
http://google.com.ua/books?id=K7FKDAAAQBAJ&hl=uk

P r o f e s s i o n a E x p e r t i s e D is t i l l e d

AWS Administration – The

Definitive Guide

Learn to design, build, and manage your infrastructure on the

most popular of all the Cloud platforms—Amazon Web Services

Yohan Wadia PACKIJenterpriseº
P U E L T S H | N G

AWS Administration – The

Definitive Guide

Learn to design, build, and manage your infrastructure

on the most popular of all the Cloud platforms—Amazon

Web Services

Yohan Wadia

professionalexpertisedistilled

P U B L I S H I N G

BIRMINGHAM - MUMBAI

AWS Administration – The Definitive Guide

Copyright
©
2016 Packt

Publishing

All
rights reserved.

No part of this
book may

be
reproduced,

stored in
a retrieval

system,
or

transmitted
in any

form
or by any means, without the prior written

permission
of the

publisher,
except in the

case
of brief

quotations embedded
in

critical articles or reviews.

Every effort
has been

made
in the

preparation
of this book to

ensure
the

accuracy

of the
information presented. However,

the information contained
in this

book

is
sold without

warranty, either
express

or
implied.

Neither the author nor Packt

Publishing,
and its dealers and

distributors will
be held

liable for any damages

caused
or

alleged
to be caused

directly
or

indirectly
by this book.

Packt
Publishing

has endeavored to
provide trademark

information about
all

of the

companies
and products

mentioned in
this book by the appropriate use of

capitals.

However,
Packt

Publishing
cannot

guarantee
the accuracy of this information.

First
published:

February
2016

Production reference: 1080216

Published
by Packt

Publishing Ltd.

Livery
Place

35
Livery

Street

Birmingham
B3

2PB,
UK.

ISBN 978-1-78217-375-5

www.packtpub.com

Credits

Author

Yohan Wadia

Reviewer

Paul Deng

Commissioning Editor

Kunal Parikh

Acquisition Editor

Rahul Nair

Content Development Editor

Anish Dhurat

Technical Editor

Pranjali Mistry

Copy Editor

Charlotte Carneiro

Project Coordinator

Bijal Patel

Proofreader

Safis Editing

Indexer

Monica Ajmera Mehta

Production Coordinator

Nilesh Mohite

Cover Work

Nilesh Mohite

About the Author

Yohan
Wadia

is
a
client-focused

virtualization
and

cloud
expert with

6 years
of

experience
in

the IT industry.

He has been
involved in conceptualizing, designing,

and
implementing large-scale

solutions
for

a variety
of

enterprise customers based
on VMware

vCloud,
Amazon

Web
Services,

and
Eucalyptus Private

Cloud.

His
community-focused involvement also

enables him to share his
passion

for

virtualization
and cloud technologies with peers through social

media
engagements,

public speaking
at

industry
events, and through his

personal blog—yoyoclouds.com

He is
currently working

with an IT
services

and
consultancy company

as
a Cloud

Solutions
Lead

and is
involved

in
designing

and
building enterprise-level

cloud

solutions for internal as well as external customers. He is also a VMware Certified

Professional
and

a vExpert
(2012 and 2013).

I wish
to

dedicate
this

book
to both

my
loving

parents,
Ma and Paa.

Thank you for all your
love,

support,
encouragement,

and patience.
I

would also
like to thank the

entire
Packt

Publishing team, especially

Ruchita Bhansali,
Athira Laji, and

Gaurav Sharma,
for their excellent

guidance
and

support.

And
finally, a special

thanks to one of
my

favorite bunch
of

people:

the
amazing team

of
developers,

support
staff,

and
engineers

who

work at AWS
for

such an
"AWSome"

cloud platform!

Not all those who wander are lost.

- J. R. R. Tolkien

About the Reviewer

Paul Deng
is
a
senior

software engineer
with

over 8
years of

experience
in

end-to-end IoT
app

design
and

development,
including embedded

devices,

large-scale machine learning, cloud,
and web apps.

Paul
holds software algorithm

patents and was
a finalist

of
Shell Australian

Innovation Challenge 2011.
He has

authored several
publications on IoT and

cloud.

He
lives

in Melbourne,
Australia,

with his
wife

Cindy and son Leon.
Visit

his

website
at
http://dengpeng.de

to
see

what he is
currently exploring

and to learn

more about him.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For
support files and downloads related

to your
book, please visit www.PacktPub.com.

Did
you

know
that

Packt offers eBook versions
of every book

published, with
PDF

and ePub

files available?
You

can upgrade
to the eBook

version
at
www.PacktPub.com

and
as a print

book customer,
you are

entitled
to

a discount
on the

eBook copy.
Get

in touch with
us at

service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a

range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you
need instant solutions

to your IT
questions? PacktLib is Packt's online digital book

library. Here,
you can

search, access, and read Packt's entire library of books.

Why subscribe?

• Fully searchable across
every

book published
by

Packt

• Copy
and paste,

print,
and

bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders

If
you have

an
account with Packt at www.PacktPub.com, you can use this to access PacktLib

today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books

Get
notified!

Find
out

when new
books are published

by
following @PacktEnterprise

on

Twitter or the Packt Enterprise
Facebook

page.

Table of Contents

Preface vii

Chapter 1: Introducing Amazon Web Services 1

What is cloud computing? 2

Cloud computing features and benefits 3

Cloud computing use cases 3

Introducing Amazon Web Services 4

AWS architecture and components 5

Regions and availability zones 5

AWS platform overview 7

Getting started with AWS 11

Introducing the AWS Management Console 15

Getting started with AWS CLI 18

Plan of attack! 20

Summary 22

Chapter 2: Security and Access Management 23

Security and clouds 23

Is AWS really secure 24

Shared responsibility model 24

Identity and Access Management 25

Business use case scenario 27

Getting started with the IAM Console 27

Creating users and groups 30

Understanding permissions and policies 35

Creating and assigning policies 39

Managing access and security using the AWS CLI 41

Planning your next steps 46

Recommendations and best practices 48

Summary 49

[i]

Table of
Contents

Chapter 3: Images and Instances 51

Introducing EC2! 51

EC2 use cases 52

Introducing images and instances 53

Understanding images 53

Amazon Linux AMI 56

Understanding instances 57

EC2 instance pricing options 58

On-demand instances 58

Reserved instances 59

Spot instances 60

Working with instances 60

Stage 1 – choose AMI 62

Stage 2 – choose an instance type 63

Stage 3 – configure instance details 64

Stage 4 – add storage 65

Stage 5 – tag instances 66

Stage 6 – configure security groups 67

Stage 7 – review instance launch 68

Connecting to your instance 69

Configuring your instances 75

Launching instances using the AWS CLI 77

Stage 1 – create a key pair 77

Stage 2 – create a security group 78

Stage 3 – add rules to your security group 79

Stage 4 – launch the instance 79

Cleaning up! 80

Planning your next steps 81

Recommendations and best practices 82

Summary 83

Chapter 4: Security, Storage, Networking, and Lots More! 85

An overview of security groups 85

Understanding EC2 networking 89

Determining your instances IP addresses 92

Working with Elastic IP addresses 93

Create an Elastic IP address 95

Allocating Elastic IP addresses 95

Disassociating and releasing an Elastic IP address 97

Understanding EBS volumes 98

EBS volume types 99

Getting started with EBS Volumes 99

Creating EBS volumes 100

Attaching EBS volumes 102

Accessing volumes from an instance 103

[ii]

Table
of

Contents

Detaching EBS volumes 104

Managing EBS volumes using the AWS CLI 105

Backing up volumes using EBS snapshots 107

Planning your next steps 112

Recommendations and best practices 113

Summary 114

Chapter 5: Building Your Own Private Clouds Using

Amazon VPC 115

An overview of Amazon VPC 115

VPC concepts and terminologies 117

Subnets 117

Security groups and network ACLs 119

Routing tables 120

VPC endpoints 120

Internet Gateways 122

NAT instances 123

DNS and DHCP Option Sets 124

VPC limits and costs 125

Working with VPCs 126

VPC deployment scenarios 126

Getting started with the VPC wizard 127

Viewing VPCs 133

Listing out subnets 135

Working with route tables 136

Listing Internet Gateways 137

Working with security groups and Network ACLs 138

Launching instances in your VPC 142

Creating the web servers 142

Creating the database servers 144

Planning next steps 144

Best practices and recommendations 146

Summary 147

Chapter 6: Monitoring Your AWS Infrastructure 149

An overview of Amazon CloudWatch 149

Concepts and terminologies 150

Metrics 150

Namespaces 151

Dimensions 151

Time stamps and periods 151

Units and statistics 152

Alarms 153

CloudWatch limits and costs 154

Getting started with CloudWatch 155

Monitoring your account's estimate charges using CloudWatch 155

[iii]

Table of
Contents

Monitoring your instance's CPU Utilization using CloudWatch 159

Monitoring your instance's memory and disk utilization using

CloudWatch Scripts 166

Creating CloudWatch access roles 166

Installing the CloudWatch monitoring scripts 168

Viewing the custom metrics from CloudWatch 171

Monitoring logs using CloudWatch Logs 172

CloudWatch Log concepts and terminologies 172

Getting Started with CloudWatch Logs 173

Viewing the logs 177

Creating metric filters and alarms 177

Planning your next steps 180

Recommendations and best practices 180

Summary 181

Chapter 7: Manage Your Applications with Auto Scaling

and Elastic Load Balancing 183

An overview of Auto Scaling 184

Auto scaling components 186

Auto scaling groups 186

Launch configurations 186

Scaling plans 187

Introducing the Elastic Load Balancer 187

Creating your first Elastic Load Balancer 189

Step 1 – Defining the Load Balancer 190

Step 2 – Assign security groups 192

Step 3 – configure security settings 192

Step 4 – Configure Health Check 193

Step 5 – Add EC2 instances 195

Step 6 – Add tags 195

Step 7 – Review and Create 195

Getting started with Auto Scaling 196

Creating the Launch Configuration 197

Step 1 – Choose AMI 198

Step 2 – Choose Instance type 198

Step 3 – Configure details 198

Step 4 – Add storage 199

Step 5 – Configure Security Group 199

Step 6 – Review 199

Creating the Auto Scaling Group 200

Step 1 – Configure Auto Scaling group details 201

Step 2 – Configure scaling policies 203

Step 3 – Configure notifications 206

Step 4 – Configure tags 207

Step 5 – Review 207

Verifying and testing Auto Scaling 208

[iv]

Table
of

Contents

Suspend, resume and delete Auto Scaling 210

Planning your next steps 212

Recommendations and best practices 213

Summary 214

Chapter 8: Database-as-a-Service Using Amazon RDS 215

An overview of Amazon RDS 215

RDS instance types 217

Multi-AZ deployments and Read Replicas 219

Working with Amazon RDS 222

Getting started with MySQL on Amazon RDS 223

Creating a MySQL DB instance 224

Connecting remotely to your DB instance 232

Testing your database 233

Modifying your DB instances 234

Backing up DB instances 236

Creating Read Replicas and promoting them 237

Logging and monitoring your DB instance 241

Cleaning up your DB instances 242

Planning your next steps 243

Recommendations and best practices 244

Summary 245

Chapter 9: Working with Simple Storage Service 247

Introducing Amazon S3 247

Getting started with S3 250

Creating buckets 250

Uploading your first object to a bucket 252

Viewing uploaded objects 254

Accessing buckets and objects using S3CMD 254

Managing an object's and bucket's permissions 257

Using buckets to host your websites 261

S3 events and notification 263

Bucket versioning and lifecycle management 265

Cross-Region Replication 269

Planning your next steps 270

Recommendations and best practices 271

Summary 272

Chapter 10: Extended AWS Services for Your Applications 273

Introducing Amazon Route53 273

Working with Route53 274

Creating hosted zones 275

Getting started with traffic flow 279

[v]

Table of
Contents

Configuring health checks

Content delivery using Amazon CloudFront

Getting started with distributions

CloudFront recommendations and best practices

What's new in AWS?

Elastic Container Service

Elastic File System

Database migration made easy with Database Migration Service

Go serverless with AWS Lambda

Resources, recommendations, and best practices

Summary

Index

281

284

285

289

289

289

291

293

293

294

295

297

[vi]

Preface

Cloud
computing

has
definitely

matured and
evolved a

lot
ever since its conception.

Practically all major
industries

and top fortune 500
companies

today run their

application workloads on clouds to
reap all sorts

of
benefits,

ranging
from

reduced

costs, better
availability

of their
applications,

and
easier manageability

to
on-demand

scalability,
and much more! At the

forefront
of this

cloud innovation
is
a market

leader like no other: Amazon Web Services (AWS).

AWS
provides a

ton of
easy-to-use

products and
services

that you can leverage to

build,
host,

deploy,
and manage your

applications
on the

cloud.
It

also provides a

variety of ways to
interact

with
these services,

such as
SDKs, APIs, CLIs,

and
even a

web-based management console.

This
book is a

one stop
shop

where you can
find

all there is to getting
started

with

the core AWS services, which include EC2, S3, RDS, VPCs, and a whole lot more! If

you
are a sysadmin

or an
architect

or
someone

who just wants to learn
and explore

various aspects of
administering

AWS
services,

then this book is the right choice
for

you!
Each

chapter of
this

book is
designed

to help
you understand

the
individual

services'
concepts as well

as
gain

hands-on
experience by

practicing simple
and

easy
to

follow
steps. The

chapters also highlight some
key

best practices
and

recommendations
that you ought to keep in

mind
when

working with
AWS.

What this book covers

Chapter 1,
Introducing Amazon

Web Services, covers the
introductory

concepts and

general
benefits

of cloud
computing

along with an
overview

of
Amazon

Web

Services
and its overall

platform.
The chapter also walks

you through your
first

AWS

signup process, and finally
ends with the

configuration of
the

AWS
CLI.

[vii]

Preface

Chapter 2, Security and
Access

Management,
discusses

the
overall importance of

security
and how you

can achieve
it using an

AWS
core

service
known as Identity

and
Access Management (IAM).

The chapter walks you through the
steps required

to create and
administer

AWS
users,

groups, as
well

as how to create and
assign

permissions and policies
to

them.

Chapter 3,
Images

and Instances,
provides hands-on

knowledge about EC2 instances

and
images,

and how you can create and
manage

them using
both

the AWS

Management Console as
well as the AWS CLI.

Chapter
4,

Security, Storage, Networking and Lots More!, discusses some
of

the
key

aspects

that you
can

leverage
to

provide added security for your applications
and

instances.

The chapter also provides
an

in-depth overview of EC2 instance storage as well
as

networking options followed
by

some recommendations
and

best practices.

Chapter 5,
Building

Your Own Private Clouds Using Amazon
VPC, introduces

you to

the concept and
benefits provided

by AWS Virtual
Private

Cloud
(VPC) service.

The

chapter
also provides an in-depth

look at various VPC deployment
strategies

and

how you can best
leverage

them
for

your own
environments.

Chapter 6,
Monitoring

Your AWS
Infrastructure, covers

AWS's
primary monitoring

service, called
as Amazon

CloudWatch.
In this chapter, you

will
learn how to

effectively
create and

manage alerts, loggings,
and

notifications for your
EC2

instances,
as well as your

AWS environment.

Chapter 7, Manage Your
Applications

with Auto Scaling and
Elastic

Load
Balancing,

discusses some
of the key AWS

services
that you should

leverage
to create

a

dynamically scalable
and

highly available
web

application.

Chapter 8,
Database-as-a-Service

Using Amazon RDS,
provides an in-depth

look at
how

you can
effectively design,

create,
manage,

and
monitor

your RDS
instances

on AWS.

Chapter 9, Working
with

Simple
Storage

Service,
provides practical knowledge

and

design considerations
that

you should
keep in

mind
when working with

Amazon's

infinitely scalable
and durable object storage known as Amazon S3.

Chapter 10,
Extended AWS

Services for Your
Application, provides a

brief overview

of
add-on AWS

services that
you

can leverage for enhancing your applications'

performance and availability.

[viii]

Preface

What you need for this book

To
start using

this book, you will need the
following set of software installed

on your

local
desktop:

•
An SSH client such as Putty,

a
key generator such as PuttyGen, and

a file

transferring
tool

such
as
WinSCP

•
Any

modern
web browser, preferably

Mozilla Firefox

Who this book is for

This
book is

intended for any and all
IT professionals

who
wish

to
learn

and

implement AWS
for

their own environments
and application

hosting.
Although

no
prior experience

or
knowledge

is
required,

it will be
beneficial

for you to have

basic Linux knowledge
as well

as some understanding
of

networking
concepts and

server virtualization.

Conventions
In this book,

you
will

find a number
of text styles that

distinguish
between

different

kinds
of

information.
Here are

some examples
of

these styles
and an

explanation
of

their meaning.

Code words in text, database table names, folder names, filenames, file extensions,

pathnames,
dummy

URLs, user
input, and

Twitter handles
are

shown
as

follows:

"We can
include

other
contexts

through the use of the
include directive."

A block of code is set as follows:

{

"Id": "Policy1448937262025",

"Version": "2012-10-17",

"Statement": [

{

"Sid": "Stmt1448937260611",

"Effect": "Allow",

"Principal": "*",

}

}

[ix]

Preface

Any
command-line

input or output is written as
follows:

CREATE TABLE doge

(

idint(11) NOT NULL auto_increment,

namevarchar(255),

description text,

New
terms

and
important

words
are shown

in
bold.

Words that you see on the

screen,
for example,

in menus or
dialog boxes,

appear in the text
like this: "Next,

select
the Launch DB Instance button to

bring
up the DB

Launch Wizard:"

Warnings
or

important
notes

appear
in

a
box

like this.

Tips and
tricks appear like this.

Reader feedback
Feedback

from
our

readers
is always

welcome.
Let us

know
what you think about

this
book—what you

liked
or

disliked. Reader
feedback is

important
for us as it

helps

us
develop

titles that you will
really

get the
most

out of.

To
send

us general
feedback, simply e-mail feedback@packtpub.com,

and
mention

the book's
title

in the
subject

of your
message.

If there is
a topic

that you have
expertise

in
and

you are
interested

in either
writing

or
contributing

to
a book, see

our author guide
at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of
a
Packt book, we

have a number
of things to

help you to get the
most

from your purchase.

Downloading the example code

You can
download

the
example code files

from your account at
http://www.

packtpub.com for all
the Packt

Publishing
books you have

purchased.
If you

purchased this
book

elsewhere,
you can

visit http://www.packtpub.com/support
and

register
to

have
the

files e-mailed directly
to

you.

[x]

Preface

Errata

Although
we have taken

every
care to

ensure
the

accuracy
of our content,

mistakes

do happen. If you
find a mistake

in one of our
books—maybe a mistake

in the text or

the
code—we would

be
grateful

if you
could

report this to us. By
doing so,

you can

save
other readers from

frustration
and

help
us improve

subsequent versions
of this

book. If you
find any

errata,
please

report them by
visiting http://www.packtpub.

com/submit-errata, selecting
your book,

clicking
on the

Errata Submission
Form

link,
and entering the

details
of your errata. Once your

errata
are

verified,
your

submission
will be accepted and the errata

will
be

uploaded
to

our website
or added

to any
list

of
existing

errata under the
Errata section

of that
title.

To view the previously submitted errata,
go to

https://www.packtpub.com/books/content/support
and enter the name

of
the book in the

search field.
The required

information
will appear

under
the

Errata
section.

Piracy

Piracy of
copyrighted

material on the Internet
is
an

ongoing problem across
all

media.
At Packt, we take the protection of our copyright and

licenses
very

seriously.

If
you

come across any
illegal

copies
of

our works in any
form

on the Internet,
please

provide
us with the location

address
or website name

immediately
so that we can

pursue
a remedy.

Please contact us at
copyright@packtpub.com

with
a
link to the

suspected
pirated

material.

We
appreciate

your help
in

protecting our authors and our ability to
bring

you

valuable content.

Questions

If
you

have
a
problem with any

aspect
of this book, you can contact us at

questions@packtpub.com,
and we will do our

best
to address the problem.

