to build mobile apps and perform interesting analytics. I hope that you

use Scrapy's power to develop great, innovative applications and make our world a
better place. Good luck!

[224]

Installing and troubleshooting
prerequisite software

Installing prerequisites

This book uses a rich system of virtual servers to demonstrate the uses of Scrapy in

a realistic multiserver deployment. We use industry standard tools — Vagrant and
Docker —to set this system up. This is a book with strong dependencies on website
content and layout, and if we were using websites outside our control, our examples
would break in a few months time. Vagrant and Docker allow us to provide an
isolated environment where examples run seamlessly now and in the future. As a
side benefit, we don't hit any remote servers; thus, we can't cause any inconvenience
to any webmaster. Even if we break something and examples stop working, by using
two commands, vagrant destroy and vagrant up --no-parallel, we can tear
down, rebuild the system, and continue.

Just before we start, I would like to clarify that this infrastructure is tailored to the
needs of a book reader. Especially with regard to Docker, the general consensus is
that every Docker container should run a single-process microservice. We don't do
that. Many of our Docker containers are a bit heavy and allow us to connect to them
and perform various operations via vagrant ssh. Our dev machine in particular
looks nothing like a microservice. It's our user friendly gateway to this isolated
system, and we treat it as a fully-featured Linux machine. Unless we bent the

rules in this way, we would have to use a larger repertoire of Vagrant and Docker
commands, delve deeper into troubleshooting them, and this book would quickly
turn into a Vagrant/Docker book. I hope Docker aficionados will pardon us, and
every reader appreciates the ease and benefits that Vagrant and Docker bring.

[225]

Installing and troubleshooting prerequisite software

[

The containers for this book aren't by any means suitable
for production.

]

It's impossible to test every software/hardware configuration out there. If something

doesn't work, please, if possible, fix it and send us a Pull Request on GitHub. If you don't

know how to fix it, search for a relevant issue on GitHub or open one if it doesn't exist.

The system

This is a reference section. Feel free to skip it at first read and return to it when you
want to better understand the way that this book's system is structured. We repeat

parts of this information in relevant chapters.

We use Vagrant to set up the following system:

web

web server

hitp:9312

(scrapybook/web)
Ubuntu Trusty + Twisted

scrapyd:6800

dev
(scrapybook/dev)
Ubuntu Trusty + scrapy/
scrapyd + various tools

scrapyd

scrapyd:6801-6803 |—

scrapyd1..3
(scrapybook/dev)
Ubuntu Trusty + scrapyd

arious
protocols

es
(scrapybook/es)
Official ElasticSearch
container

redis
(scrapybook/redis)
Official Redis container

mysql
(scrapybook/mysql)
Official MySQL container

Chapter 11

Chapter 9
___________________________________ éh-
spark
(scrapybook/spark)
ftp:21 Ubuntu Trusty + pure-ftpd
+ Apache Spark

The system we use in this book

[226]

Appendix

In the diagram, each box represents a server and the hostname is the first part of its
title (dev, Web, es, and so on.). The second part of the title is the Docker image that it
uses (scrapybock/dev, scrapybook/web, scrapybook/es, and so on.). Then there's a
short description of the software that runs on the server. Lines represent links between
servers, and their protocols are written next to them. Part of the isolation that Docker
provides is the fact that connections beyond the ones that are explicitly declared aren't
allowed. This means that if, for example, you want to run something that listens in the
1234 port on the spark server, nobody will be able to connect to it unless you expose
this port by adding relevant declarations to the Vagrant file. Please keep this in mind in
case you want to install custom software on any of those servers.

In most chapters, we use just two machines: dev and web. vagrant ssh connects us
to the dev machine. From here, we can easily access every other machine using its
hostname (mysql, web, and so on). For example, we can confirm that we can access
the web machine by performing ping web. We use and explain various commands
in each chapter. In Chapter 9, Pipeline Recipes, we demonstrate how to push data to
various databases. In Chapter 11, Distributed Crawling with Scrapyd and Real-Time
Analytics, we use three scrapyd Docker containers (which are in fact identical to our
dev machine to reduce download size) with the scrapyd1-3 hostnames. We also

use a server with the spark hostname, which runs Apache Spark and an FTP service.
We can connect to it with vagrant ssh spark and run Spark jobs.

We can find the description of this system in the vagrantfile in the top-level
directory on GitHub. As soon as we type vagrant up --no-parallel, the system
will start building. This takes a few minutes, especially the first time, as we will see
in more detail later in the FAQ. One can find this book's code mounted in the ~/book
directory. Any time someone modifies something in it on the host machine, changes
propagate automatically. This allows us to hack files with our text editor or IDE and
quickly check our changes on dev.

Finally, some listening ports are forwarded to our host computer and expose the
relevant services. For example, you can use a simple web browser to access them. If
you already use any of these ports on your computer, there will be a conflict and the
system won't build successfully. We will show you how to fix these cases later in the
FAQ. These are the forwarded ports:

Machine and service From dev From your (host) computer

Web —web Server http://web:9312 http://localhost:9312

dev —scrapyd http://dev:6800 http://localhost:6800

scrapyd1—scrapyd http:// http://localhost:6801
scrapydl:6800

scrapyd2 —scrapyd http:// http://localhost:6802
scrapyd2:6800

[227]

Installing and troubleshooting prerequisite software

Machine and service From dev From your (host) computer

scrapyd3 —scrapyd http:// http://localhost:6803
scrapyd3:6800

es — Elasticsearch API http://es:9200 http://localhost:9200

spark—FTP ftp://spark:21 & ftp://localhost:21 &
30000-9 30000-9

Redis —Redis API redis://redis:6379 redis://localhost:6379

MySQL —MySQL mysqgl://mysqgl:3306 mysqgl://localhost:3306

database

The ssh is also exposed on some machines and Vagrant takes care of redirecting and
forwarding ports for us to avoid conflicts. All we have to do is run vagrant ssh
<hostname> to the machine that we want.