[xi]

Introducing Amazon

Web Services

Being
in the IT

industry,
we all have gone through the

long
and tedious process

of procuring new infrastructure
for our

data centers
at

one time or
another. Let's

be honest, it is not a task for the faint-hearted At a minimum, a brand new server

can take
weeks

if not months to get
delivered from

its date of
ordering,

and
this

is too
heavily

dependent on
a lot of

external
factors

which,
most of

the
time,

are

not in our control. Even if the new server comes in on time, there is the additional

burden of prepping the rack,
clearing

space for the new
resources, cabling,

cooling,

mounting, installation of software, configuration,
and the

list
just

keeps
on

going
on

for
another

mile.
Putting the server and

storage
on one

side,
the

same
can

also apply

for
networking, applications,

software,
and

a
whole

lot of
other things. But what

if
all

this
was to change? What if

tomorrow,
you could

simply
jump start

your business
or

scale your
application

to
thousands

of servers,
all

with the
simple click

of
a
button?

Seems
farfetched, doesn't

it, but
in reality,

this
is possible today

with
a

little help

from
something called

as
cloud computing.

Cloud
computing

has
definitely evolved a lot

over the years, and
today

it has
become

almost a mainstream
part

of
our

lives. Everything
from storing large

amounts
of

data, to having burst compute
capacity

at your
fingertips

and having
enterprise

software
applications

available
on

demand
any

time
anywhere are

just some
of the

key
benefits

that
clouds provide today.

At the
helm

of this new
way

of computing is

Amazon Web Services (AWS).

In this chapter, we are going to
look

at
some of

the key
features

and
benefits

provided
by cloud

computing
in general

along with few interesting
enterprise

use

cases.
Later on, you

will learn a
bit

more about Amazon Web Services
and its core

components, and
finally have a

look at how to
sign

up and get
started

with
AWS.

[1]

Introducing Amazon
Web

Services

What is cloud computing?

Cloud
computing

has become one of the
most discussed

topics over the last
few

years, but
what does it actually

mean? Why is it
important for

you and your

business? Let's take a
quick

look at what
cloud

computing actually is
and how you as

an end user can benefit from it.

NIST
defines

cloud computing as
a model

for
enabling

ubiquitous,
convenient,

on-demand
network

access
to

a
shared

pool
of

configurable computing resources

(for example, networks,
servers, storage,

applications,
and services) that can be

rapidly
provisioned

and
released with minimal management effort or service

provider interaction.
Was that

a
bit

confusing?
Let's break it down to

understand

it a little bit better:

•
On

demand:
Contrary to

traditional
IT

data
centers where requesting and

obtaining resources for your
applications

used to
take

weeks, the
same

resources can be made available on an on-demand basis in the cloud, without

requiring
any

human
interventions at all.

• Network access:
One

of
the key

features
of

any
cloud

is that all
of

its resources

can be
accessed over

the Internet or
a network

in
general. This makes it really

easy for
the end user to

access
and

leverage cloud from heterogeneous devices

such as laptops, workstations, mobile phones, and so on.

• Shared
pool:

We
must

have
all experienced the

silo-based infrastructure

setup in
our traditional

IT data centers.
Silos of

resources are often created

by
individual departments

where
each application

gets
overcommitted

resources, which are more than often wasted. In case of the cloud, IT

resources such as
compute,

storage, and
network

are
pooled

and abstracted

together from the end
user. This pooling enables

the
cloud

to
dynamically

provide resources
to its tenants as and when required without the end user

having
any

knowledge of where their
application will actually reside

in
a

cluster or a rack.

• Rapid provisioning:
Rapid

provisioning
or

elasticity
as it is referred to

nowadays,
is the

ability
of

a
cloud to scale

its
resources either

horizontally

(scale
out) or

vertically (scale
up) on an automated

basis. This elasticity

provides
end

users
with

a lot
of

flexibility
and

control
over

their resources

and how
they

get
consumed.

[2]

Chapter 1

Cloud computing features and benefits

Okay,
so
now we know what

cloud computing really means,
but why should you as

an end
user use

it? How are you and your
organization going

to
benefit

from
it?

Let's

look at
some

of the key
benefits

and features cloud computing has to
offer:

• Lower costs:
Cloud computing does not have any upfront

costs.
Capital

expenditure
is virtually

zero as the entire
necessary infrastructure

and

resources are already
made available

and ready
for use

by the Cloud

provider.
All the end user has to do is consume

these
resources and

pay

only for what they use.

This also reduces the overall maintenance costs as well. Since the

organization
now has

less hardware
to

manage,
it
doesn't necessarily

have to

bother about
its server,

network, and storage capacity or have
a
full

time staff

to manage
them.

• Self-service:
Cloud

computing provides a simple, centralized, self-service

based
model

that end users can
use

to interact with the cloud platform. The

interaction can be in
terms

of
performing simple tasks, such as

spinning up

new compute
resources, adding more

storage
resources at runtime,

or more

complex
ones,

such as
scheduling

resources and so
on.

This
ensures

that the

end user can
leverage

and consume any of the cloud's
resources

on an

on-demand basis.

• Faster time to markets:
Unlike

traditional
IT,

compute
resources can be

brought up in
a cloud

in
a
matter

of minutes
as

compared
to the weeks it

used to take. This
provides

the end
users

with the ability to deploy new

applications much
faster,

thus
decreasing

overall time to
markets

and

reducing management
overheads

and costs.

•
Scale as

required:
The best part of

using
the

cloud
is that your backend

resources can
grow

as
your

application grows. This means
that

you are
never

lagging behind
with

your application's
needs

and
demands,

you are always

scaling with
your application's needs.

Cloud computing use cases

With
such

features
and

benefits
it is

easy
to see why there has been such

a
boom

in the
overall adoption

and
utilization

of the cloud. Let's take
a quick look

at
some

interesting real-world use cases
where your organization can

leverage clouds:

• Website hosting:
Perhaps the

most common
of the use

cases,
you as an end

user
can leverage

cloud to build and
host

your
websites

with
relative

ease.

The
cloud enables

your website to
scale

up and down
dynamically

as per

its demands.

[3]

Introducing Amazon
Web

Services

• Storage and sharing:
The cloud

offers virtually unlimited
storage

capacity

that can
used

to store and share anything,
from documents, media, files, and

so on.
Dropbox and

Google
Drive

are
classic examples

of
cloud being

used
as

a storage
and

sharing medium.

• Disaster
recovery

(DR): This
is
a more upcoming

use
case with clouds

as

more and
more companies

are now
realizing that it is

way
easier

and cost

efficient
to host

a disaster
recovery

environment
on the cloud, rather than

hosting and
managing a

DR
site of

its own. Organizations can spin up

failover environments on the cloud in a matter of minutes, test the failover

and then shut
down

the entire stack. This
helps save

on the
costs

and
also

reduces overall
management overheads

and
failover time.

• Dev/test:
Dev and

test
are way

easier
to set up and run on

clouds
as the

entire development
and test

environments
can be

built
up, tested,

and
torn

back
down quickly

as per
requirements.

• Short
term

projects/advertising: Similar
to the

Dev/test scenario,
the cloud

can
also

be
leveraged

to
perform a

variety of
short-term projects/proof

of

concepts. A classic example
is the

advertising
campaigns hosted

on
the cloud

that are
created

for
a
very

short
duration of

time, however,
they need

a
global

presence
to reach out to

a wider
set of

audiences.

•
Big

data analytics: Organizations leverage
the

cloud's scalability
and on

demand infrastructure
to capture and

perform real-time analytics
and data

mining
on

extremely
large datasets (big

data).

Introducing Amazon Web Services

Now, that you clearly understand what cloud computing is
all

about and what it can

do
for you, let's

get to
know

the
main topic

of this
book—Amazon

Web
Services—a

little better.

Amazon Web Services
or AWS is

a comprehensive public
cloud computing

platform

that
offers a

variety of web-based
products

and
services

on an
on-demand

and

pay-per-use basis.
AWS was earlier

a
part

of
the

e-commerce giant Amazon.com,

and it wasn't
until

2006 that AWS
became a separate entity

of its own. Today, AWS

operates
globally

with
data

centers located in USA, Europe, Brazil,
Singapore,

Japan,

China, and
Australia.

AWS
provides a variety

of
mechanisms, using which

the end

users can connect to and leverage its services, the
most common

form
of

interaction

being the
web-based dashboard also called as

AWS
Management Console.

[4]

Chapter 1

So how
does

the whole thing work?
Well,

it is very
easy

to understand when you

compare the way
AWS

works with
a
power and

utilities company.
AWS

offers its

customers certain services just
as

a
power

company
would to its

consumers.
You

as an end user
simply consume

the
electricity

without
having

to worry about the

underlying
necessities

such as
generator costs, cabling,

and
so

on. At the end of the

month,
all

you get is
a

bill based on your
electricity

consumption
and

that's it! In
a

similar
way, AWS

provides
its

products
such as

compute, storage,
and

networking

all as
a
service, and you only have to pay for the

amount
of service that you

use.
No

upfront costs
or heavy

investments whatsoever!

The other
important

thing worth mentioning here
is

that
AWS allows

organizations

to use
their own operating systems, databases,

and
programming/architecting

models
as well,

without
requiring

any
major

re-engineering. This provides a lot of

flexibility
and cost

optimization
to

organizations
as they get to

operate
and work

with
platforms

that they are
familiar with. This,

accompanied with AWS's
massively

scalable
and

highly available infrastructure, ensures
that your

applications
and data

remain secure and available for use no matter what.

AWS architecture and components

Before
we begin with the actual signup

process,
it

is important
to take

a look at some

of the key
architecture

and core
components

of services
offered

by AWS.

Regions and availability zones

We do know that
AWS

is
spread

out
globally

and
has its presence across USA,

Europe, Asia, Australia, and so
on.

Each
of

these areas is termed as a region.

AWS
currently has

about
10

regions, each containing multiple
data centers within

themselves.
So

what's with all these regions and
why do they

matter? In simple terms,

the
resources

that are
geographically close

to your
organization are served

much

faster!
For

example,
an

organization
running

predominantly from USA
can

leverage

the
USA's regions

to
host their resources

and gain
access

to
them must faster.

For most of the AWS services that you use, you
will

be prompted to
select a

region

in which you want to deploy the
service.

Each region is
completely isolated

from the

other and runs
independently

as well.

It
is
up to the end

user
to set up the

replication process.

AWS does
not

replicate resources across regions automatically.

[5]

Introducing Amazon
Web

Services

A list
of regions and their corresponding codes is

provided
here for your

reference.

The
code

is
basically

how
AWS

refers to its multiple
regions:

Region Name Code

US East (N.
Virginia) us-east-1

North America US West (N. California) us-west-1

US
West

(Oregon)
us-west-2

South America Sao Paulo sa-east-1

Europe

EU (Frankfurt) eu-central-1

EU (Ireland) eu-west-1

Asia

Asia
Pacific (Tokyo) ap-northeast-1

Asia
Pacific (Singapore) ap-southeast-1

Asia
Pacific

(Sydney)
ap-southeast-2

Asia
Pacific (Beijing) cn-north-1

Each region
is

split
up into one

or more Availability
Zones

(AZs)
and pronounced

as
A-Zees.

An
A Z

is
an isolated location inside a region.

AZs
within a particular

region
connect to

other
AZs

via low-latency links.
What

do these
AZs

contain? Well,

ideally they
are

made
up of one or

more physical data centers that host
AWS

services

on
them. Just

as with
regions, even AZs have corresponding codes

to
identify them,

generally they
are

regional names followed
by

a numerical value.
For

example, if
you

select
and

use us-east-1, which is
the North

Virginia region, then
it
would have

AZs

listed as us-east-1b, us-east-1c, us-east-1d, and so on:

[6]

Chapter 1

AZs
are very important from a design

and
deployment point

of
view. Being

data

centers,
they

are more than capable
of

failure
and

downtime,
so it is

always
good

practice to
distribute your resources across multiple

AZs and
design

your
applications

such
that

they
can

remain available even if
one AZ goes

completely offline.

An
important

point to note here is that AWS
will

always
provide

the
services

and

products
to you as

a
customer;

however,
it is your duty to

design
and

distribute
your

applications so that they do not
suffer any

potential
outages

or
failures.

RULE OF
THUMB: Design for failure

and nothing will
fail! This

is what we
will

be sticking with
for

the
remainder

of this book as we go along the
different AWS

services
and

products; so keep
this

in mind,
always!

AWS provides a health dashboard
of

all
its

services running

across each of the regions.
You can view the

current status
and

availability of
each AWS

service
by

visiting the following link:

http://status.aws.amazon.com/.

AWS platform overview

The AWS
platform consists

of
a variety

of services that
you

can
use

either in
isolation

or in
combination based

on
your organization's needs.

This
section

will introduce

you to
some of

the
most commonly

used services as well as
some

newly
launched

ones. To begin with,
let's divide

the
services into

three
major classes:

• Foundation services: This
is generally the

pillars
on which the entire

AWS

infrastructure commonly
runs on, including the compute,

storage,
network,

and databases.

• Application services:
This

class
of

services
is

usually
more

specific

and
generally used

in
conjunction

with the
foundation services

to
add

functionality to your
applications.

For
example,

services such as distributed

computing,
messaging

and
Media Transcoding,

and other services
fall

under

this class.

• Administration
services:

This class deals
with

all aspects
of your AWS

environment, primarily
with

identity
and

access management tools,

monitoring your AWS
services

and
resources, application deployments, and

automation.

[7]

Introducing Amazon
Web

Services

Let's take
a quick

look at
some

of the key services
provided

by AWS.
However,

do

note that this is not an exhaustive list:

We will discuss each of the foundation services.

Compute

This
includes

the
following services:

• Elastic Compute Cloud (EC2):
When it

comes
to brute

computation power

and
scalability,

there must be very few
cloud providers

out there in the

market that
can match

AWS's
EC2

service. EC2 or
Elastic Compute

Cloud
is

a
web service that

provides flexible, resizable,
and secure compute capacity

on an on-demand basis. AWS started off with EC2 as one of its core services

way back in
2006

and has not stopped
bringing changes

and
expanding

the
platform

ever
since.

The
compute infrastructure

runs on
a virtualized

platform that
predominantly consists

of the open
sourced

Xen
virtualization

engine.
We

will
be exploring EC2 and its

subsequent
services

in detail
in the

coming chapters.

• EC2 Container
Service:

A
recently launched service, the EC2

Container

Service,
allows

you to
easily

run and
manage

docker
containers across a

cluster of specially
created EC2

instances.

•
Amazon

Virtual Private Cloud (VPC):
VPC

enables
you to create secure,

fully customizable,
and

isolated
private clouds within

AWS's premises.
They

provide additional security
and control than

your
standard

EC2
along with

connectivity options
to on

premise
data centers.

[8]

Chapter 1

Storage

This
includes

the
following services:

• Simple Storage Service (S3):
S3 is

a
highly

reliable, fault tolerant, and fully

redundant data storage infrastructure provided
by

AWS. It
was one of

the
first services offered

by
AWS

way back in
2006, and it

has not
stopped

growing
since.

As of
April 2013, an approximate 2 trillion

objects
have been

uploaded
to

S3, and these numbers
are

growing exponentially
each

year.

• Elastic
Block Storage

(EBS): EBS
is
a
raw

block device
that can be attached

to your compute
EC2

instances to
provide

them with
persistent

storage

capabilities.

•
Amazon

Glacier:
It is

a similar service offering
to S3.

Amazon
Glacier

offers

long-term data
storage, archival,

and backup
services

to its
customers.

•
Amazon

Elastic File System:
Yet another very recent

service offering

introduced
by AWS,

Elastic File System (EFS) provides scalable
and

high-performance
storage to EC2 compute

instances
in the

form
of an

NFS
filesystem.

Databases

This
includes

the
following services:

•
Amazon

Relational Database Service (RDS): RDS provides a
scalable,

high-performance
relational

database
system such as

MySQL,
SQL Server,

PostgreSQL, and
Oracle

in the cloud. RDS is
a
completely managed

solution

provided
by AWS where

all
the database heavy

lifting
work

is
taken care of

by
AWS.

•
Amazon DynamoDB: DynamoDB is

a
highly scalable NoSQL

database
as

a

service offering provided
by AWS.

• Amazon Redshift: Amazon Redshift is a data warehouse service that is

designed
to handle

and scale
to petabytes of data. It

is primarily
used by

organizations
to

perform real-time analytics
and data

mining.

Networking

This
includes

the
following services:

• Elastic
Load

Balancer (ELB): ELB
is
a
dynamic load balancing service

provided
by AWS

used
to

distribute traffic among
EC2

instances.
You

will be
learning about ELB a

bit more in
detail

in
subsequent

chapters.

[9]

Introducing Amazon
Web

Services

•
Amazon

Route 53: Route
53

is a highly scalable
and

available DNS
web

service provided
by AWS. Rather than

configuring
DNS

names
and

settings

for
your

domain provider,
you can

leverage
Route 53 to do the

heavy lifting

work
for

you.

These are just few of the
most commonly used

AWS
foundational

services that we

listed
out here. There are

a
lot more

services
and products that you can

leverage

to add
functionality

or
use

to manage your
applications. A

few of these
important

services
are

briefly described in
the

next section.

Distributed computing and analytics

This
includes

the
following services:

•
Amazon

Elastic MapReduce (EMR):
As the

name suggests,
this

service

provides
users with

a
highly scalable and

easy
way to

distribute
and

process large amounts
of data using

Apache's
Hadoop. You can integrate

the
functionalities of

EMR
with Amazon

S3 to
store

your large
data

or with

Amazon
DynamoDB as well.

• Amazon Redshift: This is a massive data warehouse that users can use to

store, analyze, and
query

petabytes of data.

Content distribution and delivery

Amazon
CloudFront is basically a

content
delivery

web
service

that can be used to

distribute
various types of

content, such
as

media, files,
and so

on,
with high

data

transfer
speeds to end

users globally.
You can use

CloudFront
in conjunction

with

other AWS services such as EC2 and ELB as well.

Workflow and messaging

This includes the
following services:

•
Amazon

Simple Notification Service (SNS):
SNS is

a simple, fully
managed

push messaging service provided
by AWS. You can use it to push your

messages
to mobile devices

(SMS
service) and even to

other
AWS

services
as

API
calls

to trigger
or

notify
certain activities.

•
Amazon

Simple Email Service (SES):
As the name

suggests,
SES is used

to send bulk
e-mails

to various
recipients. These e-mails

can be anything,

from
simple notifications

to
transactions messages,

and
so

on.
Think

of
it

as
a
really large

mail server
that can scale as per your

requirements
and is

completely managed by AWS!
Awesome, isn't it!

[10]

Chapter 1

Monitoring

Amazon
CloudWatch

is
a monitoring

tool
provided

by AWS that you can use to

monitor any and
all aspects

of
your

AWS environment, from
EC2

instances to your

RDS
services

to the
load

on
your ELBs,

and
so

on. You can even create your own

metrics, set thresholds, create alarms, and a whole lot of other activities as well.

Identity and access management

AWS
provides a

rich set of
tools

and
services

to
secure

and control your

infrastructure
on the cloud.

The most important
and

commonly used service for
this

is
identity

and access
management (IAM). Using

IAM,
you

can, as an
organizational

administrator,
create and manage

users, assign
them

specific roles and permissions,

and manage
active directory federations

as
well.

We will be
using a lot of

IAM in the

next
chapter, which covers this

topic in greater depth.

Getting started with AWS

So
far,

you have
learned a lot about

AWS,
its

architecture, and core components.

Now,
let's

get
started

with the fun part—the signup
process.

For all
first

time
users,

signing up for AWS is
a
very

simple
and

straightforward

process.
We

will
go through this

shortly,
but

first
let's take

a quick look at something

called as
a
Free Tier! Yes, you heard it right… FREE!

So, AWS basically offers usage of certain of
its

products
at no charge

for a period
of

12
months from

the
date

of the
actual signup. A brief list of a few products along with

their
description is listed

here
for

your
reference.

Note
that some

of the
description

text may
not make much

sense
now, but

that's
ok as

this
is just

for
your

reference,
and

we
will

be
bringing

this up
from time

to
time

as we
progress

through the
book.

AWS Product What's free?

750
hours per month

of Linux
micro instance usage

Amazon EC2
750

hours per month
of
Windows micro instance

usage

Amazon S3 5
GB of

standard storage

20,000 get
requests

2,000 put
requests

750
Hours

of
Amazon

RDS
Single-AZ micro instance usage

Amazon RDS
20 GB of DB

Storage:
any

combination
of

general purpose (SSD)

or
magnetic

20 GB for
backups

10,000,000 I/Os

[11]

Introducing Amazon
Web

Services

AWS Product What's free?

750
hours per month

Amazon ELB
15 GB of data

processing

For a complete insight
into the free

tier usage, check

http://aws.amazon.com/free/.

Awesome!
So when we

have
free

stuff for
us right

from
the word go, why

wait?
Let's

sign
up

for
AWS. To begin

with,
launch

your favorite
web

browser
and type in the

following
URL

in
the address bar:

http://aws.amazon.com/.

You
should

see the AWS
landing

page
similar

to one shown here. Here,
select

either the
Create

an
AWS

Account
option or

the
Create a

Free Account
option

to get
started:

The next screen will help you
with the

initial signup process. Provide a suitable e-mail

address
or

your contact number
in the

E-mail
or

mobile number field. Select
the

I am

a new user option
and

select
the

Sign in using
our

secure server button to proceed:

[12]

Chapter 1

You can alternatively
sign

in using
your

Amazon.com

credentials
as

well; however, its
best to use

separate

credentials
for

working
with

AWS.

The
next

couple of screens
will

be
used

to provide your basic
details along

with the

billing information. In
the

Login Credentials
page, enter your Name, your

E-mail

address
along

with a suitable Password. This password will
be

used
by

you
to

login

to the AWS Management
Console, so ideally provide a strong password

here.
Click

on Create account when done.

The next screen is the
Contact Information

page.
Provide

your
Full

Name,
Company

Name,
Country,

Address,
City, Postal Code,

and
Phone Number

as
requested.

Check the
Amazon Internet Service Pvt. Ltd. Customer Agreement

checkbox
and

select
the

Create
Account and

continue options.

[13]

Introducing Amazon
Web

Services

Enter
a
suitable

Cardholder's
Name and your

Credit/Debit
Card

Number
in the

Payment Information
page as

shown:

The
last

part of the
signup process

is the
Identity Verification

process where you

will receive
an

automated call from
AWS

as
a
part of the

verification process.
You

will have to enter the
displayed four

digit PIN
code

on your
telephone's

keypad

during the
call.

Once the
verification is

completed, you
can

click on the
Continue

to

select your
Support Plan

tab:

[14]

Chapter 1

The
final step in

the signup
process involves

the
selection

of the Support Plan. AWS

provides
four support options to

customers,
each

having
their own

SLAs
and costs

associated
with

it.
Here is

a
quick look at the

support
plans

provided
by AWS:

•
Basic

Support:
As the

name suggests, this
is the

most basic level
of

support

provided
by

AWS. This support level provides
you with access to the

AWS

community
forums.

You can
additionally

contact customer
services for any

queries
related

to your account
and bill

generation.

The
Basic Support plan is

free
of charge

and
all

customers are entitled to it.

• Developer Support:
This is

a paid support service
($49 per

month).
You can

create and
raise

tickets for your support case, which is generally answered

within 12
working

hours.

•
Business

Support:
This is

a paid support service as
well and

is generally

meant
for

enterprise-level customers running production
workloads

on AWS. The SLAs for
this support

are much higher as
a
case has to be

answered
within

an hour
from

its creation.
Additional

support is
provided

24/7,
365

days a
year via phone and chat.

• Enterprise Support: A
paid

support service with
the

highest
SLA

available

(15 minutes);
these cases are

generally handled
by

a separate
team

at AWS

called the Technical
Account Manager (TAM)

who are
subject matter

experts in
their own fields.

In our
case,

we opted to go with Basic
Support

for the
time

being.
You

can change

the
support levels

later on as well
according

to your
needs.

Click on
Continue

to
complete

the
signup process.

You
should receive a couple

of
e-mails

on your

supplied e-mail address
as

well.
These are

introductory e-mails
that

will provide

you with
important

links
such as

how to get started
with

AWS,
billing

page,
account

information, and so on.

With these
steps completed, you are now ready to

sign
in to the AWS

Management Console!

Introducing the AWS Management Console

So here we are,
all

ready to get
started

with the AWS
Management Console! This

is

the
most commonly

used method to
access, manage,

and work with AWS services.

We
shall

be looking more
closely at

the
different AWS

access
mechanisms

in the
next

chapter; however for now,
let's

quickly look at what the AWS
Management Console

is all about.

[15]

Introducing Amazon
Web

Services

First
off, sign

in to the
Management

Console by
launching

your favorite
browser

and

typing in
http://aws.amazon.com.

Click on the Sign in
to the Console

option and

provide
your

Email Address
and password as set during our signup

process.
Once

you
sign in,

you
will

be welcomed to the AWS
Management

Console
main

landing

page as
shown

here. Wow!
That's a

lot of products and
services,

right?
The

products

are
classified

into their
main classes

such as
compute,

storage and content
delivery,

administration
and security, and so

on so
forth.

Take a moment
and

just
browse

through the
dashboard.

Get
a
good feel for it.

Navigating through the
dashboard is also pretty straightforward.

Let's
look

at the

top
navigation

bar
first.

To the
right-hand side

you should be able to
see

three drop

down
menus.

The
first

should
display

your name
as

an end
user. This

option
consists

of three submenus that
will

help you with
configuring your

account
details,

security

credentials,
and

billing management.
The

next tablists
the

Region
from where

you
will currently

be operating. In our case, we have been
placed

in the US
West

(Oregon)
region.

Remember
you can change

these
regions as and when you

require,

so feel
free

to change as per your current
global presence:

[16]

Chapter 1

The
US

East
(North Virginia) region

is the
cheapest region in

AWS as
it was

one
of the

first regions
to get

set
up and

started.

The
final

tab in the
list

is the
Support

tab, and you can use it to
login

to the
Support

Center, AWS Forums, and view the latest set of AWS Documentation as well.

Moving to the
left-hand side

of the tool
bar,

you
will see

four
main

icons
listed

there.

Among these is
a
Home Screen icon, which when clicked on

will
bring you

back
to

the
AWS dashboard screen irrespective

of where you
currently are.

The
next drop-down

option in the
list

is
named

as AWS, but what it
really contains

is
called as Resource Groups. These

are
a collection

of AWS
resources

that can be

organized
and

viewed as
per your

requirements.
Think of

these resource groups
as

a

customized console
where you as an end

user
can view all your

required information

about
various

AWS
services in a single

pane. How
do

resource groups work?
Don't

worry. We will be looking into this in more
detail

in the
upcoming

chapter.

Adjoining the Resource Groups is the
Services

tab, which
lists

the AWS
services

according
to their

class.
It

also
has

a history
option that

can
be used to

list
and

view

your recently
used

AWS services.

The
final

tab is the
Edit tab. This

tab is
used

to
customize

your
toolbar

by
filling

it

with
those

AWS
services

that you use
frequently, kind

of
like a

quick
access

bar.
To

add
a
particular AWS

service
to the toolbar,

simply
select the AWS service, drag and

place it on the toolbar:

You can add multiple
services

as you see
fit,

and arrange them according to your

needs
as

well. To save the changes to the toolbar,
simply select

the
Edit

option once

again. You
should

see your AWS
services listed

out
on

the
toolbar

now. Feel free to

dig
around and check out the

various options
under each

menu.

[17]

Introducing Amazon
Web

Services

Getting started with AWS CLI

Now that
you

have
a hang

of the
AWS Management Console,

this
would be a

good

time
to take

a quick look
at the AWS

CLI as well. Yes,
you heard

it
right,

apart from

the
standard web user interface,

AWS
provides a host of

other
mechanisms as well

to
help

you gain
access and use

the
various

AWS
resources. But

why
use a CLI

in the

first
place?

Isn't
the

AWS Management Console more
than

enough? Well, no. CLIs are

more
than

just simple access
and

management tools. Using CLIs,
you can

automate

the
deployment and management of

your
AWS services using simple code

and
script,

much like how
you would

use bash and shell scripting.
This

provides
you

with a lot

of
flexibility

and
customizability that a standard

GUI
simply

won't
provide!

The AWS CLI can be either installed on a Windows or a Linux machine. In case of

Windows, AWS provides
an

easy-to-use installer, which
can be

downloaded directly

from the AWS
site.

Once
downloaded, all

you need to do is run the
installer,

and

voila,
your

Windows
server

should
have the CLI

installed and ready for use.
But I'm

not
a
Windows guy,

so
we will be

walking
you through the

installation procedure
on

a standard Linux
system.

The
64-bit AWS

CLI
installer

for
Windows can

be
downloaded

from https://s3.amazonaws.com/aws-cli/AWSCLI64.msi. The 32-bit installer can be downloaded from https://

s3.amazonaws.com/aws-cli/AWSCLI32.msi.

In this
case,

we
will

be
installing

the AWSCLI on
a CentOS

6.5
64-bit

OS. The
Linux

distribution can
be anything,

from a Debian such as
Ubuntu to

a RedHat system;
so

long as
it
has Python installed and running off the

latest
version.

Python versions supported are
Python

2 version 2.6.5
and

above
or Python

3 version
3.3 and above.

You
will also

need
sudo

or
root privileges

to install
and execute

the
commands, so

make
sure

you
have

an
appropriate user already

created on your
Linux system.

The
installation

of the
CLI involves

two major steps; the
first involves

the
installation

of Python
setuptools, which

is
a prerequisite

of
installing

Python's pip.

Run the
following commands from

your
Linux terminal:

1.
Download

the setuptools tar
file from

the Python source repo:

wget https://pypi.python.org/packages/source/s/setuptools/

setuptools-7.0.tar.gz

[18]

Chapter 1

2. Next, untar the
setuptools installer

using the tar
command:

tar xvf setuptools-7.0.tar.gz

3. Once the contents of the tar
file

are
extracted, change

the
directory

to the

setuptools
directory:

cd setuptools-7.0

4.
Finally,

run the
setup.py script

to install the
setuptools

package:

python setup.py install

The
following

is the
screenshot of preceding commands

of the install
process:

This
completes

the
first part

of the install
process.

The
next

process is very
simple as

well. We now install the
Python

pip package.
Python

pip is generally
recommended

when
installing Python

packages.

Run the
following commands from

your
Linux terminal

to
install

the Python pip

package:

1.
Download

the Python
pip installer

script
from

Python's
repo:

wget https://bootstrap.pypa.io/get-pip.py
2. Install the pip package:

python get-pip.py

3. Once pip is
installed,

you
can

now
easily install

the
AWSCLI

by
executing

the
following command:

pip install awscli

[19]

Introducing Amazon
Web

Services

Refer to the
following

screenshot
showing

the
output

of the

installation process:

4.
Simple, wasn't

it! You can test your
AWSCLI

by executing few
simple

commands,
for

example, check
the

AWSCLI version using
the

following

command:

aws –version

That's
just

for
starters!

There
is a whole

lot
more

that you can
achieve

with the AWS

CLI, and we will make sure to
utilize

it in each of our chapters, just to get
a good

feel for it.

Plan of attack!

For the purpose of
this

book, let's
assume a simple use

case in which
a
hypothetical

company called as
All

About
Dogs

(not the best of
names I

could
find)

wants to
host

and manage
their e-commerce website

on the
cloud.

As
a
part of the

hosting,
the

company
would like

to have the
following feature

set
provided

to them by the

cloud
provider:

•
High

availability and fault tolerance

• On-demand scalability

•
Security

•
Reduced

management overheads
and

costs

Here
is a simple, traditional

architecture of the proposed
website,

which
basically

is

a two-tier application primarily consisting
of web

servers
and

a
backend

database,

something most
IT

admins
will be

familiar
with, right? Let's

look at
the

following

figure
of tradition web service architecture:

[20]

Chapter 1

This
traditional

architecture has obvious
drawbacks,

such as
poor scalability,

little
or no

fault
tolerance, more management

overheads,
and

so
on. Our goal is to

leverage
AWS's

core services
and

make
this obsolete

architecture
better! Each of the

subsequent
chapters

will show
you how to work with and

administer
these core

AWS
services

keeping our
use case

in
mind.

By the end of this
book,

you should

have
a fully

scalable,
resilient,

and secure website hosted
on

the AWS
cloud with a

design similar
to

this!
Here is the AWS architecture:

[21]

Introducing Amazon
Web

Services

Awesome,
isn't it!

Believe
it or not, this

is a
bare

minimum website hosting

architecture on
AWS.

There
are still many

enhancements and AWS
services

that you

could
incorporate here, but

I
like to keep things nice and clean, so this

is
what we

will stick with for the remainder of this book.

Here's
a list

of
AWS products

that we
will

be
incorporating

and
primarily learning

about
throughout

the book, apart from
few

other services:

• Identity
and Access Management (IAM)

• Elastic
Compute

Cloud
(EC2)

• Elastic Container Service (ECS)

• Elastic BlockStorage (EBS)

• Amazon Virtual Private Cloud (VPC)

• Amazon Cloudwatch

• Autoscaling and Elastic Load Balancing (ELB)

• Amazon Relational Database Service (RDS)

• Amazon Simple
Storage

Service
(S3)

Summary

Let's quickly recap what all
we

accomplished so far
in

this chapter.
To

begin with,

you learned a bit about what cloud computing is all about and saw a few features
and

benefits
that

it has to offer. Next,
we

drove straight into our
core

topic, that is, Amazon

Web Services. You learned
what

Amazon Web Services
is

all about
by

understanding

its architecture
and

core service offering. We then saw how easy and straightforward

it is to sign
up

for AWS along with a brief walkthrough of
the

AWS Management

Console. Towards the end,
you

also learned
the

importance of a command line

interface
and

saw
how to

install
the

AWSCLI on a simple Linux server.

In the next chapter, you will
learn a

bit
more

about the
CLI

and see how to leverage

it to manage and
work with

the
AWS services.

We will
also

be
looking

at
few easy

to use
access management

tools and
techniques

to
safeguard

and secure your AWS

environment, so
stick around! We are just getting

started!

[22]

Security and Access

Management

In the previous chapter, we
accomplished a lot of things. To

begin with, we got
a

better
understanding

of what
cloud computing actually

is
all

about and how
you

as an end user can
benefit

by leveraging
it.

Later on
in

the chapter, you had
a brief

overview
of AWS,

its architecture,
and its core service

offerings
and

also
learned

how to
sign

up for it.

In this chapter, you are going to
learn a

bit more about how to secure and
provide

users access to your AWS
infrastructure and services. The

chapter
will first talk

about
security

in
general,

and how AWS
provides some of

the
best

security there

is.
Later on, we will look at an

AWS
core

service called
as

Identity
and Access

Management
(IAM) and

find
out how to create,

manage,
and

administer
users

using it.

Security and clouds

Security is
a
core

requirement
for any

application
whether

it is
hosted on an

on-premise
data center or

a cloud
such as AWS. It is

a
fundamental

service
that

protects
your applications and

data
from

a variety
of

cyber-attacks,
security

breaches, accidental or deliberate data deletions, theft, and much more.

Most
modern

cloud
providers offer security

in
a
very

similar way
to traditional

on-premise
data centers with the

same
amount of control and compliance. The

only
difference

is that in
a
traditional

data
center, you

would have
to deal with the

complexities
and costs of

securing
the hardware, whereas on the cloud, this

task is

performed
by the cloud

provider itself.
This

difference
not only

saves
on overhead

costs that every
organization

has to bear, but
also

reduces the time and
effort

it takes

to monitor and protect all those
resources.

[23]

Security
and Access

Management

Is AWS really secure

So the
obvious question

lingering in your mind right now
must

be, ok, we
signed

up

for AWS
and now are

going
to run our

applications and store
all our data on it, but is

all that really
secure?

Is it
safe

to use AWS? The answer
is a

big yes!

Let's take
a quick

look at
some

of the
different

layers of security that AWS uses to

safeguard
and protect its

resources:

• Physical data center security:
The AWS

infrastructure,
which

includes
the

data centers, the
physical

hardware, and
networks,

is
designed

and
managed

according
to security best practices and

compliance guides. The data centers

themselves
are

housed
at

non-disclosed locations
and entry to them

is strictly

controlled,
managed, logged, and audited on

a
regular

basis.

• Virtualization and
OS

security:
AWS

regularly
patches and updates

virtualization
and operating

systems against a
variety of attacks such as

DDoS, and so on.

• Regulatory compliances:
The AWS

infrastructure
is

certified
against security

and data protection in accordance with various
industry

and
government

requirements. Here are
a
few

compliances
that AWS

is certified against:

°
SOC

1 (formerly
SAS 70 Type

II),
SOC2, and SOC3

° FISMA, DIACAP, and FedRAMP

° ISO 27001

° HIPAA

To read the complete
list, visit

the
AWSrisk

and
compliance whitepaper

at

http://aws.amazon.com/security/.

Shared responsibility model

As you must have noticed by now, AWS
provides a

lot of
security

and
protection

for

its hardware and its
virtualization layers

by
providing

patches, updates,
performing

regular
audits

and so on, but
what

about
your

applications and data? Who protects

that?
That's

where AWS
introduced

the shared
responsibility model.

According to this
model,

AWS
provides secure infrastructure, services,

and
building

blocks required
while

you,
as

an end
user,

are
responsible for securing

your

operating system's data and applications. Think
of

it
as

a
joint

operation
where you

and AWS together ensure the security
objectives

are met.

[24]

Chapter 2

Here
is a simple depiction showing

the shared
responsibility model for

AWS's

infrastructure services:

Image
Source: AWS security best

practices whitepaper.

Remember,
that this is

a basic
shared

responsibility model,
which is

only valid
for

AWS's core infrastructure services such as EC2 and Amazon VPC. The model tends

to change
as

you start
using

more
abstracted services

such as Amazon S3,
Amazon

DynamoDB, Amazon
SES, and

so
on. Why? Well that's

simple!
The more

abstracted

services
you use, the

less
control you

have
over

them.
For

example,
if you are

using

SES
as a

bulk
e-mail-sending tool, you don't have

to set up the infrastructure, the

operating systems,
and the

platforms
on

which
the

SES
service

works.
It's

already

done
for

you. So as an end user,
all

you need to worry about from the security point

of view is how is your data going to be
protected

at rest or in
transit,

whether
you

are going to use
encryption/decryption techniques,

and so on; this
is
your part of the

responsibility
now.

AWS
provides a few services

and products that are
specifically designed

to
help

you
secure

your
infrastructure

on the
cloud,

such as
IAM, AWS Multi-Factor

Authentication (AWS MFA), AWSCloudTrail, and much more. In the next section,

we
will

look into IAM and see how we can leverage it for
ourselves.

Identity and Access Management

AWS Identity
and

Access Management or IAM is a web service that provides secured

access control mechanisms for all AWS services. You can use IAM to create users and

groups, assigning users specific permissions
and

policies,
and

a lot more. The best part

of all this
is that

IAM
is
completely FREE. Yup! Not a

penny
is required

to use
it.

[25]

Security
and Access

Management

Let's
quickly look

at
some interesting IAM features in order

to
understand

it
a

bit better:

• Shared
access to

a
single

account:
With the

sign
in process completed, you

currently are the
sole

owner and user of your AWS
account.

But what
if

you wanted to
give access

to
few

other
users

from within your organization

to this account? You cannot just
provide

them with your username and

password,
right? Neither will you go and create

a separate
account for each

user, as it is too
tedious

and not good practice. However, with IAM, you can

create and
provide users

with
shared access

to your
single

account with real

ease.
It is

something
we will be

looking
into

shortly.

• Multi-factor authentication:
IAM

allows you
to provide

two-factor

authentications
to users for

added security.
This means that now, along with

your
password,

you will also have to
provide a secret key/pin from a special

hardware device,
such as

a
hard token, or even from

software apps
such as

Google Authenticator.

• Integration with other
AWS

products: IAM integrates with almost
all AWS

products
and

services
and can be used to

provide
granular

access
rights and

permissions
to

each
service as

required.

• Identity federation: Do you have an on-premise active directory already

that has users and groups created?
Not

a problem, as IAM
can be

integrated

with an on-premise
AD

to provide access
to

your AWS account using a few

simple steps.

•
Global

reach:
Remember

regions
and

availability
zones

from
Chapter 1,

Introducing
Amazon Web Services?

Well, IAM is
one of the few AWS core

services
that

spans globally.
This

means
that users that are created

using
IAM

can access and consume any AWS
service from

any geographic region! Neat,

right?

•
Access

mechanisms:
IAM can be

accessed using a variety
of

different tools,

the
most common

and
frequently used

being the AWS
Management Console.

Apart
from this,

IAM can
also

be
accessed

via the
AWSCLI,

via SDKs that

support different platforms
and

programming
languages such as

Java,

.NET, Python, Ruby, and so on, and
programmatically

via
a
secured

HTTPS

API as well.

[26]

Chapter 2

Business use case scenario

Awesome! We have
seen what IAM is along with its

impressive
features

list,
so

now,
let's

put it to
some

good use! In Chapter 1,
Introducing Amazon

Web Services, we

briefly discussed our
use case

scenario
about

hosting a
website

for
an

organization

called
All-About-Dogs.