Installation in a nutshell

The necessary software that we need to install is as follows:

* Vagrant
* git
* VirtualBox (on Windows and Mac) or Docker (on Linux)

On Windows, we also need to enable the git ssh client. You can visit their websites
and follow the steps that they describe for your platform. In the following sections,
we are going to try to provide step-by-step instructions, which are valid right now.
They will certainly become obsolete in the future, so always keep an eye on the
official documentation.

Installing on Linux

We start with instructions about how to install the system on Linux because it's the
easiest. | will demonstrate with Ubuntu 14.04.3 LTS (Trusty Tahr), but the process
should be very similar for any distribution, and well, the more unusual the distribution,
the more —I guess — you know how to fill in the gaps. In order to install Vagrant, go to
Vagrant's website, https: //www.vagrantup.com/, and browse to its download page.
Right-click on the Debian package, 64-bit version. Copy the link address:

[228]

https://www.vagrantup.com/

Appendix

™) ... WINDOWS

Universal (32 and 64-bit)
Right click on

(2) clickars

Open Link in New Tab

“lihc IBK h Opely Link in New Window
® Opert k in Incognito Window
J 32-bit | B4=(copy Link Address
- i -t
Search Google com for "64-bit™
m. CENTO. ™Z
K Terminal
........ 4—.-.,-/;-5...............................-.m-wm-,.w.u..f.‘u-.‘.,o......... - :

We will use the terminal to install Vagrant because it's the most universal way,
despite the fact that we could achieve the same with a few clicks on Ubuntu. To open
the terminal, we click the Ubuntu icon in the top-left corner of the screen to open the
Dash. Alternatively, we could press the Windows button. Then we type terminal
and click on the Terminal icon to open it.

We type wget and paste the link from Vagrant's page. A . deb file should download
after a few seconds. Type sudo dpkg -i <name of the .deb file you just
downloaded> to install the file. That's it, Vagrant just installed successfully.

To install git just type the following two lines on the terminal:

$ sudo apt-get update
$ sudo apt-get install git

Now, let's install Docker. We follow the instructions from https://docs.docker.
com/engine/installation/ubuntulinux/. On the terminal we type the following:

$ sudo apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80
--recv-keys 58118E89F3A912897C070ADBF76221572C52609D

$ echo "deb https://apt.dockerproject.org/repo ubuntu-trusty main" | sudo
tee /etc/apt/sources.list.d/docker.list

$ sudo apt-get update
$ sudo apt-get install docker-engine

$ sudo usermod -aG docker $ (whoami)

We log out and log in again to apply the group changes, and now, we should be
able to use docker ps without a problem. We should now be able to download this
book's code and enjoy the book:

$ git clone https://github.com/scalingexcellence/scrapybook.git
$ cd scrapybook

$ vagrant up --no-parallel

[229]

https://docs.docker.com/engine/installation/ubuntulinux/
https://docs.docker.com/engine/installation/ubuntulinux/

Installing and troubleshooting prerequisite software

Installing on Windows or Mac

The process for the Windows and Mac environments is similar, so we will present
them together while highlighting their differences.

Install Vagrant

To install Vagrant, we go to Vagrant's website, https://www.vagrantup.com/, and
browse to its download page. We choose our operating system and go through the
installation wizard:

i}

T R
double click;

Orgarsce v m“h-';ni“'“‘wmqgwg |nu=wi " rm.\lf.l(';lf,ﬁ s mﬂn{!.s.u.dmﬂ ‘ ,
™ ¥ i v = i |

___________ N 00 WO BV 1T
. _Mac , Shared Folder

(I |8 = Computer = Sysen (€3] = Uses - Admesrator - Dowrioads

Favontes
B Deskioo.

Open file - Security Waming

D you ward o run this file? o S
Mo, . Users|Admistrator Dovwrioads vagrant_L.7.4.ms :
Puisher HashiCorn, lnc. i
Type: Windows Instaler P] H
From: C:\Users\Administrator | \wagrant_1.7.4.... L Waicoma 1o T Vagram ingtaser :___;.w |
- 1 e T e
B [_Cancel ; i i
| ; .
¥ Abwaya ask before opening this fle : o !
v] ’ [
. Vel o e ot conbe s Bt] ! |
3 Wagrant ctup Piemree o e e s s] ' '
§ AS i :
e b= Welcome to the Vagrant Setup Wizard d .’)
¥ ¢l « Completed the Vagrant Setup Wizard ' " :
el Sk ooine d 4 '
The Sean Wines vl rwtsl ¥agrant on oo ovmputer, Ok %.ﬂm,,, - L
et 0 Conarue & Cance 0 €6t e Sea WA i S o o
H h 1 Gofek |
E ¥ 1 e S
; et
é i LY
ot | |! [on was successtul,
o | (RN
E ¥ 1 aconpt hu terves n the Licarae Agreement [
i L LILTJ et | It 1 s i
e e | * e Eject *‘
' 1 Shared ! S

A few clicks later, we should have Vagrant installed. In order to access it, we will
have to open the command line or the terminal.