In this
section, let's

go
ahead

and
define some users

for
this

organization along
with their potential

roles:

In this
example,

Jason is the manager of
All-About-Dogs,

and he is
responsible

for

overseeing
the entire

operations
of the

organization.
Jason goes ahead and hires

Dave and Chen who
will

act as
leads

for the
development

and testing
departments,

respectively. Dave and Chen
can then

have
multiple

developers
and testers within

their teams
as they see

fit, a
typical

and simple
hierarchy that

most
of us are

familiar

with and can relate to.

Getting started with the IAM Console

AWSIAM
can be

accessed
using the AWS

Management Console
as well as

a host

of other
CLIs, tools,

and
SDKs.

In this
section,

you are going to
learn how

to use

the
AWS

Management
Console

to create users and
assign

those users to
individual

groups and
policies:

1. To begin
with, sign

in to the AWS
Management Console using

https://console.aws.amazon.com/.

[27]

Security
and Access

Management

2. Now, there are
a
lot of

different
ways to

access
the

AWSIAM
service; the

easiest
is to locate the

service
under the

Administration & Security section

as shown in the
following screenshot. Selecting

the
Identity &

Access

Management
option will

launch
the IAM

console.

Welcome
to your

first AWS
core

service! Take
some

time
to

visually
inspect

each

of the
elements

of the IAM
dashboard.

The
dashboard

can be
basically split

up into

two
sections,

the navigation pane to the left,
which

contains all the
individual links

that will help you create your users
and groups,

and the
main

dashboard to the right

where you can view your IAM
Resources

and various other security
statuses:

The
first

thing
that

you
will

notice here
under

the
Security Status field

is an
option

to

Delete
your root access keys. Now why would you want to do

something like
that

even before you start creating
users?

And what are root access
keys?

[28]

Chapter 2

Well,
to

begin
with,

in
Chapter 1, Introducing

Amazon
Web

Services,
you

signed in
to

AWS
using

your
e-mail

ID and
password, right? Well, that is

the root
account

that

you just
created.

The root account, as the
name suggests,

has
root-level

access to all

AWS
services, including

your
billing

account. So, as
a
good

practice,
AWS highly

recommends
that

you
do not use the

root account unless
you absolutely need to,

and more
importantly,

you do not create and root keys as
well.

Root keys
simply

consist
of an access ID and

a secret
key that can be used to

programmatically access

any
AWS

service.
Each user

that you create gets its own
set

of keys, out of
which,

the

secret key has to be protected and kept
under

lock and key at all
costs.

Coming
back to the IAM

console,
let's take

a
quick look at

some
of the tasks that you

can perform
using

it. The
first

thing you
will

notice is
a big, clunky-looking

URL that

consists
of
some long

numbers. Well, this is the URL that your new
IAM

users
will

be using once they are created to
log in

to the AWS Management
Console.

The URL
basically

links to
a sign-in

page that is created
automatically

when you

sign
into the IAM

service. Butlet's
face it, it's not

a simple
URL and anyone would

have
a
tough time

remembering
it as

well.
You can

choose
to

customize
the URL by

providing
an alias to it.

Account_ID>.signin.aws.amazon.com/console/.

The IAM URL
contains

the
following format: https://<AWS_

Select the
Customize

option adjoining the IAM sign in link to get started. You

should get
a Create Account Alias dialog box. Provide a suitable alias

name
for

your

account and click on Yes, Create when done:

[29]

Security
and Access

Management

Voila!
Your IAM user's

sign-in link
is now ready, but

before
you go

ahead
and

use

it,
first

you have to
create some users

and groups who will access it:

Creating users and groups

With
the

basics
out

of
the way, let's get to the

main
part of this chapter,

that is,

creating and working with
users

and groups.

Users,
as the

name suggests,
are your

everyday typical
end

users
who will be

interacting with the AWS products and
services. Each user

is
provided

with
a
unique

password and a username
so they can log in to the AWS

Management
Console.

Along with the
basic set

of
credentials,

the
users

can
also

enhance
their security

by

leveraging
MFA. As

discussed
earlier, MFA

provides a uniquely
generated

pin
or

code that
is
generated on

a special
hardware

device called
as

a
hard token. You can

use
this

MFA
pin

or code
along with

your
secure

credentials to log in to the AWS

Management Console.

Users are also
provided

with
a
set of access

keys.
These keys

consist
of an access key

ID
and a

secret key, both of which can be used to log in to AWS
programmatically.

When the
users

are
first

created in IAM, they do not
have a password

or
any access

keys generated
for

them. This is your
task

as
an
AWS

administrator,
and you

must

make
sure that each user

has their own
set

of keys and
passwords

generated.

There are
a
lot of ways that you can

start creating users.
From the IAM

dashboard,

select
the Manage Users

option listed under
the

Create individual
IAM users

dialog

box, as shown:

[30]

Chapter 2

This
will bring

up the
users console, using

which we will create our
very first IAM

users.
Select

the
Create

New Users
option

to get
started:

In the next page, type in the IAM
usernames as

required. You can enter up to
five

names at
a time.

You
can

optionally
choose

to create and generate
access

keys
for

each of the users that you create. Select the
Generate

an access key for each user

option as
shown and

click on
Create

to proceed:

[31]

Security
and Access

Management

Select the
Download Credentials

option to
save

the
user's access IDs

and
secret keys.

This
will download a

CSV
file

on to your desktop, which has to be
saved in a very

secure
location. It is very important

that you
save

the keys, as
this

is the
last

time

you
will have access

to it.
Select Close after

you
have downloaded

your credential

keys
successfully:

Access
keys

are unique
to

each user
and

should not
be

shared with
anyone

under
any

circumstances. Save
them in

a secure place.

But
wait!

You are not
done

yet!
You still

need to
assign your

users their
passwords.

To
do this,

from the users console page,
select

the
individual

user's
checkbox,

click

on the User
Actions

drop-down menu and
select

the
Manage Password option

as

shown. You
can

use this
drop-down menu

to manage the user's access keys,
signing

certificates, MFA devices, and so on:

In the
Manage

Password
page,

you can
either choose

to Assign an
auto-generated

password
for

your
users

or
provide a

custom,
temporary password, which

the user

can
change

at the
first

sign in
attempt.

In our
case,

we
provided

our
user

with
a

strong
password

that does not need to be changed at the
first

login
attempt.

Once

the
password

is entered, click on
Apply

to
save

the changes:

[32]

Chapter 2

Follow
the

same process for
the

rest of your users
as

well.
Make

sure you provide them

with strong passwords that contain
at

least one upper case letter,
one

special character,

and some numerical values
as

well.
You

can additionally set password policies
on

your entire account
by

selecting
the

Account Settings option from
the

IAM console's

navigation pane. Using
the

Password Policy page, select
the

security options that you

wish
to

enable for your account's IAM user passwords. Remember to select Apply

password policy
to

save
and

enforce the new password policy settings:

With
your users created, the next

logical
entity to create is the

group. A
group is

a

collection of IAM users that has
a particular

set of
permissions assigned

to it. For

example, a set
of users who

perform administrative
tasks can be

clubbed under a

common
group called as

administrators,
and so

on
and

so
forth.

In
this

section,
we

will create an
administrative

group for our use
case

and later
assign a user

to
it. So,

let's get started!

[33]

Security
and Access

Management

First up,
from

the
IAM

console, select the
Groups

option from the navigation pane.

This
will bring

up the groups
console using

which you can
create and administer

groups
for

your AWS
account.

Select the
Create

New Group
option

to get
started. Provide a suitable name

for your

administrative
group; in

this
case, we

provided
the name

Admin-All-About-Dogs.

The Group Name can be
anything,

but
it's advised

to keep it meaningful. Click on

Next Step to continue:

Next up, we
assign permissions

to the group
using

one or two
policies. A policy is

a document
that

lists
one or more

permissions.
You can attach

policies
to virtually

anything in AWS,
from

users
and

groups to
individual

AWS
resources

as
well.

To attach
a policy

to
a
group,

from
the

Attach Policy
page, use the

Filter
menu

and the
search

box to
find

suitable
policies.

In this
case,

we want this group to have

full
administrative privileges,

and hence we are
searching for an Administrator

Access
policy.

In the
list

of
policies, select

the
appropriate policy

and click on Next

Step to continue:

[34]

Chapter 2

You can
use and

attach
two

policies
per

group.

In the
Review

page,
review Group

Name and the
policies that

are attached to the

group. You can
optionally choose

to
Edit

Group
Name

or
Edit Polices

as per your

requirements here. Once
done, click

on
Create

Group to proceed with the group's

creation. Similarly,
you

can create
groups for

various
other departments

within
your

own
organization,

such as
Developers

group, Testers
group,

and so
on:

To
add

users to any
particular

group,
simply select

the group's
checkbox

and from

the Group
Actions drop-down

menu select the Add Users to
Group

option.
This

will open up
a separate

page where you can
select

your
previously created users.

You can add one or
more users

to
a group

as you
see fit. A particular

user
can also

be

a
part of two or

more
groups at the

same time; however,
this

is
not

a recommended

practice
and should be

avoided
unless

absolutely
required. Once the

users
are

selected, click
on the Add Users option to complete the

process.
With this stage

completed, you
have

now
successfully

created and
set

up
users

and
groups within

your own
organization.

Now, wasn't that easy! Just
remember

to use the IAM
users

sign
in link to sign in to the AWS

Management
Console

from
now

on;
the

rest
of the

login
process remains

the
same.

Understanding permissions and policies

To begin
with,

let's
talk a

bit about
permissions first.

We
already used

them during

the creation of our
users,

but what
actually

are
permissions

and what are
their uses?

[35]

Security
and Access

Management

Permissions provide you
with access to and control of

various
AWS

resources.
They

are
also

responsible
for controlling

actions that you can perform on the
resources.

By
default,

when you create an IAM
user,

the user starts as
a
blank slate, no

keys,

and no
permissions

at
all.

It is your
responsibility

to
assign

the users keys and the

necessary permissions,
which can range

from simple
novice tasks

such
as

listing

resources to creating, updating, and deleting
resources,

and
so

on.

Permissions
can be

classified
into two main

classes,
each

briefly explained
here:

• User-based permissions:
As the

name implies, these permissions are attached

to IAM
users

and
allow them

to
perform some action over an

AWS
resource.

User-based permissions
can be

applied
to groups

as well. User-based

permissions
branch out

into
two

further categories called as inline policies

and
managed policies, both

of
which

we
will

be
discussing shortly. Basically,

an
inline policy is a policy

that is
created and managed completely

by you,

whereas a managed policy is created
and

managed more
by
AWS itself.

• Resource-based permissions: These are a special class of permissions that

allow you
to

specify which user has what specific level of access
to

a particular

AWS resource along with what actions
they can

perform
on it.

There
are

a handful of AWS services and resources that support such permissions,

including S3 buckets,
SNS

topics, Amazon Glacier vaults,
and

so on. Unlike

user-based permissions, these categories of permissions
are

only inline-based.

This means that they
are

completely managed
and

created by you.

Not clear, eh? Not a problem. Let's walk through this simple example
to

get a better

feel for it. In our use case, we have users created called Jason, Dave, and Chen. Each

of these users can be specified a set
of

user permissions, for example, Dave
can

have

the
ability

to
list, read, and write on Amazon EC2 service, whereas Chen

can
only have

read permissions on
the

EC2 instances. Jason,
on the

other hand, being a manager,
can

have all admin rights and can perform all actions
on any of the

AWS services.

Resource-based permissions,
on the

other
hand, are

allocated directly
to

resources,
so

in this
case assume

that
an

S3 bucket (a bucket is
a
like

a storage folder
where you dump

objects)
has been

allocated permissions
to

allow
both Dave and

Chen read-write

access,
whereas Jason can read,

write,
and

list
objects stored

in
the bucket:

[36]

Chapter 2

With permissions covered, let's look at policies in a
bit

more detail. We briefly used

policies during
the

IAM group creation process, and there you learned
that

a policy is

nothing
but

a collection of permissions
put

together in a JSON-formatted document.

Policies
can

contain user-based
or

resource-based permissions. A single permission

forms a statement in a policy,
and

a single policy can contain multiple statements.

Let's
look

at
a simple

policy for our
reference:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"ec2:DescribeInstances",

"ec2:DescribeImages"

],

"Resource": "arn:aws:iam::012345678910:user/Chen"

}

]

}

[37]

Security
and Access

Management

As you can
see,

this policy
will basically

allow the user
Chen

to only
list

the EC2

images
and

instances,
in short,

simple read-only access.
Let's take

a closer
look at

each of this policy's
elements:

• Version:
The

version specifies
the

policy's language.
As of

date,
the current

version of
the

policy language is 2012-10-17.
Although not required,

it is a

good practice to
include

the
version field

in your policy
statements.

• Statement: The statement
is the main starting point for your

policy.

Unlike the version field, the statement field is mandatory. The statement

element
is always

enclosed
within

square brackets
[] and can contain other

individual statements within itself. Each individual statement should be

enclosed
by

a set
of curly

brackets
{} as

shown.

• Effect:
Another

mandatory statement,
the

Effect element specifies
whether

the
following Action statement should result in Allow

or
Deny.

By
default,

the
effect

is
always

set to deny
access

to AWS
resources.

This ensures that

you
set

explicit
permissions

for your IAM users when declaring
policies.

• Action:
The

Action element describes
what

specific
actions are required

to be either allowed or denied. Each action statement consists of two main

parts, a value
that

identifies
the

particular AWS
service

such
as EC2,

S3,
IAM,

and so on,
followed

by the
action

value,
such

as
DescribeInstances

and

DescribeImages.

• Resource:
The

final
element

required for
our policy

is
the

Resource

element.
The

Resource element
is used to

specify
the object or

service
that

the
particular set

of
statements will cover.

Resource names are
specified

by something
called

as an
Amazon Resource

Name
(ARN).

ARNs are
a

crucial
part of IAM and are used to uniquely

identify
AWS

resources. In
our

reference
policy,

the ARN
uniquely identifies

the user
Chen from

our
demo

AWS account ID (012345678910) as the resource, which will obtain the

necessary permissions based
on the

actions element.

These
are

just
the

most commonly
used set of

elements that
you can

use to get
started

with
your

sets
of policies. There are a lot more additional

sets

of
elements

that
comprise a policy.

Read
more about

them at http://docs.aws.amazon.com/IAM/

latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html.

Now that we have
a basic

understanding of what
a policy

is and what it
comprises,

let's take
a quick

look at how you
can create and assign

them to your IAM
users

and

groups
using

the
AWS

Management
Console.

[38]

Chapter 2

Creating and assigning policies

To create and
assign policies,

from the AWS
Management Console, select

the

Identity
and Access

Management option
as done

before.
Next up,

select
the

Policies option from
the IAM

console's navigation
plane. You

should see
the policy

page as
shown.

Using
this page, you can

filter
and

list existing
policies (both inline and manage

policies)

using the
Filter

and
Search

options. You can
even

create,
update, and delete existing

policies; attach
and detach policies from

users
and groups

using
this page. For

starters, let's go
ahead

and create
a simple policy

for our IAM
users.

Select the
Create

Policy
option as

shown:

This
will

pop up the
Create Policy wizard.

Here, you
will

be
provided with

three

options, briefly explained
as

follows:

•
Copy an AWS

Managed Policy:
This

option
will

list all
the

policies
that

are

designed,
created, and

managed
by AWS

itself. This
is by far the

simplest

way to get started
with policies.

• Policy Generator: This
is
a neat

tool that
will

help you build
your

very own

customized policy. The
tool

includes drop-down
options

using
which you

can select various AWS services and their associated actions and effects. The

tool
even

has built in policy
validation

that
verifies

whether
your

policy is

syntactically
correct or not before

deploying
it.

• Create
your Own

Policy: Using
this feature, you

can actually
write your own

policy or copy and
paste

an
existing

policy here. This feature too
comes

with

a policy validator
that

verifies
the syntax and

validity
of your custom

policy

before
deployment.

[39]

Security
and Access

Management

For this scenario, let's go ahead and
select

the Copy an AWS Managed Policy

option. In the Set
Permissions

page, you can use the
Filter

and Search bars to
search

for
and

select a policy
of your

choice. In
this case, we are

selecting Administrator

Access
Policy

created by AWS
itself. This

policy
will ensure

that the IAM
user

attached to it is granted
all administrative

rights on
all

the
AWS resources.

Do
note

that
this is a very

crude and
high-level permission

and is not
recommended for use

in
a production scenario.

In
a production scenario,

you
would

have to create
individual administrator

roles

for
each of the AWS

service
that you plan to

use
and then

assign individual users

to it as per your
requirements.

For now; click on the
Select option adjoining

the

AdministratorAccess
policy as

shown:

This
will bring

you to the Review
Policy

page where you can
edit

and
fine

tune the

policy as per your needs. Note that
Policy Document

has already been created
for

your
convenience:

[40]

Chapter 2

In the
Review

Policy
page,

you
can provide a

suitable
Policy

Name and an
optional

Description for
your new policy. You can even edit the

Policy Document
if you feel

the need to, but in our
case,

we
will leave

it as it
is.

In
case you

end up editing the

Policy Document,
then

make sure
you

select
the

Validate Policy option
before you

go ahead and deploy the
policy.

The
* specified in

the
Action

and
Resource element is a

wildcard
and

indicates
any

and all objects.

Once
you have completed

the
changes, select the Create Policy option. With this step,

your new custom policy is now ready
to be

attached
to

any group
or

user as you see fit.

To attach
a particular policy

to
a set of

users or
groups, simply use

the
Filter

and

Search
bar to

find
your newly created

policy.
Once

displayed, select
the

policy
you

wish to
apply

by
highlighting

the
checkbox adjoining

it,
select

the
Policy Actions

drop-down list,
and select the

Attach
option as

shown:

This
will bring

up an
Attach Policy

page. Here, you can
select multiple users

and

groups at the
same time

and apply
your selected policy

to them all
in a single go!

In

our
case,

we
selected

the user Jason and the
Admin-All-About-Dogs

group that we

created in
our

earlier
steps.

Once you have
selected

the users and
groups, complete

the
process

by
selecting

the
Attach Policy

option.

Managing access and security using the

AWS CLI

In the previous chapter, we
briefly talked

about the merits of
working

with
a

command line
interface

versus a
GUI. We

also
got the AWSCLI

installed
and

running
on

a simple
CentOS box.

In
this

section,
we are

going
to go

a
bit further

with

that
installation

and actually
configure

the
AWS

CLI
for use

by an IAM user. Later

on, we will see how to
use

the
AWSCLI

to
perform some common

IAM tasks as

well. So
without

further ado, let's get
started!

[41]

Security
and Access

Management

Configuring
the

AWSCLI
is
a
very

simple
and

straightforward process.
All

you
need

are the access ID and the
secret

keys from any one of your IAM
users

that we created

during the
earlier parts

of
this

chapter.
Next

up, open up
a
terminal of your

Linux

box, which
has

the
AWSCLI installed on

it, and type
in

the
following command:

aws configure

Once entered, you
will

be prompted to enter the user's Access Key ID
and

the Secret

Access
Key, along

with the
default

region
name

and the
default

output
format

to

use. The
default

region name is
a mandatory field

and can be any of the regions from

which your
users

will be operating,
for example, us-east-1, us-west-2,

and so on:

AWS Access Key ID [None]:TH1is0MUC#fuN

AWS Secret Access Key [None]:iH@vEN01De@W#@T1@mD01ng#ERe

Default region name [None]: us-west-2

Default output format [None]: table

The output
format

accepts any of these three
values

as the preferred method to

display
the output of the

commands: table, text,
or

json.

the aws configure command.

Any
of these

values can
be

changed
at any

time
by

rerunning

But what if
I have

multiple users
and each

of these users need to access the
same

Linux
box to run the

commands?
Do

I need
to share the keys

with
all the users?

A

valid question
with

a simple
answer, NO! You never share your keys with anyone!

As
an alternative,

you can set up
named profiles

for each of your
users using

their

own
set

of keys using this
simple command:

aws configure --profile jason

Here, we are
creating a

named
profile

for our
user named Jason. Similarly,

you can

create
multiple named profiles

of
individual

IMA
users

using this
same syntax:

[42]

Chapter 2

AWS will store
these

credentials
and

configuration details

in
two

separate files
named

~/.aws/credentials
and

~/.aws/config, respectively.

Okay, now that we have the
basic configurations

done, let's try out the CLI by

executing some commands.
To

start off, let's
try

listing
the

users present
in our

account.
Type

in the
following command:

aws iam list-users --profile jason

You
should

get
a list of

IAM users
displayed on

your terminal. Notice the output

format.
Here, you may be viewing the output

in a
tabular

format as
our default

output format is currently set to table.
Also,

note that we ran the CLI
command

using the named
profile

that we created
a short while

back.
Awesome,

isn't it?

Let's try running
a
few more

commands
now! Create an

IAM
user,

assign
it to an

existing
group

in
our AWS account,

and attach a policy
to it! To begin

with,
create

a

new user using this
simple command:

aws iam create-user --user-name YoYo --profile jason

This
command will

only create
a user for

you. This
user

still does not have any

passwords
or

access
keys generated

for
it, so

let's
go ahead and create

some!
Type in

the
following command

to create
a password

for your user:

aws iam create-login-profile --user-name YoYo --password P@$$w0rD

--profile jason

[43]

Security
and Access

Management

Here, we
passed

two mandatory
arguments with

the
commands --user-name

and –password:

Besides these, you
can

additionally pass
an optional

argument called --password

reset-required. This field will ensure that the IAM user has to reset his/her

password
upon

first
login from the AWS

Management Console.
Only then

will this

new user be authorized to work with the
CLI.

In our case, we have not
provided

this argument,
thus

resulting
in

a fixed password
which the

user does
not need

to change.

Once the
passwords

are
created,

we go ahead and create the user's
all important

access
key and Secret Key. To

do
so, type in the

following command
as

shown:

aws iam create-access-key --user-name YoYo --profile jason

The
create-access-key command requires

only one
mandatory argument,

which

is the username
itself.

Once
executed,

it will
display

the
user's access

and Secret

Keys
respectively in

the output. Make sure you
save

the
Secret

Key as this
is

the last

time
it will

be shown to you
for

obvious
security reasons. With this step,

your new

IAM user is all ready to be
added

to groups!
Previously

in
this

chapter we
created

a few
groups for our

own reference using
the AWS

Management Console. You
can

either
attach

your new
users

to
existing

groups or can even go
ahead

and create new

groups as per your
requirements.

In this
case,

we
will

be creating
a new group

and

attaching our user to it. Type
in

the
following command

to create
a
new group:

aws iam create-group --group-name SuperUsersGroup --profile jason

[44]

Chapter 2

The output
should display

the
new group's ARN

as
well

as the
Group ID

as shown:

With
the group

created,
it's now

time
to

attach
our new user to it.

Simply
type in the

following command
as

shown:

aws iam add-user-to-group --user-name YoYo --group-name SuperUsersGroup--profile jason

This
command

accepts two mandatory
arguments,

which
include

the username as

well as the group name to which the user
has

to be
attached

to. You
should

get no

output from the execution of this
command

if it was run
successfully.

With
this step, we

completed adding
our new

user
to

a
new group. But wait, our

task

is not yet done. We
still

have to enforce
some access permissions on this

group;
so

let's
quickly

add
a simple policy

to it.

First up, create
a simple JSON-based file

on your Linux box.
This

JSON
file will

contain your new group's or
user's

set of
permissions.

For
simplicity, I

created
a very

basic policy
that will grant

its
users complete

access
to

all
of AWS's products and

resources.
Run the

following command
to

first
create your policy:

vi /tmp/MyPolicy.json

Add the following contents to your policy file as shown:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": "*",

"Resource": "*"

}

]

}

[45]

Security
and Access

Management

The commands will look as follows:

Next, run the
following command

to
attach

this policy
document

to
your

newly

created group
or

user:

awsiam put-group-policy --user-name YoYo \

--policy-name Admin-Access-All-About-Dogs \

--policy-document file:///tmp/MyPolicy.json \

--profile jason

You can
replace

the
--user-name attribute with

the

--group-name attribute in case
you

want
to

assign
the

policy
to

a group.

With
this step

completed,
you now should have

a fully configured user
and group

created for your
organization using

the
AWS

CLI.
Simple,

wasn't it!

Planning your next steps
Working with

users,
groups, and

policies
is

just
the start. There are

a lot
more

awesome
features

provided
by AWSIAM that can

help
you with

managing
the

access
and

security for your organization
that we haven't covered in this chapter.

Let's browse through
some

of
these

interesting features and
services

quickly.

For
starters,

let's talk about
roles

and
identity providers. Roles

are nothing but
a

group of
permissions

that grant users access to some
particular AWS

resources and

services.
But

wait, doesn't a policy do
the

same
thing?

You're absolutely
right! Both

are, in
a sense, a

set of
permissions,

but the
difference lies in

where and how you

apply them.

[46]

Chapter 2

Policies are
applied

to users and groups that belong to
a particular AWS

account,

whereas
roles

are applied to users who are generally not
a
part

of
your

AWS
account.

In
a sense,

you use roles to
delegate access

to
users, applications,

and
services

that

do not
have access

to your
AWS resources.

You can
also

use
roles

to
create federated

identities
where

a user
from your organization's

corporate directory
gets

access
to

your AWS
resources

on
a
temporary

basis.

To
learn more about roles and

how you can
leverage

them
in

your organization, use http://docs.aws.amazon.com/

IAM/latest/UserGuide/roles-toplevel.html.

This temporary access
to
AWS resources can

be
provided using an identity provider

as well. Ever used your Facebook or Google credentials
to

log in
to

a website? If yes,

then this is a classic example of using an identity provider
to

provide external users

access to some resources. In
your

case, your organization's active directory can be used

as an identity provider
to

authenticate
and

grant your corporate users access
to
AWS

resources.
As

of today, you
can

use either SAML 2.0 or OpenID Connect
to

establish

trust between your AWS account
and

your external source of identity provider.

Besides these,
AWS has

also introduced a
couple of new

services
as well that

help

with your account's
easy administration

and management. Here are
a few

of
those

services briefly explained:

• AWSCloudTrail: CloudTrail
enables you, as an

administrator,
to log and

record
each

and every API call that is
made

from
within

your
account.

These
logs can contain information such

as the
API's

request and response

parameters, who
made

the API
call,

the
time

of the API
call,

and so on.
These

details
are

vital
and

can
be used during security audits,

compliance
tracking,

and so on. To know more about AWSCloudTrail, check http://aws.

amazon.com/cloudtrail/getting-started/.

• AWSConfig: AWSConfig is a fully automated service
that

enables
you

to take
a complete snapshot

of all your AWS
resource's configurations

for compliance
and auditing

purposes. It
can

also
be

used
as

a
change

management
tool

to
find out

when your AWS resources were
created,

updated,
and

destroyed. To
know more about

AWSConfig,
check

http://aws.amazon.com/config/details/.

•
AWS

Key Management
Service: As the name

suggest, this
new

service

enables you to manage your account's keys
more effectively

and
efficiently.

It
also provides add-on

functionality such as
centralized

key management,

one
click encryption

of
your

data, automatic key rotations,
and so

on so
forth.

To know
more about

AWS
Key Management Service,

check
http://aws.

amazon.com/kms/getting-started/.

[47]

Security
and Access

Management

These are just
some

of the tools and services that
you

can leverage to make your

AWS environment more efficient and secure. Feel free to have a look at each of these

new
services,

and don't be afraid to take
them

out
for a

spin as
well!

Recommendations and best practices

Here
are a

few key takeaways from this
chapter:

•
Get rid of the Root Account,

use
IAM wherever

necessary. Hide away
the

Root
key

and
avoid using

it
unless it's

the end of the world!

•
Create

a
separate IAM

users for
your organization, each with their own

sets

of access and Secret Keys. DO NOT SHARE YOUR KEYS OR
PASSWORDS!

Sharing
such

things is
never

a
good

idea
and can cause

serious implications

and
problems.

•
Create separate

administrators
for each of the

AWS
services that

you
use.

•
Use

roles
and groups to

assign individual
IAM users

permissions.
Always

employ the least
privilege

approach wherein
a
particular group or role has

the
least amount

of
privileges assigned

to it.
Provide

only the
required

level

of access and
permissions

that the task
demands.

• Leverage multi-factor
authentication (MFA) wherever

possible.
Although

passwords
are

good,
they are

still
not the best option when

it
comes to

authenticating users
at

times.

•
Rotate your

passwords
and keys on

a periodic basis. Create
keys only if there

is
a
requirement for it. If there are unused keys

and/or users,
then

make sure

you
delete

them on
a
regular

basis.

• Maintain a logs
and history of your

AWS
account and its services.

Use

AWSCloudTrail for security
and

compliance auditing.

•
Use

temporary
credentials

(IAM Roles) rather
than

sharing
your account

details
with other

users
and

applications.

• Leverage
AWS Key Management

Service
to encrypt

data
and

your
keys

wherever
necessary.

[48]

Chapter 2

Summary

Let's
quickly recap all

the things we covered
so far in

this
chapter.

First up, we took

a look at security and
clouds in general,

followed
by

a
walkthrough of the shared

security model, followed
by AWS.

Later,
we learned

a
bit about IAM

and
how you

as an end user can
leverage

it to
provide secure

access to
individual

users. We
also

looked at the steps
required

to create
users,

groups, and
policies using

both the AWS

Management Console as
well as the AWS CLI. Toward the end

of
the chapter, we

looked at
a
few important and newly

introduced AWS administration
and

security

services
as

well. Finally,
we topped it all off

with some essential recommendations

and best practices!

The
next

chapter is even more
amazing:

we will dive
into

and
explore

the true power

of AWS
provided

by one of its core service
offerings—the Elastic Compute

Cloud, or

EC2.
So

stick
around,

we are just
getting

started!

[49]

Images and Instances

In the previous chapter, we learnt
a lot about

how AWS
provides

top of the
line

security
and

access management capabilities
to its users in the form

of
IAM and

various other tools.

In this chapter, we will
explore

one of the
most popular

and
widely used

AWS's

core services, that is,
Elastic Compute Cloud (EC2). This

chapter
will

cover

many important
aspects

about EC2,
such as

its
use cases,

its
various terms

and

terminologies,
and

cost-effective pricing strategies
to name

a few. It will also
show

you how to get
started

with the
service using

both the
AWS

Management
Console

and the
AWSCLI; so

buckle up and get ready for an
awesome time!

Introducing EC2!

Remember
the

never ending hassles
of

a long
and

tedious procurement process? All

that time you spent waiting for a brand new server
to
show

up
at
your

doorstep so that

you could
get

started
on

it? Something
we

all as sysadmins have gone through. Well,

that all changed on August 25, 2006 when Amazon released the first beta version of

one of its flagship service offerings called
the

Elastic Compute Cloud
or

EC2.

EC2
is a service

that
basically provides

scalable compute capacity on an
on-demand,

pay-per-use basis
to its end

users.
Let's break it up

a bit
to

understand
the

terms

a bit better. To start with, EC2 is all about server virtualization! And with server

virtualization,
we get

a virtually unlimited
capacity of virtual

machines
or, as

AWS
calls

it,
instances.

Users can
dynamically

spin up these
instances,

as and when

required, perform their
activity

on them, and then shut
down

the
same while

getting

billed
only for the

resources
they

consume.

[51]

Images and Instances

EC2 is also a highly scalable service,
which

means that you
can

scale
up

from just

a couple
of

virtual servers
to

thousands
in

a matter
of

minutes,
and

vice versa—all

achieved using a few simple clicks of a mouse button! This scalability accompanied

by
dynamicity creates an elastic platform that

can be
used for performing virtually

any

task you can think of! Hence,
the

term Elastic Compute Cloud! Now that's awesome!

But the buck
doesn't just

stop there! With
virtually unlimited compute capacity,

you
also

get
added functionality

that helps you to
configure

your virtual server's

network,
storage, as

well as
security.

You can
also

integrate your EC2
environment

with
other AWS

services such as
IAM, S3,

SNS, RDS, and so on. To
provide your

applications
with add-on services

and
tools such

as
security,

scalable
storage

and

databases, notification services, and so on and so forth.

EC2 use cases

Let's have
a
quick

look
at some interesting and

commonly
employed use

cases for

AWS EC2:

• Hosting environments:
EC2 can be used for hosting

a
variety of applications

and
software, websites,

and even
games

on the cloud.
The dynamic

and

scalable environment allows
the compute

capacity
to grow

along
with the

application's
needs,

thus
ensuring

better
quality

of service to end users at
all

times.
Companies such as

Netflix, Reddit, Ubisoft,
and many more

leverage

EC2
as their application hosting environments.

•
Dev/Test

environments: With
the

help
of EC2,

organizations
can now create

and deploy
large

scale
development

and testing
environments

with
utmost

ease.
The

best part
of this is that they can

easily
turn on and

off
the

service
as

per their requirements as there is no need
for

any
heavy

upfront
investments

for hardware.

•
Backup

and disaster
recovery: EC2 can be

also leveraged
as

a medium
for

performing disaster recovery
by

providing active
or

passive environments

that can be turned up
quickly in

case of an emergency, thus resulting in
faster

failover
with

minimal
downtime to

applications.

• Marketing
and

advertisements:
EC2 can be used to

host marketing

and
advertising environments

on the
fly

due to its low costs
and

rapid

provisioning capabilities.

•
High Performance

Computing (HPC):
EC2

provides specialized virtualized

servers
that

provide
high

performance networking
and

compute
power

that

can be used to
perform CPU-intensive

tasks
such

as
Big

Data
analytics

and

processing.
NASA's JPL and Pfizer are

some
of the companies that employ

the use of HPC
using

EC2
instances.

[52]

Chapter 3

Introducing images and instances
To understand

images
and instances

a
bit better, we

first need
to

travel a little back

in time;
don't

worry,
a
couple

of
years back

is quite
enough! This was the time

when there was
a
boom in the

implementation
and

utilization
of the

virtualization

technology!

Almost
all IT companies

today
run their

workloads off virtualized
platforms such

as VMware vSphere or
Citrix

XenServer to even
Microsoft's Hyper-V.

AWS,
too,

got

into the act but decided to
use

and
modify a more off

the
shelf, open sourced

Xen
as

its
virtualization

engine. And like any other
virtualization technology,

this
platform

was
also

used to spin up virtual
machines

using either
some

type of
configuration

files
or

some predefined templates.
In AWS's

vocabulary, these
virtual

machines

came to be known
as

instances
and

their
master templates came

to be known as

images.

By now you must
have realized

that instances and
images

are nothing new! They

are
just

fancy
nomenclature

that
differentiates

AWS
from

the
rest of

the
plain old

virtualization technologies, right? Well,
no. Apart

from just
the naming

convention,

there are
a lot more differences

to AWS
images

and instances as compared to your

everyday virtual machines and templates.
AWS has

put in
a lot

of time
and effort

from
time

to time in
designing

and
structuring these images

and
instances,

such

that
they remain lightweighted, spin

up
more quickly, and

can even be ported
easily

from one
place

to another. These
factors

make
a
lot of

difference
when it comes to

designing
scalable and

fault tolerant
application

environments in
the cloud.

We
shall

be learning
a lot

about
these concepts

and
terminologies in

the
coming

sections of
this,

as well as
in

the
next

chapter, but
for

now, let's
start off

by

understanding
more about these

images!

Understanding images

As
discussed

earlier,
images

are nothing more than
preconfigured templates that

you

can use to
launch

one or more instances
from.

In
AWS,

we call
these

images Amazon

Machine
Images (AMIs). Each AMI contains

an
operating

system
which can

range

from any
modern Linux distro

to even Windows
Servers, plus some optional

software
application, such as

a
web

server,
or some

application server installed on
it.

[53]

Images and Instances

It is important, however,
to

understand a couple
of

important things about AMIs.

Just like any other template, AMIs are static
in

nature, which basically means
that

once
they are

created, their state remains unchanged. You can spin
up

or launch

multiple instances using a single AMI
and

then perform any sort
of

modifications
and

alterations within the instance itself. There is also no restriction on the size of instances

that you
can

launch based
on

your AMI. You
can

select anything from
the

smallest

instance (also called as a micro instance) to
the

largest ones
that

are generally meant for

high performance computing. Take a look at the following image of EC2 AMI:

Secondly, an
AMI can

contain certain launch permissions as well. These permissions

dictate whether
the

AMI
can be

launched
by

anyone (public) or
by

someone
or

some

account
which

I specify (explicit) or I can even keep
the

AMI all
to

myself and
not

allow

anyone
to

launch instances from it
but me

(implicit).
Why

have launch permissions?

Well,
there

are cases where some AMIs
can

contain some form of propriety software or

licensed application,
which you

do
not want to

share freely among
the

general public.

In that case, these
permissions come

in
really handy!

You can
alternatively

even

create
something

called as
a paid

AMI. This
feature allows

you to
share

your AMI to

the
general public, however,

with
some

support
costs associated

with it.

AMIs can be bought and
sold using something called

as the
AWS Marketplace

as

well—a one
stop shop for

all your AMI
needs!

Here, AMIs
are categorized according

to their contents and you as an end
user

can
choose

and launch
instances off any

one

of them.
Categories

include
software infrastructure, development tools,

business and

collaboration
tools,

and much more! These AMIs are mostly created by third
parties

or
commercial

companies who
wish

to either
sell

or
provide

their
products

on the

AWS
platform.

[54]

Chapter 3

https://aws.amazon.com/marketplace.

Click
on

and browse through
the

AWS Marketplace
using

AMIs can be
broadly classified

into two
main

categories depending on the way they

store their root volume or hard drive:

• EBS-backed AMI:
An

EBS-backed
AMI

simply
stores its entire root

device

on an Elastic Block Store (EBS) volume. EBS functions like a network shared

drive
and

provides
some

really cool
add on

functionalities like snapshotting

capabilities,
data

persistence,
and so

on. Even more,
EBS

volumes
are not tied

to any particular
hardware

as
well.

This
enables

them to be moved anywhere

within
a particular availability zone,

kind of like
a
Network

Attached

Storage (NAS) drive.
We

shall
be

learning
more about

EBS-backed
AMIs and

instances in the coming chapter.

• Instance store-backed AMI: An instance store-backed AMI, on the other hand,

stores its images on
the

AWSS3 service. Unlike its counterpart, instance store

AMIs
are

not portable and
do

not provide data persistence capabilities as the

root device data is directly stored on
the

instance's
hard

drive itself. During

deployment,
the

entire
AMI

has
to be

loaded from
an S3

bucket into
the

instance store,
thus

making this type
of

deployment a slightly slow process.

The
following image

depicts the
deployments

of both the
instance

store-backed and

EBS-backed AMIs.
As you

can see,
the root and

data volumes
of the

instance
store

backed AMI
are stored

locally on the
HOST SERVER itself, whereas

the
second

instance uses EBS volumes to store its root device and data.

[55]

Images and Instances

The
following

is
a quick differentiator

to help
you understand some

of the key

differences between EB-backed and Instance store-backed AMIs:

EBS backed Instance store backed

Root device Present on an EBS volume. Present on the instance itself.

Disk size limit
Up to 16 TB

supported.
Up to 10 GB

supported.

Data persistence

Data is
persistent

even after the

instance is terminated.

Data only
persists during

the

lifecycle
of the

instance.

Less than
a minute.

Only the
parts

of the
AMI

that
are required

for the

Up to
5 minutes.

The
entire

AMI

has to be retrieved from S3 before

usage.

Boot time boot process
are

retrieved for
the

instance
to be made

ready.
the

instance is
made

ready.

Costs You are charged for
the running

instance plus the
EBS

volume's You
are

charged for
the

running

instance plus
the

storage costs

incurred
by S3.

Amazon Linux AMI

Amazon Linux
AMI

is a specially
created,

lightweight Linux-based image
that

is supported and
maintained

by AWS
itself.

The image is based off
a RedHat

Enterprise Linux (RHEL) distro,
which

basically means
that you can execute

almost

any
and all RHEL-based commands, such as

yum and
system-config, on

it.

The
image also

comes
pre-packaged

with
a lot

of
essential

AWS
tools

and
libraries

that
allow

for easy integration of the AMI
with

other AWS services.
All

in
all,

everything from the yum repos to the
AMIs security

and patching
is
taken care of by

AWS itself!

The
Amazon Linux

AMI
comes at

no
additional costs. You only

have to
pay

for
the

running instances
that are

created from it.

You can read more about the Amazon Linux AMI at http://

aws.amazon.com/amazon-linux-ami/.

Later on, we will be
using

this
Amazon

Linux AMI itself and launching our very

first, but not the last, instance into the cloud, so stick around!