[230]

https://www.vagrantup.com/

Appendix

How to access the terminal

On Windows, we press Ctrl+Esc or the Win key to open the applications menu and
search for cmd. On Mac, we press Cmd+Space and search for terminal.

Windows

search __4* terminal Ed

Cmd+Space
Everywhere -

= search_H

1 Terminal
w Command Prompt . o 2

Search

6.3.96801
ion. A1l rights reserved.

MacBook:~ Lookfwd$

In both cases, we get a console window, and when we type vagrant, a few
instructions will be printed. That's all we need for now.

[231]

Installing and troubleshooting prerequisite software

Install VirtualBox and Git

In order to simplify this step, we will install the Docker Toolbox that contains

both Git and VirtualBox. If we Google search for docker toolbox install, we end up

at https://www.docker.com/docker-toolbox where we can download the
appropriate version for our operating system. The installation is as easy as Vagrant's:

Docker Toolbox docker toolbox download

Wind:ows Mac

AR by ¥ et S e e —* / ~ Datemodited |
: 1 G : ;

Hame. w DockerToolbox-1.9.0d.pkg Today 01:37

=1 DoderToobox-1.5, 1c

install Docke: Toolbax -

‘This package will run a program ta
. determing if the software can be installed,

Welcome to the Docker Toolbox
Setup Wizard

ot ol Pl Dch Toslber verenon 103 60 your
iy

buce your Doche Toobon VM i Docker 1,00

Ensure that VirtualBox supports 64-bit images

After the installation of Docker Toolbox, we should be able to find the VirtualBox
icon in our Windows desktop or Mac's Launchpad (press F4 to open it). It's
important to check early whether our VirtualBox supports 64-bit images.

[232]

https://www.docker.com/docker-toolbox

Appendix

[Oracle VM Vintua/Box Manager]
Windows 3.1 ‘__
Windows 05 -
secrcn Dicard, S wname%e Has 64-bitlimages.
Windows ME |
9 oo e e Good!
Windows 2000
top Windows P (32-08)
2 i Please wingows XP (64-b8) mach
and S8 \Windows 2003 (32-bit) Jinstah

Windows Vista (32-bat)

. : : i
Click new VM Verualg Widows 2003 84500
A ‘Windows Vista (54-bd)

VirtualBox in Mac's
launchpad

Windows 2008 (32-oit)

Check a\r:aliable versions LT Essadiiadiofl BE

Windows B (32-65)

‘Windows B (64-0a)

Windows 8.1 (32-5i)

Windows B.1 (64-bi) '
cws 2012 (B4-Dit) ‘

naRoesnthavel

mearia ofrdraut

64-bit images|or,

VirtualBox - Erfor

VT-x/AMD-V hardware
acceleration is not available on
your system. Your 64-bit guest

s wRedi=sVeryaBadwri

Pleass -honge a rdearrinkive na il t PP
onGIVES,ETTor s 0 will ot e able)
w ‘ongho st Virtuaow i
|
messages. Bad! P} sswwnn@®|d:hardware

Name: I Copy Continue | 8] 54 2 evailsble Sacurky fowwaie by Shye Gibson.

Tipe: .L“"{ AMD Opteron Processor 417

Deskop, | [| 64 Yes No
! Hardware

Linux 2.6 / 3.x f 4.x (32-bit)

Red Hat (32-bit)

Maximum Hardware
»'\'d_L“:_: el : Bit Length DEP. Virtualization
openSUSE (32-bit) : v i
i Fedora (32-bit) Avm
i Gantoo (32-bit) " .
H Mandriva (32-bit) Check with SecurAblejsweazsn 00 [|

We open VirtualBox and click the New button to create a new virtual machine. We
check the version drop-down menu, check the options, and then click Cancel. We
don't really need to create a virtual machine right now.

a1

~ If the drop-down menu included 64-bit images, we can skip to
the next section.

If the drop-down menu didn't include any 64-bit images or when we try to run a 64-
bit VM it gives error messages such as VT-x/AMD-V hardware acceleration is not
available on your system, we may be in a bit of trouble.

This means that VirtualBox can't detect VT-x or AMD-V extensions on our PC. If our
hardware is old then it's reasonable and expected. If it's new, then these extensions
may be disabled by the BIOS. If we are on Windows (most likely), an easy way to
check is with a tool called SecurAble that we can download from https://www.grc.
com/securable.htm. If the Hardware Virtualization is red and says No, it means
that our CPU doesn't support the necessary virtualization extensions. In this case, we
won't be able to run Vagrant/Docker, but we will still be able to install Scrapy and
follow the examples using the online website (scrapybook. s3.amazonaws . com) as

a source. Start using the spider from Chapter 4, From Scrapy to a Mobile App, which
should work out of the box and build from there.

[233]

https://www.grc.com/securable.htm
https://www.grc.com/securable.htm
scrapybook.s3.amazonaws.com

Installing and troubleshooting prerequisite software

If the Hardware Virtualization is green, we will most likely be able to enable the
extension from our BIOS. Google search for your PC model and how to change the
BIOS settings that are related to VT-x or AMD-v. There's usually a key that we can
press while rebooting that gives us access to BIOS. From here, we have to go to a
security-related menu and enable the option of Virtualization Technology (VTx)
or something similar. After rebooting, we will be able to run 64-bit virtual machines
from our computer.

Enable ssh client for Windows

If we're on a Mac, we won't need this step, and we can skip to the next section. If
we're on Windows, it doesn't provide us with a default ssh client. Fortunately, GIT
(which we've just installed) has an ssh client that we will activate by adding it on
Windows Path.

7
. ;] Untitled - Notepad

PV U T T R T y
. % .

2) C:\Program F1les\Git\bin
| c:\Program Files\Git\usribin
MName 7

o)

R Ml Urtstied Motepod |

T Favorites |
B Deskiop 3) 3 Edit_Focmat s bielo 1
& Dewnloads st =1 :|:‘;:"_Program Files\Git\bin;C:\Program Files\Git\usr\bin J H
1] Recent places =1 szheagent !

he-copy-id , e i T R R0 e o e B P T M S S e E M R Rt R T R o o P

1 This PC = sshd

':Ir___ 'w__m___-u_________'_'_' I S]
o ETD4) Rightglick p
':::n 1 , Open
tat 1| Network %'Manage 6)

Control Panel Home
- vrronss sianansnal
A “, Device Manager
Computer Name | Hardware Ad
! ¥ Remote settings

You must be lagged on-as an A
Pedomance 1 | B Advanced system setting

i
Lo A T T TP

User Profies
Daskiop satinigs related 1o your logon

| im Files\Git\bin; C: \Program Files\Git\usr \birl

ok | cancel |

= : % mocns%-mmm:_r- -------- 1 A

) e a-f;sema—-nes-.-m:na:tw'-_r::

[erevese | CliCK 10 men. | et | oses |
Path* Vake [=]

Statup and Recovery
Systom storup. sysiem falur. and debugging

L |

[234]

Appendix

The ssh binary, by default, lives in C: \Program Files\Git\usr\bin (refer to 1). We
will add both ¢:\Program Files\Git\usr\bin and C:\Program Files\Git\bin
to the path. In order to do so, we put them in a Notepad, and we concatenate them
adding ; just before each one of them (refer to 3). The end result is as follows:

;C:\Program Files\Git\bin;C:\Program Files\Git\usr\bin

We now press Ctrl+Esc or the Win key to open the start menu and then find the
Computer option. We right-click it (refer to 4) and select Properties. On the next
window, we choose Advanced System Settings. We then click Environment
Variables. This is the form where we edit our Path. Click on Path to edit it. On the
Edit User Variable dialog, we paste at the end the two new concatenated paths that
we have in Notepad. We should be careful not to accidentally overwrite whatever
value our path previously had; we just append. Then we click OK a few times to exit
all these dialogs, and our prerequisites are all installed.

Download this book's code and set up
the system

Now that we have a fully functional Vagrant system, we open a new console/
terminal/command line (we've seen how to do this earlier), type the following
commands, and enjoy the book:

$ git clone https://github.com/scalingexcellence/scrapybook.git
$ cd scrapybook

$ vagrant up --no-parallel

System setup and operations FAQ

Next are the solutions to some of the problems you may run into while working with
Scrapy for the first time:

[235]

Installing and troubleshooting prerequisite software

What do | download and how much time does
it take?

As soon as we run vagrant up --no-parallel, we don't have that much visibility
of what's going on. The wall time is closely related to our download speed and the
quality of our internet connection. Here's what one would expect to happen with an
internet connection able to download about 5 MB per second (38 Mbps):

9. Start dev, scrapyd* etc. o\
1. Download host VM

40" - \
() / (2'00" - 400 MB)
8. Start MySQL server

(1'30" - 60 MB) \

2. Start host VM

7. Start Redis server _ / (20"-)
(30" - 5 MB)
} o
6. Start ES server — — 3. Provision docker
(40" - 30 MB) (1'30" - 30 MB)
i& Time: 12'30"
jo— Download: 1.5 GB w
6. Start Spark server — —— —
(210" - 320 MB) 4. Download base, """~

— start web server
(3'20" - 600 MB)

The first three steps aren't necessary if we're on Linux and have Docker already
installed saving us 4' and 450 MBs of download.

Please note that all the preceding steps are relevant only to the first time when
vagrant up --no-parallel downloads everything. Subsequent runs will typically
take less than 10".

[236]

Appendix

What should | do if Vagrant freezes?

Vagrant may freeze due to various reasons, and all we have to do is press Ctrl+C
twice to exit. Then retry vagrant up --no-parallel and it should resume. We
may have to do this a few times depending on the speed and quality of our internet
connection. If we open the Windows Task Manager or the Activity Monitor on Mac,
we can have a more clear view of what Vagrant is doing.

Windows Task Manager

.F”’ Options View Help Network tab

e0e

Local Area Connection

Process Name Sont Bytes ~ Acvd B Sent Pac Rcvd Pac PID User
18.7 MB 20,1 MB 74,122 74,207 -
6.2 MB 5.8 MB 52,460 52,460

Wireless Network Connection

. . 28vB 56 KB 65 T2
This is normalg 46 KB (=3 56 278

24%B 1 KB] 21 663
Packets in 38,147,860 PaACRErs Data received 3531 GB

Packets out: 24,578,864 Ir“"‘\.v""""“"'I ||1"~| Data sent 8.71 GB
: ; Data recoivediasc: 52.8 KB
Packels out/sec: 20 ta sent/sec: 1.32 KB

Packels in/sec: 39—

This isn't normal

Short freezes of up to 60 seconds during or after download are expected because
software gets installed. Longer periods of inactivity, though highly likely, mean that
something went wrong.

If we interrupt and resume, vagrant up --no-parallel may fail with an error that
is similar to this:

Vagrant cannot forward the specified ports on this VM... The forwarded
port to 21 is already in use on the host machine.