[56]

Chapter 3

Understanding instances

So
far

we
have only being talking about images;

so now
let's shift

the
attention over

to

instances!
As

discussed briefly earlier, instances
are

nothing
but

virtual machines or

virtual servers
that are

spawned off from a single image
or

AMI.
Each

instance comes

with
its
own

set
of

resources, namely
CPU,

memory, storage,
and

network,
which are

differentiated
by

something called
as

instance families or instance types.
When you

first
launch an

instance,
you need to

specify
its

instance
type.

This will determine
the

amount
of

resources
that your

instance will obtain throughout
its

lifecycle.

AWS
currently supports five

instance types or
families,

which
are briefly explained

as follows:

•
General purpose: This group of instances is your average,

day-to-day,

balanced
instances.

Why
balanced?

Well, because they
provide a

good
mix

of

CPU,
memory,

and
disk

space that
most applications

can
suffice with

while

not
compromising

on
performance.

The general purpose group
comprises

the
commonly used

instance types such as t2.micro,
t2.small, t2.medium, and

the
m3

and m4
series

which
comprises m4.large, m4.xlarge,

and
so

on and

so forth. On
average,

this
family contains instance

types that range from
1

VCPU and
1
GB RAM

(t2.micro) all
the way to 40

VCPUs
and 160 GB RAM

(m4.10xlarge).

• Compute optimized:
As the name

suggests,
these

are specialized
group

of

instances that are
commonly

used
for CPU-intensive applications.

The group

comprises
two

main instances types,
that

is,
C3 and C4. On an

average,
this

family contains instances
that can range from

2
VCPUs and

2.75
GB RAM

(c4.

large) to 36 VCPUs and 60 GB RAM
(c4.8xlarge).

•
Memory

optimized: Similar
to the compute

optimized,
this

family comprises

instances that require or
consume

more RAM than CPU.
Ideally, databases

and
analytical applications fall

into this category.
This

group
consists of

a single instance
type called R3

instances, and
they can range anywhere

from
2
VCPUs and

15.25
GB RAM

(r3.large)
to 32

VCPUs
and 244 GB RAM

(r3.8xlarge).

• Storage optimized:
This

family
of

instances comprises specialized instances

that
provide fast storage access

and writes
using

SSD
drives. These

instances are
also used for

high I/O
performance and

high
disk

throughput

applications.
The group

also comprises
two

main instance
types,

namely
the

I2
and D2

(no,
this doesn't

have anything to
do

with R2D2!).
These instances

can
provide

SSD enabled
storage

ranging from
800

GB
(i2.large)

all the way

up to 48 TB
(d2.8xlarge)—now

that's
impressive!

[57]

Images and Instances

•
GPU

instances: Similar
to the

compute optimized family,
the GPU instances

are
specially designed for

handling high
CPU-intensive

tasks but by using

specialized NVIDIA
GPU cards.

This
instance

family is generally used for

applications that require
video encoding, machine

learning or 3D rendering,

and so on.
This

group
consists of a single instance

type called G2, and it can

range between
1
GPU

(g2.2xlarge)
and

4
GPU

(g2.8xlarge).

refer to http://aws.amazon.com/ec2/instance-types/.

To
know more about

the
various instance

types and their use
cases,

As
of

late,
AWS

EC2
supports close

to 38
instance

types,
each with their

own set

of pros and cons
and

use
cases. In such times, it actually becomes really difficult

for
an end user to decide

which
instance type

is
right

for his/her application.
The

easiest
and

most common approach taken
is to

pick
out the

closet
instance type that

matches your application's set of requirements
- for example,

it
would

be ideal to

install
a simple

MongoDB database on
a memory optimized instance

rather than
a

compute or GPU
optimized instance.

Not that
compute optimized instances are a

wrong choice or
anything,

but it
makes

more
sense

to go for
memory in such cases

rather than
just

brute CPU. From
my perspective, I

have
always fancied

the
general

purpose
set

of
instances simply because most

of my application needs
seem

to get

balanced out
correctly with

it, but
feel free

to try out
other instance

types as
well.

EC2 instance pricing options

Apart
from

the
various

instance
types,

EC2 also
provides three

convenient
instance

pricing options
to choose from,

namely on-demand, reserved,
and spot

instances.

You can use either
or all

of these pricing
options at

the
same time

to
suit

your

application's
needs. Let's have a quick

look at all three
options

to get
a
better

understanding
of them.

On-demand instances

Pretty
much the

most commonly used instance deployment method,
the

on-demand

instances are created only
when you

require them,
hence the

term on-demand.
On

demand instances are priced by
the

hour with
no

upfront payments
or

commitments

required. This, in essence, is the true pay-as-you-go payment method
that we

always

end up
mentioning when talking about clouds. These are standard computational

resources that
are

ready whenever you request them and can
be

shut down anytime

during its tenure.

[58]

Chapter 3

By default, you can have a max of 20 such on-demand instances launched within

a single AWS account at a time.
If
you wish

to
have more such instances, then you

simply have
to

raise a support request with AWS using
the

AWS Management

Console's Support tab. A good use case for such instances can be
an

application

running unpredictable workloads,
such

as a gaming website or social website. In this

case, you can leverage the flexibility
of

on-demand instances accompanied with their

low costs
to

only
pay

for
the

compute capacity
you

need and use
and not

a dime more!

Consider
this

simple example: A
t2.micro instance costs $0.013 per

hour
to run in

the US
East (N. Virginia) region.

So, if
I was

to run this instance
for

an entire day,
I

would only
have to pay

$0.312!
Now that's cloud power!

On-demand
instance costs

vary
based

on whether the

underlying
OS is

a
Linux or

Windows, as
well as

in
the

regions
that they

are deployed in.

Reserved instances

Deploying
instances using

the
on-demand model

has but one
slight drawback,

which
is

that
AWS

does not
guarantee

the
deployment

of your instance. Why, you

ask?
Well to put it

simply, using on-demand model,
you can

create
and

terminate

instances on the go
without having

to make any
commitments whatsoever.

It is up

to AWS to
match

this
dynamic requirement

and
make sure

that
adequate capacity

is

present in
its datacenters at all

times.
However, in very few and rare

cases,
this

does

not happen, and
that's

when
AWS will fail

to power on your
on-demand

instance.

In such
cases,

you are better
off

by using
something called

as
reserved instances,

where AWS
actually

guarantees
your

instances
with

resource
capacity reservations

and
significantly

lower
costs

as compared to the
on-demand model. You

can choose

between three
payment

options when you
purchase

reserved
instances:

all upfront,

partial upfront,
and no upfront. As the

name suggests,
you can choose to pay

some

upfront costs
or the full payment

itself
for

reserving
your instances for

a minimum

period
of

a
year and

maximum
up to

three years.

Consider our
earlier

example
of the

t2.micro instance costing $0.0013
per hour. The

following
table

summarizes
the upfront costs you will need to pay for

a
period of

one
year for a single t2.micro

instance
using

the
reserved

instance pricing
model:

Payment
method

Upfront
cost

Monthly
cost

Hourly
cost Savingsoveron-demand

No
upfront $0 $6.57 $0.009 31%

Partial upfront $51 $2.19 $0.0088 32%

All
upfront $75 $0 $0.0086 34%

[59]

Images and Instances

Reserved
instances are

the best
option when

the
application loads

are
steady

and

consistent.
In

such cases, where
you don't have to worry about

unpredictable

workloads
and

spikes,
you can

reserve a
bunch

of
instances in EC2 and end up

saving on additional
costs.

Spot instances

Spot
instances allow you

to
bid for unused EC2 compute capacity. These instances

were
specially created

to
address a simple problem of excess EC2 capacity in AWS.

How
does it all work? Well,

it's
just like any

other
bidding system.

AWS
sets

the

hourly
price for a particular spot instance

that can change
as

the
demand for

the
spot

instances either
grows or

shrinks.
You as an end

user have
to place

a bid
on

these spot

instances, and
when your

bid exceeds
that

of
the

current spot
price, your

instances

are then
made

to run!
It

is
important

to
also note

that
these instances will stop

the

moment someone else out bids you, so host your application accordingly. Ideally,

applications that
are

non-critical
in

nature
and do not

require large processing times,

such as image resizing operations, are ideally
run on

spot instances.

Let's
look

at our
trusty t2.micro

instance
example

here as
well.

The
on-demand cost

for a t2.micro instance
is $0.013 per

hour; however, I place a
bid of $0.0003 per hour

to run my
application.

So, if the current bid cost
for

the
t2.micro

instance
falls

below

my bid, then
EC2 will spin

up the requested
t2.micro instances for

me until either
I

choose
to

terminate
them or

someone else
out

bids
me on the

same—simple, isn't
it?

Spot
instances compliment

the reserved
and on-demand instances;

hence,
ideally,

you
should use a mixture

of spot instances working
on-demand

or reserved

instances
just

to be
sure that

your
application

has
some

compute capacity on standby

in case it needs it.

Working with instances

Okay,
so
we have

seen
the

basics
of

images
and

instances along with various

instance types and
some interesting

instance pricing
strategies

as well. Now
comes

the
fun

part!
Actually

deploying your
very

own
instance

on the
cloud!

In this section, we will be
using

the AWS Management
Console and launching

our

very
first t2.micro instance

on the AWS cloud. Along the way, we
shall also

look at

some
instance

lifecycle
operations

such
as

start, stop,
reboot, and terminate along

with
steps, using which you

can
configure

your
instances

as
well.

So, what
are

we

waiting
for?

Let's get
busy!

[60]

Chapter 3

To begin
with, I

have
already

logged in to
my

AWS
Management Console using

the
IAM credentials

that we
created

in our previous chapter. If
you

are
still using

your root
credentials

to
access

your
AWS

account, then you might want to
revisit

Chapter 2, Security and
Access

Management, and get that
sorted

out! Remember, using

root credentials to
access

your
account

is
a strict

no no!

Although
you

can
use any web

browser
to

access
your

AWS

Management Console, I would highly recommend using

Firefox
as your

choice
of

browser for this section.

Once
you

have
logged into

the
AWS Management Console, finding

the EC2
option

isn't
that hard. Select the

EC2 option from under
the

Compute
category, as shown in

the
following

screenshot:

This
will bring

up the EC2
dashboard

on your browser. Feel
free

to have
a
look

around the
dashboard

and
familiarize yourself with

it. To the left, you
have

the

Navigation
pane that will help you

navigate
to

various
sections and

services

provided
by

EC2,
such as

Instances,
Images,

Network
and

Security,
Load

Balancers,
and

even Auto Scaling. The
centre

dashboard provides a real-time

view
of

your
EC2

resources, which
includes important

details such
as how many

instances are currently running in your
environment,

how
many volumes,

key
pairs,

snapshots, or
elastic

IPs have been created,
so

on and so
forth.

The dashboard also displays the current health of
the

overall region as well as its

subsequent availability zones. In our case,
we

are operating from
the US

West (Oregon)

region that contains additional AZs called as us-west-2a, us-west-2b, and us-west-2c.

These names and values will vary based on your preferred region of operation.

[61]

Images and Instances

Next up, we launch our
very first instance

from this
same

dashboard by selecting the

Launch Instance
option, as shown in the

following screenshot:

On
selecting

the
Launch Instance

option, you
will

be directed to
a wizard driven

page that
will

help
you

create and
customize

your very
first instance.

This wizard

divides
the entire instance

creation
operation into

seven individual stages,
each stage

having
its
own

set
of

configurable items. Let's
go

through
these

stages
one at

a
time.

Stage 1 – choose AMI

Naturally, our
first instance

has to spawn
from

an AMI,
so that's

the
first

step!

Here,
AWS provides

us
with a whole

lot of options to choose
from,

which includes

a
Quick

Start guide,
which

lists out
the

most frequently used
and

popular AMIs,

and
includes

the
famous

Amazon Linux AMI as
well,

as
shown

in the
following

screenshot:

There are also
a host

of other
operating systems provided

here as well which

includes Ubuntu, SUSE Linux, Red Hat, and Windows Servers.

[62]

Chapter 3

Each of
these

AMIs has
a uniquely referenced

AMI ID,
which

looks
something like

this: ami-e75272d7. We can
use this AMI

ID
to spin up instances

using
the AWS

CLI,

something
which we

will
perform

in
the

coming sections
of

this
chapter.

They also

contain additional information such as whether the root device of the AMI is based

on an
EBS volume

or not, whether the particular AMI is
eligible under

the Free tier

or not, and so on and so forth.

Besides
the

Quick Start guide, you
can

also
spin up your instances using the AWS

Marketplace
and the

Community
AMIs

section
as

well.
Both

these options
contain

an
exhaustive list

of
customized

AMIs that
have

been created by either
third-party

companies
or by

developers
and can be used

for a
variety of

purposes. But for
this

exercise,
we are going to go ahead and select Amazon

Linux AMI
itself from the

Quick Start menu.

Stage 2 – choose an instance type

With
the AMI

selected,
the next step is to select the

particular
instance type or

size as

per your
requirements.

You can
use

the
Filter by option

to group and view instances

according
to their

families and generations
as

well.
In this

case,
we

are
going

ahead

with the general purpose
t2.micro

instance type,
which

is
covered

under the
free

tier
eligibility and

will
provide

us with
1
VCPU and

1
GB of RAM to work

with!
The

following screenshot shows
the

configurations
of the instance:

Ideally,
now you can launch

your
instance right away, but

this
will not

allow
you to

perform
any

additional configurations
on your

instance,
which just

isn't
nice!

So,
go

ahead and click on the
Next: Configure instance Details

button to
move

on to the

third
stage.

[63]

Images and Instances

Stage 3 – configure instance details

Now here it
gets a

little tricky
for first

timers.
This

page
will basically

allow you

to
configure a

few
important aspects about

your instance, including its network

settings,
monitoring,

and lots more. Let's have a look at
each of these options in

detail:

•
Number of

instances: You
can

specify
how many instances the

wizard

should
launch

using this
field.

By
default,

the
value

is
always

set to one

single instance.

• Purchasing option: Remember
the spot instances we

talked
about

earlier?

Well
here you can

basically request
for

spot instance
pricing. For now,

let's

leave
this

option all
together:

• Network: Select the default Virtual Private Cloud (VPC) network that is

displayed
in the

dropdown list.
You can

even
go ahead

and
create

a
new

VPC network
for your

instance, but we will leave
all that for

later chapters

where we
will actually set

up
a VPC

environment.

In our case, the VPC has a default network of 172.31.0.0/16, which means we

can
assign

up to
65,536

IP
addresses using it.

• Subnet: Next
up,

select
the

Subnet in which you
wish to deploy your new

instance. You can
either choose

to have AWS
select

and deploy your
instance

in
a particular

subnet
from

an
available list

or you can
select a

particular

choice of subnet on
your

own. By
default,

each
subnet's Netmask defaults

to

/20,
which

means
you can

have
up to 4,096 IP

addresses assigned in
it.

[64]

Chapter 3

Auto-assign Public
IP:

Each
instance

that
you launch

will
be

assigned a

Public
IP. The Public IP

allows your
instance to

communicate
with the

outside
world,

a.k.a.
the Internet! For now,

select
the use

Subnet setting

(Enable) option
as shown.

• IAM role: You can additionally select a particular IAM role
to

be associated

with your instance. In
this

case,
we do

not have
any

roles particularly created.

• Shutdown behaviour:
This option

allows
you to

select whether
the instance

should
stop

or be terminated when
issued a shutdown command. In

this
case, we have opted

for
the

instance
to stop when it is

issued a

shutdown command.

• Enable termination protection:
Select this

option in
case you

wish
to protect

your instance
against accidental deletions.

• Monitoring:
By

default,
AWS will monitor

few basic parameters
about

your instance for free, but
if
you

wish
to have

an in-depth
insight

into

your instance's
performance,

then
select

the
Enable CloudWatch detailed

monitoring
option.

• Tenancy:
AWS

also offers
you to power on

your
instances on

a
single-tenant,

dedicated
hardware in

case
your application's

compliance requirements

are too strict. For
such cases, select

the
Dedicated option from

the
Tenancy

dropdown
list, else leave

it to the
default Shared option. Do

note,
however,

that
there is a slight increase

in the
overall

cost of an
instance

if it is
made

to

run on a dedicated hardware.

Once
you

have
selected

your
values, move

on to the fourth stage of the instance

deployment process by
selecting

the
Next:

Add
Storage option.

Stage 4 – add storage

Using
this page, you can

add additional EBS volumes
to your

instances.
To

add
new

volumes, simply
click

on
the Add New

Volume
button. This will

provide
you with

options to
provide

the
size

of the new volume along with
its

mount
points. In

our

case, there
is
an

8
GB

volume
already attached to our instance. This is the t2.micro

instance's
root volume,

as shown in the
following

screenshot:

•

[65]

Images and Instances

Try
and keep the

volume's size
under 30 GB to

avail
the free

tier eligibility.

You can
optionally

increase the
size

of the
volume

and enable
add-on features

such

as
Delete

on
Termination

as per your
requirement.

Once
done,

proceed to the next

stage of the instance
deployment process

by
selecting

the
Next:

Tag
instance option.

Stage 5 – tag instances

The tag
instances

page
will allow

you to specify tags
for

your EC2 instance. Tags are

nothing
more

than
normal key-value

pairs of text
that allow

you to
manage

your

AWS
resources a lot easily.

You can
start, stop,

and terminate
a
group of

instances

or any other
AWS

resources
using

tags.
Each

AWS
resource

can
have a maximum

of 10 tags
assigned

to it. For
example,

in
our

case, we
have provided a

tag
for

our

instance as
ServerType:WebServer.

Here, ServerType is the key and
WebServer

its

corresponding
value. You

can
have other group of instances in your

environment

tagged as
ServerType:DatabaseServer

or
ServerType:AppServer based

on
their

application. The
important

thing to keep in
mind

here is that AWS will not
assign

a
tag to any of your resources

automatically.
These are optional

attributes
that you

assign
to your

resources in
order to

facilitate
in

easier management:

Once
your

tags are
set,

click on the
Next: Configure Security

Group
option

to

proceed.

[66]

Chapter 3

Stage 6 – configure security groups

Security groups are an
essential tool

used to
safeguard access

to your
instances

from the
outside world.

Security groups are nothing but
a
set of

firewall rules that

allow specific traffic
to

reach
your instance.

By default,
the

security
groups

allow

for all
outbound

traffic
to pass while

blocking all
inbound

traffic.
By

default,
AWS

will auto-create
a security group

for you when you
first start using

the EC2 service.

This
security

group is
called

as default and contains only
a single

rule that allows
all

inbound
traffic

on port
22.

In the
Configure Security Groups

page, you can either
choose

to
Create a new

security group
or

Select
an

existing security group.
Let's go ahead and

create one

for starters. Select
the

Create a
new

security group
option and

fill
out

a suitable

Security
group name

and Description.
By

default, AWS
would

have
already

enabled inbound SSH
access

by
enabling

port 22:

You can add
additional

rules to
your security group

based on your
requirements

as

well. For
example,

in our
instance's

case, we
want

the users to receive all
inbound

HTTP
traffic

as
well.

So,
select

the
Add Rule

option to add
a firewall

rule. This
will

populate
an

additional rule
line, as shown in the

preceding screenshot. Next, from

the Type
dropdown,

select HTTP
and leave

the
rest

of the
fields

to
their

default

values.
With our

security
group created and populated, we can now go ahead

with

the
final

step in the instance
launch stage.

[67]

Images and Instances

Stage 7 – review instance launch

Yup! Finally, we are here! The last
step

toward
launching

your
very first

instance! Here, you will be
provided

with
a complete summary

of your
instance's

configuration details, including
the AMI

details, instance
type

selected, instance

details,
and

so
on. If

all
the details are correct, then

simply
go ahead and click

on
the

Launch option. Since this
is
your first instance

launch, you will be
provided

with an

additional
popup page that

will basically help
you create

a
key pair.

A
key

pair is basically a combination of a public
and

a private
key,

which
is
used

to

encrypt and decrypt your instance's login
info.

AWS
generates

the key
pair

for you

which you
need

to
download

and
save locally

to your workstation.
Remember

that

once
a particular

key pair is created and
associated

with
an

instance, you will need

to use that key
pair

itself to
access

the
instance.

You
will

not be able to
download

this
key

pair again;
hence,

save
it in

a secure
location. Take

a
look at the

following

screenshot
to get an

idea
of

selecting
the key pair:

In EC2, the
Linux instances have

no
login passwords

by

default; hence,
we use key

pairs
to

log
in

using SSH.
In

case
of

a

Windows instance,
we use

a
key pair to

obtain
the

administrator

password
and then

log in using
an
RDP connection.