This is also a temporary problem. If we rerun vagrant up --no-parallel, it should
resume successfully.

Let's assume the following failure takes place:

Command: "docker" "ps" "-a" "-gq" "--no-trunc"
Stderr: bash: line 2: docker: command not found

If this happens, shut down and resume the VM as shown in the next answer.

[237]

Installing and troubleshooting prerequisite software

How do | shut down/resume the VM quickly?

If we use a VM, the fastest way to shut it down, for example, to save battery on a
laptop, is to open VirtualBox, select the VM, and then press Ctrl+V or Cmd+V, or use
the right-click menu and click Save State:

T A v
New Settings Discard Show
£)/ | docker-provider = General
e Settings... \ 36 oy = g = kar prnyider
&J Clone... < Ri g ht-clickaby
@ Remove... ¥R
[
Group #U flem
smory: 4096 MB
Show ors: 8
Pause 8P der: ard Disk
Reset BT ation: WY/J-x/AMD-V, Nested Pagin
Save State
Discard Saved State... #BJ ';CPI Sgl#down 3;;?
Show Log... #dL "mc;\!ver 19 hAE
Refresh Desktop Server: Disabled
L apture: Disabled
Show in Finder :
Create Alias on Desktop rage
Sort er: SATAController _
e OTT O box-disk1.vmd

We can restore the VM by running vagrant up --no-parallel. dev, and Spark
servers' ~/book directories should work fine.

How do | fully reset the VM?

If we want to change the number of cores, RAM, or port mappings in the VM, we
have to perform a full reset. To do this, we follow the steps of the previous answer but
now chose Power Off or press Ctrl+F or Cmd+F. We can also achieve the same thing
programmatically by running vagrant global-status --prune. We find the ID (for
example, 95d1234) of the host virtual machine that is named "docker-provider". We
then halt it with vagrant halt, for example, vagrant halt 957d887.

We can then restart the system with vagrant up --no-parallel. Unfortunately,
dev and spark machines will most likely empty their ~/book directories. To fix this
problem, run vagrant destroy -f dev spark and thenrerun vagrant up --no-
parallel. This should fix these problems.

[238]

Appendix

How do | resize the virtual machine?

We may want to change the size of the VM from, for example, using 2 GB of RAM
to 1 GB or using 8 cores instead of 4. We can do this by editing the vb . memory and
vb.cpus settings of Vagrantfile.dockerhost. Then, we follow the process of the
previous answer to perform a full reset of the Virtual Machine.

How do | resolve any port conflicts?

Sometimes, we may have services running on a host that is occupying one of the

ports that this system requires. First of all please keep in mind that if we open the two
Vagrantfile, remove every forwarded port statement, and reset as described in a
bit, we will still be able to run the examples of this book. We just won't be able to easily
inspect the services on these ports on our host machine (typically via a web browser).

That said, we can fix this more properly by remapping the conflicting ports. Let's
use a conflict on port 9312 of the web server as an example. The process is slightly
different depending on whether we run on Linux natively or using a VM.

On Linux using Docker natively

The problem will demonstrate itself with an error along these lines:

Stderr: Error: Cannot start container a22f...: failed to create
endpoint web on network bridge: Error starting userland proxy: listen
tcp 0.0.0.0:9312: bind: address already in use

Open the Dockerfile and edit the host value of the forwarded port statement for
the web server. We will then destroy the web server using vagrant destroy web
and then restart it with vagrant up web, or if the problem happened during your
initial load, resume loading with vagrant up --no-parallel.

On Windows or Mac using a VM

Here, we will get a different error message:

Vagrant cannot forward the specified ports on this VM, since they
would collide... The forwarded port to 9312 is already in use
on the host machine...

In order to fix this, we open Vagrantfile.dockerhost and remove the existing

line with the port number. Then add a custom port forwarding statement below, for
example, config.vm.network "forwarded port", guest: 9312, host: 9316. This
will forward to 9316 instead. We follow the process of the answer to the question How
do I full reset the VM? to reset the Virtual Machine and everything should work fine.

[239]

Installing and troubleshooting prerequisite software

How do | make it work behind a corporate
proxy?

There are simple proxies and TLS interception proxies. Simple proxies require us to
forward our requests to a proxy server before they reach the open internet. They
may or may not require authentication, but in any case, the information that we need
to use it is just a URL that we can obtain from our IT department. It's something
along the lines of http://user:passe@proxy.com:8080/. If we are using Linux
without a VM, most likely we've already set up everything correctly and no further
adjustments are necessary. If we're using a VM though, we will need to make the
proxy URL available to Vagrant, Docker provider VM, Ubuntu's aptitude, and

the Docker service itself. All these operations get handled in the vagrantfile.
dockerhost, and all we need to do is uncomment the line that defines proxy url
and set its value appropriately.

Let's suppose that we get the following SSL-related problems:

SSL certificate problem: unable to get local issuer certificate

If you'd like to turn off curl's verification of the certificate, use
the -k (or --insecure) option.

From either Vagrant or while provisioning Docker, we most likely have to deal with
TLS interception proxies. These proxies aim to monitor both secure and insecure
traffic by acting as a "man in the middle". They perform https requests verifying
certificates as necessary on our behalf, and we perform https connections to them
verifying their certificates. Our IT department most likely provides us a certificate,
typically in the form of a . crt file. We place a copy of this file in our book's main
directory (where vagrantfile is). Further to setting proxy url as in the previous
case, we now have to further uncomment the line that defines the crt_filename
variable and set its value to the name of our certificate file.