Select the
Create a

new key
pair option from

the dropdown
list

and
provide a

suitable name for your key
pair

as well.
Click

on the
Download

Key Pair
option

to

download
the .PEM

file.
Once

completed, select
the

Launch Instance option.
The

instance will
take a

couple of minutes to get
started.

Meanwhile,
make a

note of the

new instance's ID (in this case, i-53fc559a) and feel free to view the instance's launch

logs as well:

[68]

Chapter 3

Phew! With this
step completed, your

instance
is
now ready

for use!
Your instance

will
show

up
in

the EC2
dashboard,

as
shown

in the
following screenshot:

The
dashboard contains

and
provides a

lot of
information

about your
instance.

You

can
view

your
instance's ID,

instance type, power state, and
a
whole lot more info

from the
dashboard. You

can also
obtain

your
instance's

health
information using

the
Status

Checks tab and the
Monitoring

tab.
Additionally, you

can
perform power

operations
on your instance

such
as start, stop, reboot, and

terminate using
the

Actions tab located in the
preceding

instance table.

Before
we proceed to the next section, make

a
note of your

instance's Public
DNS

and the
Public

IP. We will be
using

these
values

to connect to the
instances from

our

local workstations.

Connecting to your instance

Once
your

instance has launched
successfully,

you can
connect

to it using three

different methods that
are

briefly explained
as

follows:

•
Using

your
web browser: AWS

provides a convenient Java-based
web

browser
plugin

called
as

MindTerm,
which you

can
use to connect to your

instances.
Follow the next steps to

do
so:

1. From the
EC2 dashboard, select

the instance
which

you want to

connect to and then click
on

the Connect option.

2. In the
Connect

To Your
Instance dialog box, select

the
option A

Java

SSH Client directly
from my browser

(Java required) option.
AWS

will
autofill

the
Public

IP
field

with
your

instance's public IP
address.

[69]

Images and Instances

3. You
will

be required,
however,

to
enter

the User name
and

the

Private
key

path, as shown in
the

following screenshot:

4. The User Name for an Amazon Linux AMIs
is ec2-user

by
default.

You can
optionally choose

to store the location of your
private

key

in the
browser's

cache;
however, it is

not at all
required.

Once
all

the

required
fields

are
filled

in, select the
Launch

SSH
Client

option.

For most RHEL-based AMIs, the user name is either root

or the ec2-user, and for Ubuntu-based AMIs, the user

name is
generally Ubuntu itself.

5. Since this is going to
be

your first
SSH

attempt using
the

MindTerm

plugin,
you

will be prompted to accept an
end

user license agreement.

6. Select the
Accept

option to continue with the
process.

You will be

prompted
to accept

few additional
prompts

along
the way, which

include
the

setting
up of your

home directory
and known

hosts

directory
on your local PC.

[70]

Chapter 3

7. Confirm
all these settings

and you
should

now
see

the
MindTerm

console displaying
your

instance's
terminal, as

shown in
the

following screenshot:

•
Using

Putty:
The

second
option is by far the

most commonly used
and one

of my
favorites

as
well!

Putty, or PuTTY,
is basically

an SSH and telnet
client

that can be
used

to connect to your remote
Linux instances.

But before you

get working on Putty, you
will

need
a
tool

called PuttyGen
to help

you

create your
private

key
(*.ppk).

You
can download Putty,

PuttyGen,
and various

other SSH

and FTP tools from http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

After creating your
private key, follow

the next
steps

to
use

Putty and PuttyGen:

1. First up,
download

and
install

the latest copy of Putty and PuttyGen

on your local
desktops.

2. Next, launch PuttyGen
from

the
start menu.

You
should

see the

PuttyGen
dialog as

shown in the
following screenshot.

[71]

Images and Instances

3.
Click

on the Load option to load your PEM
file.

Remember,
this

is

the
same file

that we
downloaded

during stage
7
of the

instance

launch
phase.

4. Once
loaded,

go ahead and
save this

key by
selecting

the Save

private
key option.

PuttyGen
will probably

prompt you with
a warning message stating

that you

are
saving

this key
without a passphrase

and
would

you
like

to continue.

5. Select Yes to continue
with

the
process. Provide a

meaningful name

and save the new file (*.PPK) at a secure and accessible location. You

can now
use

this PPK
file

to connect to your
instance using

Putty.

[72]

Chapter 3

Now comes the
fun

part!
Launch a

Putty
session

from the
Start menu.

You

should
see

the Putty
dialog

box as shown in the
following screenshot.

Here,

provide
your

instance's Public
DNS or

Public
IP in the Host

Name
(or IP

address) field as shown. Also make sure that the Port value is set to 22 and

the
Connection

type is
selected as SSH.

6. Next, using Putty's
Navigation | Category

pane, expand the
SSH

option and then
select Auth,

as
shown

in the
following screenshot.

All you need to do here is browse and upload the
recently saved

PPK

file
in the

Private key
file for

authentication field.
Once

uploaded,

click
on

Open to
establish a connection

to your
instance.

[73]

Images and Instances

7. You
will

be
prompted

by
a security warning since

this is the
first

time you are trying to connect your instance. The
security dialog

box

simply
asks whether

you trust
the instance that you are

connecting
to

or
not. Click

on the Yes tab when prompted.

8. In the Putty
terminal window,

provide the user
name for

your

Amazon Linux instance (ec2-user)
and

hit
the Enter key.

Voila!

Your
first

instance
is
now ready

for use,
as

shown
in the

following

screenshot. Isn't that awesome!

•
Using

SSH:
The

third
and final

method is
probably the

most simple
and

straightforward.
You

can
connect to your

EC2
instances

using a simple

SSH client as well. This SSH client can be installed on a standalone Linux

workstation or even on
a Mac.

Here, we will be
using

our CentOS 6.5

machine that has the AWSCLI
installed

and
configured in it and following

the next
steps,

we will be able to look into our
EC2 dashboard:

1. First up,
transfer

your private key
(*.PEM) file

over to the
Linux

server using
and SCP

tool.
In my

case, I always use
WinSCP to

achieve this.
It's

a simple
tool and pretty

straightforward
to use. Once

the key is
transferred,

run the
following command

to change the

key's
permissions:

chmod 400 <Private_Key>.pem

2. Next up,
simply

connect to the
remote

EC2 instance by using the

following
SSH

command.
You will need to

provide your
EC2

instance's public DNS or its
public

IP
address,

which can be found

listed on the EC2 dashboard:

ssh -I <Private_Key>.pem ec2-user@<EC2_Instance_PublicDNS>

[74]

Chapter 3

And
following

is the output of the preceding
command:

Configuring your instances

Once
your

instances are
launched,

you can
configure virtually

anything in it, from

packages, to
users,

to
some specialized software

or application, anything and

everything
goes!

Let's begin by running
some simple commands first.

Go
ahead

and type the

following command
to check your

instance's disk size:

df –h

Here
is

the output
showing

the
configuration

of the
instance:

[75]

Images and Instances

You
should

see an
8
GB

disk mounted
on the root (/)

partition,
as shown in the

preceding screenshot.
Not bad, eh! Let's try

something else, like
updating the

operating system.
AWS

Linux
AMIs are regularly

patched
and

provided
with

necessary package updates,
so

it is a
good idea to patch them from

time
to time.

Run the
following command

to
update

the
Amazon Linux

OS:

sudo yum update -y

Why sudo? Well, as
discussed

earlier, you
are

not
provided

with
root privileges

when you
log in

to your
instance. You

can change
that

by
simple changing

the

current user to root after you
login; however,

we are going to
stick

with the
ec2-user

itself for now.

What else can we
do

over
here? Well,

let's go
ahead

and
install some specific

software for
our instance.

Since
this instance

is
going to act as

a
web

server,
we will

need to install and
configure a basic

Apache HTTP web server package on it.

Type in the
following set of commands

that will help you
install

the Apache
HTTP

web
server

on your
instance:

sudo yum install httpd

Once the
necessary

packages are
installed, simply start

the Apache HTTP
server

using the
following simple commands:

sudo service httpd start

sudo chkconfig httpd on

You can see the server running
after

running the preceding
commands, as shown in

the
following

screenshot:

[76]

Chapter 3

You can
verify

whether your instance is
actually

running
a
web server or not by

launching
a
web browser on your

workstation
and

typing
either

in
the

instance's

public IP
or

public DNS.
You should

see
the

Amazon
Linux AMI

test
page, as shown

in the
following screenshot:

There you have it!
A fully functional

and
ready-to-use

web server using
just a

few

simple steps!
Now

wasn't that easy!

Launching instances using the AWS CLI

So
far,

we have
seen

how to launch and
manage

instances in EC2
using

the
EC2

dashboard.
In this

section,
we are going to

see
how to leverage the

AWSCLI
to

launch
your

instance
in

the cloud! For this exercise, I'll be
using

my trusty old

CentOS 6.5
machine,

which has
been configured from Chapter

2, Security and
Access

Management,
to work

with
the

AWS
CLI. So, without

further
ado, let's get busy!

Stage 1 – create a key pair

First up,
let's

create
a
new key pair for our

instance.
Note that you can

use existing

key
pairs

to connect to new
instances;

however, we
will still

go ahead and create
a

new one for this
exercise.

Type in the
following command

in your
terminal:

aws ec2 create-key-pair --key-name <Key_Pair_Name> \

> --output text > <Key_Pair_Name>.pem

Once the key
pair

has been
created,

remember to change
its permissions using

the

following command:

chmod 400 <Key_Pair_Name>.pem

[77]

Images and Instances

And
you

can see the created key:

Stage 2 – create a security group

Once again, you can
very

well reuse an
existing

security group from
EC2

for your

new
instances,

but we
will

go ahead and create one here. Type
in

the
following

command
to create

a
new

security
group:

aws ec2 create-security-group --group-name <SG_Name> \

> --description "<SG_Description>"

For creating
security groups,

you are only required to provide
a
security group

name

and an
optional description field

along with
it.
Make

sure
that you

provide a simple

yet meaningful name here:

Once
executed,

you will be
provided

with the new
security group's ID

as the output.

Make
a
note of this ID as it will be

required
in the

next
few steps.

[78]

Chapter 3

Stage 3 – add rules to your security group

With
your new

security
group

created,
the next

thing
to do is to add

a
few

firewall

rules
to it. We

will
be

discussing a
lot more on this

topic in
the

next
chapter, so to

keep things
simple,

let's
add

one
rule

to allow inbound SSH
traffic

to our
instance.

Type in the
following command

to
add

the new rule:

aws ec2 authorize-security-group-ingress --group-name <SG_Name> \

> --protocol tcp --port 22 --cidr 0.0.0.0/0

To
add a firewall

rule, you will be
required

to
provide

the
security

group's
name

to

which the rule has to be
applied.

You
will also

need to
provide

the protocol, port

number,
and network CIDR values as per your requirements:

Stage 4 – launch the instance

With
the key

pair
and security group created and

populated,
the

final
thing to do

is to launch your new instance. For this step, you will need
a
particular AMI ID

along
with a few

other key
essentials such as

your
security

group name, the key

pair, and the
instance

launch
type,

along with the number of instances you
actually

wish to launch.

Type in the
following command

to
launch

your
instance:

aws ec2 run-instances --image-id ami-e7527ed7 \

> --count 1 --instance-type t2.micro \

> --security-groups <SG_Name> \

> --key-name <Key_Pair_Name>

[79]

Images and Instances

And here is the
output

of the
preceding commands:

In
this case,

we
are using

the
same Amazon

Linux AMI

(ami-e7527ed7)
that we used

during
the

launch of
our

first instance using
the EC2

dashboard.

The instance will take
a
good two or three

minutes
to

spin
up, so be patient! Make

a

note
of

the
instance's

ID from the output of the ec2
run-instance command.

We
will

be using this
instance

ID to
find

out the
instance's public

IP
address using

the EC2

describe-instance command as shown:

aws ec2 describe-instances --instance-ids <Instance_ID>

Make
a
note of the instance's

public
DNS or the

public
IP

address.
Next, use the key

pair created
and

connect to your instance using any of the methods
discussed earlier.

Cleaning up!

Spinning up instances is one thing; you
should also

know
how

to stop and terminate

them!
To

perform
any power

operations
on your

instance
from the EC2

dashboard,

all
you

need to do
is select

the particular instance and click on the
Actions

tab as

shown. Next,
from

the
Instance State submenu, select

whether you want to
Stop,

Reboot,
or

Terminate
your

instance,
as

shown in
the

following screenshot:

[80]

Chapter 3

It is important to
remember

that you only
have instance

stopping capabilities

when working with
EBS-backed instances.

Each
time

an
EBS-backed

instance
is

stopped, the hourly
instance billing

stops too; however, you
are still

charged
for

the

EBS
volume that your instance is using.

Similarly,
if your

EBS-backed
instance is

terminated
or

destroyed,
then by

default
the EBS root

volume
attached to it is

also

destroyed,
unless

specified otherwise, during
the instance

launch phase.

Planning your next steps

So
far,

all we
have

worked with are
Linux instances, so

the next
step

that
I

recommend
is that you go

ahead
and deploy your very

first Windows
server

instance as
well. Just a

few
pointers

worth
remembering

are to make sure
you

enable

the
firewall rule

for RDP
protocol (TCP Port 3389)

in the
security

group and to

generate the
administrator password using

the key
pair

that
you create.

For
more

in-depth
steps, check out this simple tutorial at http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html.

The second thing worth trying out are spot
instances.

Now, you
may

be wondering

that
spot instances seem

kind of hard to
grasp,

but in reality they are
a
lot

easier
and

cost
efficient

to work with.
Try

and spin up
a simple t2.micro

Linux instance
using

spot
pricing

and
compare

the
difference

with
a traditional on-demand instance.

To know
more about

spot
instances,

check
out http://aws.amazon.com/ec2/

purchasing-options/spot-instances/.

Another really cool thing
worth the time and

effort
is the AWS

Management
Portal

for vCenter! Yes!
You heard it right! You can

actually manage
your AWS resources

using your standard VMware vCenter Server! All you need to do is install
a simple

plugin
and,

voila,
your entire AWS

infrastructure
can be managed using the

familiar

vCenter
dashboard.

But the fun
doesn't just stop

there.
You

can also export your

on
premise virtual machines hosted

on the vSphere
platform

over to AWS using

a
tool

called
as VM

Import/Export.
Once

installed within
your

VMware
vSphere

environment,
you can

easily migrate
any

Linux
and Windows Server based virtual

machine to your AWS account
using a few simple steps!

Now that's
really amazing!

To know
more about

the
AWS

Management Portal
for

vCenter, refer to
http://aws.

amazon.com/ec2/vcenter-portal/.

Both
the

AWS
Management

portal
for vCenter as

well
as the

VM Import/Export tool are absolutely free
of

cost!
You only

have to
pay

for
the

AWS resources
that

you consume
and not

a
penny

more!

[81]

Images and Instances

And
last

but not
least, have some

fun with
configuring

your
instances!

Don't
stop

just
at

a simple
Web Server; go ahead and

set
up

a
full

fledge
WordPress

application

on your instances or launch
multiple instances and set

up
JBoss

Clustering
among

them and so on. The more you
configure

and
use

the
instances,

the
more

you will

get
acquainted

with the
terms

and terminologies and
find

out how
easy it is working

with AWS!
Just remember

to
clean

up your work after it is done.

Recommendations and best practices

Here
are a

few key takeaways from this
chapter:

•
First and

foremost,
create and use

separate IAM
users for working with EC2.

DO NOT USE your
standard root account credentials!

•
Use IAM

roles
if
you

need to
delegate access

to your EC2 account to other

people for
some

temporary period of
time.

Do not share your
user passwords

and keys
with

anyone.

•
Use

a
standard and

frequently
deployed

set
of AMIs as they are

tried
and

tested by AWS
thoroughly.

•
Make sure that you

understand
the

difference
between instance

store-backed

and EBS-backed AMIs. Use the instance store with caution and remember

that you are
responsible for

your data, so take
adequate

backups of
it.

•
Don't create too many firewall rules

on a single
security group. Make

sure

that you apply the least
permissive rules for

your security groups.

•
Stop your instances when not in

use.
This will

help
you

save
up on

costs

as well.

•
Use tags to

identify your
EC2

instances. Tagging
your

resources is a
good

practice
and should be

followed
at all

times.

•
Save your key pairs in

a safe
and

accessible location. Use passphrases
as an

added
layer of security if you deem it

necessary.

• Monitor
your

instances
at all

times.
We will be

looking
at instance

monitoring
in depth

in the
coming

chapters; however, you
don't have

to
wait

until then!
Use

the EC2 Status and Health Check tabs
whenever required.

[82]

Chapter 3

Summary

So,
let's

wrap up what we
have

learnt
so far!

First up, we
looked

at what exactly

the
AWS

EC2
service

is and how we can
leverage

it to
perform

our
daily tasks.

Next, we understood
a
bit about

images
and instances by

looking
at the

various

instance types and
pricing options provided. Finally,

we
also managed

to

launch
a couple

of instances in EC2 using
both

the
EC2 dashboard

as
well

as the

AWS
CLI.

We topped it all off
with some interesting

next steps and
a
bunch of

recommendations
and

best practices!

In the next chapter, we will continue with the EC2
service and explore some

of

the
advanced network, security,

and
storage

options that come along with it, so

stay tuned!

[83]

Security, Storage,

Networking, and Lots More!

In the previous chapter, you learned
a
lot about

EC2
and its

images
and

instances.

We were able to launch our
first instance

in AWS, connect to
it, and even configure it

as per our
requirements.

In this chapter, we will be
continuing

where we
left off and

will
cover some

of

the
remaining

EC2 concepts,
such

as
security groups,

networking, and
a
bit about

volumes
as

well.
We will

also
be looking

at a
few easy steps

using
which you can

create and
publish

your
very

own AMIs. So stick
around,

we are just
getting

started!

An overview of security groups

We talked briefly about security groups in
the

previous chapter,
but

in this section,

we
will be looking

at
them in a bit more in detail. Security Groups are simple, yet

powerful ways using
which you

can secure
your

entire EC2 environment.
You

can

use Security Groups
to

restrict and filter out both
the

ingress
and

egress traffic of an

instance using a set
of

firewall rules. Each rule
can

allow traffic based on a particular

protocol—TCP or UDP, based
on

a particular port—such
as 22

for SSH, or even based

on individual source
and

destination IP addresses. This provides you
with

a lot
of

control
and

flexibility in terms
of

designing a secure environment for your instances to

run from.

Let's
look

at how you can edit an
existing

Security Group
using

the EC2
dashboard.

[85]

Security, Storage, Networking, and
Lots

More!

From the
EC2 dashboard, select

the
Security

Groups option located under the

Network
& Security section

as
shown

here:

This
will display a list

of currently created and in
use

Security Groups
present

in

your EC2
environment.

Each
Security

Group is
provided

with
a unique identifier

called the Group ID
and a

Group Name. You will
also

notice the presence of the

default Security
Group,

as
shown

in
the

following screenshot.
This default Security

Group is created by AWS when
you first

start and sign up for the EC2
service.

If you

do not specify
a Security

Group
during

the
instance

launch phase, then by
default,

AWS
assigns

this
default

Security Group to
it.

The
default Security Group has

no
ingress (inbound) traffic

rules
set;

there is
only

one
egress (outbound) rule,

which
allows

your instances to
connect

to the
outside

world
using any port and any protocol. You can

add,
delete,

and modify
any

rules

from this group; however, you cannot
delete

the
default

Security Group. As
a

good practice,
avoid using

the
default

Security Group.
Instead,

create
separate

and

customized
Security Groups

based on
your application's needs and

always keep
the

rules
as

minimalistic
as

possible.
Here is

an
option of creating

a
new

Security
Group:

Let's go ahead
and see

how you can
edit Security

Groups
and modify

an
already

configured firewall
rule.

Groups
any

time,
even when your

instance is running.

You can
modify

the
firewall rules of

your
Security

[86]

Chapter 4

From the
dashboard, select a

particular
Security

Group
you

wish to
modify.

Next,

from the Actions
drop-down list,

select the option
Edit inbound rules,

as shown:

As
discussed

earlier, each
firewall rule comprises

four
fields.