How do | connect with the Docker
provider VM?

If we are on Linux and we aren't using a VM, then our machine is the Docker
provider and we don't have to do anything. If we are using a VM, we can find the

ID of our Docker provider by running vagrant global-status --prune and then
find the machine named docker-provider. We can automate this on Linux and Mac
with the following alias:

$ alias provider id="vagrant global-status --prune | grep 'docker-
provider' | awk '{print \$1}'"

[240]

Appendix

We can use vagrant ssh <provider ids or, in case we have the alias, vagrant
ssh $(provider_id) to connect to the Docker provider. This is an Ubuntu Trusty
64-bit Virtual Machine.

How much CPU/memory does each
server use?

If we use Docker natively or connect to the provider as described in the previous
answer, we can see the resources that each individual Docker container consumes
using docker stats as follows:

$ docker ps --format "{{.Names}}" | xargs docker stats

Here is an example of the output while running the code in Chapter 11, Distributed
Crawling with Scrapyd and Real-Time Analytics, at the point where scrapyd's
downloading intensively from the web server:

CONTAINER MEM USAGE / LIMIT
dev 5 63.61 MB / 2.099 GB
es 5 295.1 MB / 2.099 GB
mysql

| redis

| scrapydl
‘scrapydz
scrapyd3
spark
‘web

How can | see the size of Docker container
images?

If we use Docker natively or connect to the provider as we have seen in the previous
answer, we can find the size of Docker images as follows:

$ docker images

This book's containers are based on a single image with relatively little extra software
installed on each variation. Consequently, the GBs one may see as virtual sizes

aren't really used in terms of disk space. If we want to see how images are built
hierarchically and individual sizes, we can set up an alias for the somewhat long
dockviz command and then use it as follows:

$ alias dockviz="docker run --rm -v /var/run/docker.sock:/var/run/docker.
sock nate/dockviz"

$ dockviz images -t

[241]

Installing and troubleshooting prerequisite software

How can | reset the system if Vagrant doesn't
respond?

We can perform a full reset of the system even if it ended up in a very confused state
where even Vagrant can't reset it anymore. We can do this without resetting the host
VM, which admittedly takes some time to complete. All we have to do is connect to the
docker provider machine and force-stop all the containers, remove their images, and
restart Docker. We can do this as follows:

$ docker stop $(docker ps -a -q)
$ docker rm $ (docker ps -a -q)

$ sudo service docker restart
We could also use the following command:
$ docker rmi $(docker images -a | grep "<none>" | awk "{print $3}")

We use this to remove any Docker layers that we've downloaded, which means a few
minutes of download time on our next vagrant up --no-parallel.

There's a problem | can't work around, what

can | do?

We can always use VirtualBox and an image of Ubuntu 14.04.3 (Trusty Tahr) from
osboxes.org (http://www.osboxes.org/ubuntu/) and follow the process for Linux
installation. The code will then run entirely inside the VM. The only thing that we
will miss is port forwarding and synced folders, which means that we either have to
set them up manually or perform our development inside the VM.

[242]

http://www.osboxes.org/ubuntu/

A

Amazon web services 115

Apache Spark Streaming
used, for calculating shift 218-220

attribute 14

automated data scraping
communities, discovering 7
communities, integrating 7
forms, replacing 6
importance 4
quality applications, developing 5
quality minimum viable products,

developing 5, 6

realistic schedules, providing 5
robust applications, developing 5

benchmark system 183-185
bottleneck
identifying 178

C

Chrome

used, for obtaining XPath expressions 20
collection

creating 64-66
component

utilization getting, telnet used 180-182
corporate proxy 240
crawl URLs

batching 209-213
CRUD (Create, Read, Update, Delete) 148
custom monitoring command

creating 217, 218

Index

D

database
creating 64-66
interfacing, with standard
Python clients 159
populating, with Scrapy 66-69
denial-of-service (DoS) attack 8
distributed crawl
running 220-222
distributed system
overview 205-207
Docker
URL 229
Docker container images
size, viewing 241
Docker provider VM 240
docker toolbox
URL 232
Document Object Model (DOM) 11
Domain Name System (DNS) 12
DOM tree representation 11, 12

E

Elasticsearch
about 148-151
geoindexing, enabling 158

G

Git
installing 232

[243]

Google Geocoding API

used, for geocoding 151-157
Gumtree

URL 32

H

HTML

about 11,12

text representation 15,16

tree representation 15, 16
HTML document 12-14
HTML element

about 13

selecting, with XPath 16, 17

items
accessing 102, 103

L

Linux
installing on 228, 229

Mac
installing on 230
minimum viable product (MVP) 5
mobile application
creating 69
database access service, creating 70
data, mapping to user interface 72,73
exporting 74,75
framework, selecting 63, 64
sharing 74
testing 74
user interface, setting up 70,71

N

nutshell
installing in 228

(0

osboxes.org
URL 242

P

performance issues, solving
about 187
blocking code 189, 190
downloader 197-199
garbage on downloader 191-193
overflow due to limited/ excessive item

concurrency 195, 196
overflow due to many or large
responses 194, 195

saturated CPU 188, 189

pipeline
binaries or scripts, using 170
CPU blocking operations 167
CPU intensive operations, performing 167
reading/writing, to Redis 163-166
writing, to Elasticsearch 148-151
writing, to MySQL 159-161

port conflicts
on Linux, Docker used 239
on Windows or Mac, VM used 239
resolving 239

prerequisites
installing 225

property title 202

Q

queuing systems
cascading 177

R

recurring crawls
scheduling 104
Redis
pipeline, reading to 163-166
pipeline, writing to 163-167
REST APIs
using 148
robots.txt file
URL 8

[244]

S

Scrapinghub
project, starting 98
signing in 98
signing up 98, 99
Scrapy
about 1, 2, 122-124
architecture 134-136
benefits 2,3
community, URL 3
database, populating with 66-69
deferreds and deferred chains 124-127
engine 176,177
extending, beyond middleware 144
extension 140-143
installing 26
installing, from latest source 28
installing, on Linux 27
installing, on MacOS 26
installing, on Red Hat or CentOS Linux 28
installing, on Ubuntu or Debian Linux 28
installing, on Windows 27
misinterpretation, avoiding 8
performance model 179, 180
settings, using 106
signals 138-140
simple pipeline 137, 138
spider 207
troubleshooting flow 199, 200
Twisted and nonblocking I/O 127-134
upgrading 29
URL 28
Scrapyd 202-205
scrapyd-deploy
URL 217
scrapyd servers
project, deploying to 216, 217
Scrapy project
about 40
contracts, creating 53
files, saving to 47-49

item loaders and housekeeping fields 49-52

item, populating 46, 47
items, defining 41, 42
spiders, writing 42-46

SecurAble
URL 233
services
interfacing, Twisted-specific
clients used 163
settings, Scrapy
Amazon web services 115
analysis 107
Autothrottle extension settings 119
Crawleras clever proxy, using 116
crawling, style 112, 113
crawls, stopping early 111
debugging 120
essential settings 107
extending 118
feeds 113
fine-tuning downloading 119
HTTP caching 111
images, downloading 114, 115
logging 108, 120
media, downloading 114
Memory UsageExtension Settings 119
other media files 114
performance 110
project related settings 118
proxies, using 116
proxying 116
stats 108
telnet 108
telnet, using 108, 109
working offline, cache used 111, 112
sharded-index crawling 207-209
spider
arguments, passing between responses 87
deploying 100-102
property spider 88-92
runs, scheduling 100, 101
that crawls, Excel file based 92-95
that logs in 78-84
that reads AJAXs pages 84-87
that reads JSON API 84-87
ssh client
enabling, for Windows 234, 235
standard performance model 185-187
start URLs
getting, from settings 214, 215

[245]

system Virtualization Technology (VTx) 234

peformance 223 VM
setting up 226-236 resetting 238
resizing 239
T resuming 238

shutting down 238
tag 13

telnet w

used, for getting components

utilization 180-182 web scraping
terminal considerations 8
accessing 231 Windows
tree representation 14 installing on 230
treq
using 148 X
Twisted-specific clients
used, for interfacing services 163 XPath
about 11,12
U HTML element, selecting 16, 17
XPath expressions
UR2IM process changes, anticipating 22, 23
about 31 examples 21, 22
item 34-39 obtaining, Chrome used 20
request and response 33, 34 using 17-20
URL 32 XPath functions
URLs URL 19

extracting 55-58

two-direction crawling, with
CrawlSpider 61, 62

two-direction crawling, with spider 58-60

Vv

Vagrant
about 29, 30
installing on 230
not responding 242
URL 228
vagrant up
freeze 237
VirtualBox
64-bit images support 232-234
installing 232

[246]

open source

community experience distilled

PUBLISHING

Thank you for buying
Learning Scrapy

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

open source

community experience distilled

PUBLISHING

PHP Web Scraping

Jacob Ward

Instant PHP Web Scraping

ISBN: 978-1-78216-476-0 Paperback: 60 pages
Get up and running with the basic techniques of web
scraping using PHP

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Build a re-usable scraping class to expand on
for future projects.

3. Scrape, parse, and save data from any website
with ease.

4. Build a solid foundation for future web
scraping topics.

Short | Fast | Focuse

Web Scraping with Java

Ryan Mitchell

d

Instant Web Scraping

with Java
ISBN: 978-1-84969-688-3 Paperback: 72 pages

Build simple scrapers or vast armies of Java-based
bots to untangle and capture the Web

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Get your Java environment up and running.

3. Gather clean, formatted web data into your
own database.

4. Learn how to work around crawler-resistant
websites and legally subvert security measures.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Learning Data Mining
with R

Learning Data Mining with R
ISBN: 978-1-78398-210-3 Paperback: 314 pages

Develop key skills and techniques with R to create
and customize data mining algorithms

1. Develop a sound strategy for solving predictive
modeling problems using the most popular
data mining algorithms.

2. Gain understanding of the major methods of
predictive modeling.

3. Packed with practical advice and tips to help
you get to grips with data mining,.

Mastering Object-oriented
Python

Mastering Object-oriented Python
ISBN: 978-1-78328-097-1 Paperback: 634 pages

Grasp the intricacies of object-oriented programming
in Python in order to efficiently build powerful
real-world applications

1. Create applications with flexible logging,
powerful configuration and command-line
options, automated unit tests, and good
documentation.

2. Use the Python special methods to integrate
seamlessly with built-in features and the
standard library.

3. Design classes to support object persistence
in JSON, YAML, Pickle, CSV, XML, Shelve,
and SQL.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Scrapy
	Hello Scrapy
	More reasons to love Scrapy
	About this book: aim and usage
	The importance of mastering automated data scraping
	Developing robust, quality applications, and providing realistic schedules
	Developing quality minimum viable products quickly
	Scraping gives you scale; Google couldn't use forms
	Discovering and integrating into your ecosystem

	Being a good citizen in a world full of spiders
	What Scrapy is not
	Summary

	Chapter 2
: Understanding HTML and XPath
	HTML, the DOM tree representation,
and the XPath
	The URL
	The HTML document
	The tree representation
	What you see on the screen

	Selecting HTML elements with XPath
	Useful XPath expressions
	Using Chrome to get XPath expressions
	Examples of common tasks
	Anticipating changes

	Summary

	Chapter 3
: Basic Crawling
	Installing Scrapy
	MacOS
	Windows
	Linux
	Ubuntu or Debian Linux
	Red Hat or CentOS Linux

	From the latest source
	Upgrading Scrapy
	Vagrant: this book's official way to run examples

	UR2IM – the fundamental scraping process
	The URL
	The request and the response
	The Items

	A Scrapy project
	Defining items
	Writing spiders
	Populating an item
	Saving to files
	Cleaning up – item loaders and housekeeping fields
	Creating contracts

	Extracting more URLs
	Two-direction crawling with a spider
	Two-direction crawling with a CrawlSpider

	Summary

	Chapter 4
: From Scrapy to a Mobile App
	Choosing a mobile application framework
	Creating a database and a collection
	Populating the database with Scrapy
	Creating a mobile application
	Creating a database access service
	Setting up the user interface
	Mapping data to the User Interface
	Mappings between database fields and User Interface controls
	Testing, sharing, and exporting your
mobile app

	Summary

	Chapter 5
: Quick Spider Recipes
	A spider that logs in
	A spider that uses JSON APIs and AJAX pages
	Passing arguments between responses

	A 30-times faster property spider
	A spider that crawls based on an Excel file
	Summary

	Chapter 6
: Deploying to Scrapinghub
	Signing up, signing in, and starting
a project
	Deploying our spiders and
scheduling runs
	Accessing our items
	Scheduling recurring crawls
	Summary

	Chapter 7
: Configuration and Management
	Using Scrapy settings
	Essential settings
	Analysis
	Logging
	Stats
	Telnet

	Performance
	Stopping crawls early
	HTTP caching
	Example 2 – working offline by using the cache

	Crawling style
	Feeds
	Downloading media
	Other media

	Amazon Web Services
	Proxying
	Example 4 – using proxies and Crawlera's
clever proxy

	Further settings
	Project-related settings
	Extending Scrapy settings
	Fine-tuning downloading
	Autothrottle extension settings
	Memory UsageExtension settings
	Logging and debugging

	Summary

	Chapter 8
: Programming Scrapy
	Scrapy is a Twisted application
	Deferreds and deferred chains
	Understanding Twisted and nonblocking
I/O – a Python tale

	Overview of Scrapy architecture
	Example 1 - a very simple pipeline
	Signals
	Example 2 - an extension that measures throughput and latencies
	Extending beyond middlewares
	Summary

	Chapter 9
: Pipeline Recipes
	Using REST APIs
	Using treq
	A pipeline that writes to Elasticsearch
	A pipeline that geocodes using the Google Geocoding API
	Enabling geoindexing on Elasticsearch

	Interfacing databases with standard Python clients
	A pipeline that writes to MySQL

	Interfacing services using
Twisted-specific clients
	A pipeline that reads/writes to Redis

	Interfacing CPU-intensive, blocking, or legacy functionality
	A pipeline that performs CPU-intensive or blocking operations
	A pipeline that uses binaries or scripts

	Summary

	Chapter 10
: Understanding Scrapy's Performance
	Scrapy's engine – an intuitive approach
	Cascading queuing systems
	Identifying the bottleneck
	Scrapy's performance model

	Getting component utilization
using telnet
	Our benchmark system
	The standard performance model
	Solving performance problems
	Case #1 – saturated CPU
	Case #2 – blocking code
	Case #3 – "garbage" on the downloader
	Case #4 – overflow due to many or large responses
	Case #5 – overflow due to limited/excessive item concurrency
	Case #6 – the downloader doesn't have enough to do

	Troubleshooting flow
	Summary

	Chapter 11
: Distributed Crawling with Scrapyd and Real-Time Analytics
	How does the title of a property affect
the price?
	Scrapyd
	Overview of our distributed system
	Changes to our spider and middleware
	Sharded-index crawling
	Batching crawl URLs
	Getting start URLs from settings
	Deploy your project to scrapyd servers

	Creating our custom monitoring command
	Calculating the shift with Apache Spark streaming
	Running a distributed crawl
	System performance
	The key take-away
	Summary

	Appendix A: Installing and troubleshooting prerequisite software
	Installing prerequisites
	The system
	Installation in a nutshell
	Installing on Linux
	Installing on Windows or Mac
	Install Vagrant
	How to access the terminal
	Install VirtualBox and Git
	Ensure that VirtualBox supports 64-bit images
	Enable ssh client for Windows
	Download this book's code and set up
the system

	System setup and operations FAQ
	What do I download and how much time does it take?
	What should I do if Vagrant freezes?
	How do I shut down/resume the VM quickly?
	How do I fully reset the VM?
	How do I resize the virtual machine?
	How do I resolve any port conflicts?
	On Linux using Docker natively
	On Windows or Mac using a VM

	How do I make it work behind a corporate proxy?
	How do I connect with the Docker
provider VM?
	How much CPU/memory does each
server use?
	How can I see the size of Docker container images?
	How can I reset the system if Vagrant doesn't respond?

	There's a problem I can't work around, what can I do?

	Index