The
first field

is

the Type
field,

which
specifies

the type of
application

for
which

you need to

allow access.
By

default, AWS
already

has
provided

a list
of
common application

types to choose
from, which

includes SSH,
RDP,

HTTP,
HTTPS,

POP3,
IMAP,

MySQL,
SMTP,

and so on
so

forth. You can
additionally

create custom TCP/UDP

application types using this
same

drop-down
list as

well. For now, we
will

use the

SSH
and HTTP types,

as shown
here:

An
important

thing to note here is that selecting
these preconfigured application

types
will autofill

the next two
fields

as
well. Thus,

if you wish to specify
a different

port
for

say SSH or
HTTP,

then you are better off
selecting Custom

TCP
Rule

from

the application type as
discussed earlier. Next

up is the Source
field

where you can

basically specify
any of

these
three

options:

• Anywhere: Using this
option as the source, your

particular application
port

will be
accessible

from any and all networks out there
(0.0.0.0/0). This

is
not

a
recommended

configuration for
any production

environment
and

should

be avoided at all times.

[87]

Security, Storage, Networking, and
Lots

More!

•
My IP: As the name

suggest,
AWS will try and

autofill
the

IP address
of your

local computer here. The
only

thing
that

you need to be aware of here is that

your computer's
IP address should

not be
based

on
a
DHCP network as you

may not be able to connect to your application if your
local

computer's IP

address
keeps on changing.

• Custom
IP:

Perhaps
the

most
preferable out of the three

options,
the

Custom
IP

option
allows

you to specify your own custom
source

IP
address

or IP
range

as per your
requirements.

For
example, allow

the particular

application to
access only via traffic coming

from the network
203.20.31.0/24

CIDR. You
can even add

other Security Group IDs here as
a
reference.

Additionally,
you can even add new rules to an

existing
Security Group by

selecting

the
Add Rule

button, and
delete existing rules

by selecting the
Delete Rule

icon

(X).
Just

remember
to

save
your

Security Group
settings by

selecting
the

Save

option
before you close

the pop-up
box.

Feel free to take
a look

at
a Security Group's

outbound
rules

as
well.

All you
have

to do
is select a particular Security Group

from

the
EC2 dashboard,

and
from

the
Actions

tab,
select

the
Edit outbound rules option.

You should see the default allow all access outbound rule, as shown here:

You can even create new
Security Groups using

the
Create Security

Group option

provided
on the EC2

dashboard. Selecting this
option

will provide
you

with a simple

interface using
which you can create and

populate a Security
Group

with
both

inbound and outbound rules.

Provide a
suitable

Security
group name and

Description
for your new

Security

Group.
Ideally,

as
a good practice,

always name your
Security Groups using some

meaningful
conventions

that
can

help
you identify

their purpose.
Next up,

select
the

default
VPC subnet from the VPC

drop-down list.
You can

create
up to 100 Security

Groups
in a VPC,

with each Security Group
having

up to
fifty firewall

rules.

[88]

Chapter 4

Fill in your inbound and outbound
rules,

and
click

on
Create

once done:

You can then
assign

this new Security Group to your
instances

either
during

the

launch
phase

or by
selecting

an
existing

instance
from

the
EC2 dashboard

and

changing
its

Security
Group

under
the

Change Security
Groups

option.

Feel
free

to create more such Security Groups in your EC2 account. Make sure you

follow
the

least privilege approach
and

allow traffic
only

for
the

required
set of ports

and
application services

and
nothing

more.

Understanding EC2 networking

Before
we

understand
how EC2 networking

actually
works,

it is essential
to

understand
the

difference
between

networks provided
by your

traditional data

centres and
public

clouds such as AWS.
A

traditional
data

centre network generally

comprises a
number of physical

switches
and routers that are connected to

physical

hardware
and are responsible for

transmitting
and

forwarding data
or

packets from

one
place

to
another.

[89]

Security, Storage, Networking, and
Lots

More!

The
same also applies

in the
case

of
cloud computing; however,

in
place

of the

hardware,
you now

have
virtual

devices
such as

virtual servers, virtual
network

cards, virtual switches, and routers. However, the main differentiator between

traditional
and cloud

based
networks is that

a cloud-based network is heavily

filtered. Most
public cloud

providers,
including AWS

itself, allow only unicast

datagrams over their networks,
restricting

all
broadcast datagrams. Why,

you
ask?

Well, mostly
for

security
purposes and to

avoid
DDoS

attacks, besides other reasons

as
well.

This
is
an important point to

remember,
however, as often

your applications

may require broadcast capabilities over
a
network to

discover some services
and

in such cases
these applications

may
not necessarily fit

on
a
public cloud. There are

ways to get
past

this
limitation; however,

that is
a different

topic altogether. For now,

let's take
a look

at how our EC2
instances are provided

with
their networks and IP

addresses.

To begin
with,

each
instance

that
you launch

in your EC2
environment

is
provided

with two unique IP
addresses,

called
a private

and public IP
address, respectively.

This
is

the
default

behavior of an
instance

and is not
under

your control by
default,

unless
you are working with

a
VPC, which we

will
be

discussing
in the next chapter.

When you
first launch

an instance, AWS
will provide it

with
a unique private IP

address using
its own internal DHCP

service.
You can

use this private
IP

address

to
communicate

with the instances
present

in the
same

network; however being
a

private
IP

address,
you cannot

use
this

network for any communication
with the

outside (Internet) world.
Along with the private IP

address,
you

also
get

an
internal

DNS
hostname

for your
instance.

The
internal

or
private

DNS
resembles something

like
this

string, ip-172-31-46-172.us-west-2.compute.internal,
and as you can

see,

it tells us
a lot about

our
instance

as well. For
example,

this particular private DNS

hostname resolves a private
IP

of 172-31-46-172
and also this

particular instance

is currently deployed in the
us-west-2 region.

Neat, right! Let's take
a look

at the

following screenshot,
which

shows example
of

a private
and

public IP address:

[90]

Chapter 4

The
same applies

to the public IP
address as

well with the
exception that

this

particular
IP

address
is reachable

from
the

Internet
and can be used to

communicate

with the
outside world.

AWS
maps

the public IP
address

of an
instance

to its

corresponding private
IP address using

simple
NAT

and, just like
its counterpart,

provides
it
with a public

DNS
value

as
well.

The public DNS
resembles something

like
this

string, ec2-54-149-173-165.us-west-2.compute.amazonaws.com,
and as

you

can
see,

this
also provides

us with
similar

information about the instance's public IP

address as well as where the instance has been launched from.

Keeping these
basics

in
mind,

there are
also a

few
additional

pieces of information

that you need to know
about

your instance's networking. You can control
your

instance's IP address to
a
big extent

depending
on whether they are launched from

a

standard EC2 environment or in a VPC.

In standard EC2
environment

or as
AWS calls it, EC2-Classic,

you
really

don't have

much control
over

your
instance's

networking.
Each

instance is
provided with a

single unique private
as well as

a
public IP

address
and DNS,

respectively.
These

values
are released to the general IP pool when your

instances are either stopped

or
terminated.

You cannot reuse
these

IP
addresses

and DNS values
once

they are

released
to the general

pool.

AWS
no

longer provides the EC2-classic account since

April 12 2013.

On the other hand,
a
VPC

provides
much control and

flexibility
when it

comes
to

your instance's IP
addressing.

Using
a
VPC, you can

define
and run instances from

specially
created

subnets,
which can either be

isolated (private
subnets) or connected

to the
Internet

(public subnets)
depending

on your requirements. You
can additionally

provide
your

instances
with more than one

private
and public IP

address
as

well

using
a
VPC,

something
we will be looking at with great detail

in
the

coming

chapter.
Instances in a VPC,

however, do not
release

their
private

IP
addresses back

to the general
pool

when they are
stopped.

[91]

Security, Storage, Networking, and
Lots

More!

Determining your instances IP addresses

AWS
provides a few easy

ways to
determine

your instance's IP
addresses. The

simplest
by far is using the

Description
tab

from
the

EC2 dashboard as shown here:

Select any
particular running

instance
from

the
EC2 dashboard

and
view

the

instance's
Private

DNS,
Private IPs, Public

DNS, and
Public

IP. Since
my instances

are deployed
in a VPC

by
default,

you
should see

an
additional

row called

Secondary
private

IPs as
well.

These are the
additional private

IPs that you can

allocate
to your

instance
as per your needs. If you don't

see these additional rows,

then don't worry! You are probably
running

your instances from an
EC2-Classic

account and that's fine for now.

Another
way of

listing
your instance's network

information
is by

using something

called
instance metadata. Instance

metadata
is simply

data about your instance.

Information such
as your

instance's
AMI ID,

instance's hostname,
block

device

mapping, network
details,

and
a lot

more
can

be obtained by querying
against

the

instance's metadata.

To know more about the various instance metadata

categories
and how to use

them,
go to

http://docs.

aws.amazon.com/AWSEC2/latest/UserGuide/ec2-

instance-metadata.html.

To
determine

your
instance's IP addresses

using instance
metadata, simply

connect

to your running instance
and

run the
following

command:

curl http://169.254.169.254/latest/meta-data/local-ipv4

[92]

Chapter 4

You
should receive

your instance's
private

IP
address,

as shown in the
following

screenshot. In
case you are wondering what's up with the

169.254.169.254
IP

address,
we'll try to keep it

simple; it
is
a special-use

IP
address (also called a link

local
address)

used by EC2 to
distribute

metadata to your
instances.

Similarly,
you can

list
your instance's public IP

address
by typing

in
the

following

command in
your

instance:

curl http://169.254.169.254/latest/meta-data/public-ipv4

You
should receive

your instance's Public IP
address,

as shown here:

Running a Windows instance?
You

can still
query its

instance

metadata
by

substituting
curl with

wget and
running

the

command in your Windows command prompt.

Feel
free

to
dig around

with instance
metadata

and
list

down your
instance's

hostname,
instance

ID, security groups, and much
more.

Working with Elastic IP addresses

Okay,
so

each of
your

instances
receives a

public and
private

IP address and in

standard normal
circumstances

these
IP addresses do

not
persist

with the instance

when it is powered
off.

But what if you want to
assign a

static IP
address

to
your

instance?
A

static IP
address that remains associated

with your
instance

even if it

is
powered off?

In that
case,

you
will

need to use
something called

an
Elastic

IP

Address (EIP).

[93]

Security, Storage, Networking, and
Lots

More!

EIPs
are

nothing
but

a
bunch of

static public IP addresses that AWS
allocates to your

account, not to
your instances.

Each
AWS

account can be
associated

with up to
five

EIPs;
however, you can always request AWS to

provide additional
ones as

per
your

requirements and needs by
filling

out
a simple request

form. Your EIPs will remain

associated
with your

AWS
account until you

choose
to

release
them

explicitly.

The really cool part
of

an EIP is that it can be
reassigned

to
a different

running

instance
dynamically

as and when
needed.

For
example,

let's
consider

our initial use

case, hosting
a customer's website

on AWS. As with all
websites,

this
design

calls

for a
web server and

a database server
to begin

with. Assume
that we created and

allocated
an

EIP
to the web

server instance,
as shown in the

image
here. This EIP can

then be mapped to
a
proper website name,

such
as

all-about-dogs.com,
using any

DNS service, such as AWS Route 53 and so on.

Now,
if
the web server

instance undergoes
any

upgrades
or

maintenance activities,

you can
simply

create
a
new,

similar
web

server instance
and point your

EIP
to it.

Once the
scheduled maintenance activity

is over,
simply

swap the
EIP

back to the

previous
web server instance.

Simple, isn't
it! When you add an

EIP
to your

instance,

AWS
automatically releases

that instance's public IP
address

to the general IP
pool.

On
disassociating

the EIP
from your

instance,
AWS will

once
again provide

your

instance with
a
new public IP

address from
the

general
IP pool. All this happens

really
quickly, just a

matter
of minutes!

How
is
an EIP charged? Well,

for
the

first
EIP that you attach to

a
running

instance,

you
don't

have to pay anything.
However,

you
will

need to shell out
a minimum

of

$0.005
per

additional EIP for
each instance

on a
per

hourly basis.

[94]

Chapter 4

AWS imposes a small hourly charge (approx. $0.005)
on

EIPs
if
they

are attached
to

instances
in

a stopped state
or

not associated with running instances. This is
just to make

sure that
the

EIPs
are used

efficiently and not wasted.

Let's
look

at few
simple

steps
using

which you
can create, associate,

and
disassociate

EIPs using
the AWS Management

Console!

Create an Elastic IP address

To create an Elastic IP address using
the

AWS Management dashboard, first login
to

the
dashboard using your IAM credentials

and
select

the
EC2 service option as EIPs

are a part of
the

EC2 services. Next, from the navigation pane, select the Elastic IPs

option. This will bring
up the

Elastic IP management dashboard as shown here. Since

this is going
to be our

first EIP, simply
go

ahead
and

select
the

Allocate
New

Address

option. In
the

confirmation dialog box, select Yes, Allocate
to

complete
the

process.

Your new
Elastic

IP is
now

ready to use!
Remember,

once
again,

that these
Elastic IP

addresses
are

associated
with your account and

bear additional costs with them,
so

use them
wisely.

Allocating Elastic IP addresses

Once
your EIP

has been created, you can go ahead and
allocate

it to any
running

instance
from

your current EC2 scope. Scope here can mean either
EC2-Classic or

a VPC
environment,

depending
on where your instances are

currently deployed.

In my case, the
instances are all

running out of
a VPC, so this particular EIP

can be

associated
with any instance currently

running within
my VPC. How

do
you tell

the
scope

of an EIP?
Well,

that's
simple!

Select the
particular

EIP and
view its details

on the
EIP management dashboard.

You should
see a

column
called Scope stating

whether you can deploy
this EIP in a VPC

or an
EC2-Classic

environment.

[95]

Security, Storage, Networking, and
Lots

More!

To
allocate

the
EIP, select

the EIP,
and from

the
Actions

tab,
select

the
option

Associate Address, as shown:

You
should

see the
Allocate

New
Address pop-up dialog

box
as shown. There

are

two ways
in

which you can
allocate

your EIPs to your
instances, either

by
providing

their Instance
ID or by

providing
the instance's

Network Interface information.

Provide
the Instance's ID

for
now and

leave
the Network

Interface option
blank.

Optionally,
you

can even select
the

Reassociation checkbox
if
you

wish to
re-allocate

an EIP from one attached instance to a new instance.

You
will receive a

warning
message informing

you that
associating

an EIP to your

instance will
release

the
current public

IP attached to it. Accept the
warning

and

select
the

Associate
tab to

complete
the

EIP allocation
process:

Verify
whether the

EIP
was

successfully
attached to your

instance
or not by viewing

the
status

on the
Elastic IP management dashboard.

[96]

Chapter 4

Disassociating and releasing an Elastic IP address

Disassociating
an

EIP from
an

instance
is an

equally important task and
can be

performed quite easily using
the EIP management

dashboard.
Select the

particular

EIP from the dashboard and from the Actions tab. Then select the Dissociate

Address option. This will
pop up

a confirmation
box

detailing
the

EIP
and

its

associated instance ID information, as shown here. Select Yes, Disassociate to

complete the
process:

On
disassociation,

AWS will
automatically allocate a free

and
available public IP

address
to the

instance
from its

general
IP

pool.
There is no guarantee that your

instance will
receive

the
same public IP address

as the instance had
before

the EIP

was
added

as
these

public IPs are
always circulated

and
assigned

on
a
random

basis.

To
release

the
EIP back

to the pool, select the EIP from the
dashboard.

From the

Actions tab,
select

the
Release Addresses option.

You will be
provided

with
a

confirmation box describing
the current

EIP address.
Select

Yes, Release
to complete

the
process,

as
shown:

[97]

Security, Storage, Networking, and
Lots

More!

Understanding EBS volumes

We
briefly

touched
base

on
EBS volumes

back in the
previous

chapter where we

were comparing
EBS-backed

and instance
store-backed images.

In this
section,

you

are going to
learn a

bit more about EBS
volumes,

their
features, benefits, different

types,
along with steps on how to create, attach, and

delete
them

as
well. So, what

are we waiting for? Let's get
started!

First up,
let's

understand
EBS volumes a

bit better.
EBS volumes

are nothing more

than
block-level

storage
devices

that you can attach to your EC2
instances.

They are

highly durable and
can provide a host

of
additional functionalities

to your
instances,

such as data
persistence,

encryption,
snapshotting capabilities,

and so on.
Majority

of the time, these
EBS volumes

are used for storing data for
a variety

of
applications

and
databases, however

you can use
it

just as
a normal

hard drive as well.
The best

part of EBS volumes is that they
can persist independently

from your
instances.

So

powering down an instance or even terminating it will not
affect

the state of your

EBS volumes.
Your

data will
stay on it

unless
and until you

explicitly delete
it.

Let's
look

at
some

of the key
features

and
benefits

that EBS
volumes have

to
offer:

•
High

availability: Unlike
your

instance store-backed drives, EBS volumes

are
automatically replicated

by
AWS

within the
availability zone

in which

they are
created. You

can create an EBS
volume

and attach it to any
instance

present in
the same

availability
zone; however, one EBS volume cannot be

attached to multiple
instances

at the same
time. A single instance, however,

can have
multiple

EBS
volumes

attached to it at any given time.

• Encryption capabilities: EBS volumes
provide an

add-on feature
using

which you can encrypt your
volumes using standard

encryption
algorithms,

such as
AES-256,

and keys as
well.

These keys are
autogenerated

the
first

time you employ
encryption

on
a volume using

the AWS Key
Management

Service
(KMS).

You can
additionally

even
use

IAM to
provide fine-grained

access
control

and permissions
to

your
EBS

volumes.

• Snapshot capabilities: The state
of an EBS

volume
can be

saved using

point-in-time snapshots. These
snapshots are

all
stored

incrementally
on

your
Amazon S3

account and can be used for
a variety

of
purposes,

such as

creating new
volumes based

on an
existing

one,
resizing volumes,

backup

and data recovery, and so on.

EBS
volumes

cannot be
copied from one

AWS
region

to

another.
In

such cases,
you

can
take

a snapshot
of the

volume

and copy
the

snapshot over
to

a
different

region
using

the
steps

mentioned at http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/ebs-copy-snapshot.html.

[98]

Chapter 4

EBS volume types

There are three
different

types of
EBS volumes available today,

each with
their

own

sets of
performance characteristics

and
associated

costs.
Let's briefly

look into each

one of them and
their potential uses:

•
General purpose

volumes (SSD):
These are by far the

most commonly
used

EBS
volume types as they

provide a
good

balance
between cost and overall

performance. By
default,

this volume provides a
standard

3
IOPS per GB of

storage, so
a
10 GB general

purpose volume will
get

approximately
30

IOPS

and so on
so

forth, with
a
max

value
of 10,000 IOPS. You

can create general

purpose
volumes

that
can

range
in size from 1

GB to
a maximum

of 16 TB.

Such
volumes

can be used for
a variety

of
purposes,

such as
instance

root

volumes, data disks
for dev and

test environments,
database

storage,
and

so

on.

•
Provisioned IOPS

volumes (SSD): These
are

a specialized set
of SSDs that

can
consistently provide a minimum

of 100
IOPS

burstable up to 20,000

IOPS.
You

can create
Provisioned

IOPS
Volumes

that range in size from
a

minimum
of

4
GB all the way up to

16
TB. Such

volumes
are

ideally suited

for
applications that

are IO intensive,
such as

databases, parallel computing

workloads such
as Hadoop, and

so
on.

• Magnetic volumes:
Very

similar
to

traditional
tape

drives
and

magnetic

disks,
these

volumes
are

a
good match

for workloads
where data is

accessed

infrequently, such
as

log storage, data
backup and recovery, and so on. On

an average,
these

volumes
provide

up to
a
100

IOPS with
an ability to burst

up to
1,000

IOPS. You can create
Magnetic volumes

that
range

in
size

from
a

minimum
of

1
GB all the way up to 1TB.

Getting started with EBS Volumes

Now that we have
a fair idea

of
what

an
EBS

Volume is,
let's

look at
some simple

ways that you can create, attach, and
manage these volumes.

To
view

and access
your

account's EBS
Volumes using AWS Management Console,

simply select
the

Volumes option from
the EC2 dashboard's

navigation
pane, as

shown here:

[99]

Security, Storage, Networking, and
Lots

More!

This
will bring

up the
Volume Management dashboard

as shown here. In my
case, I

already
have

a
volume present here that is shown as in

use.
This

is
our

first
instance's

root
device volume

that we launched in
Chapter

3,
Images

and
Instances.

Each
EBS

backed
instance's volume

will appear here
in

the
Volume Management dashboard.

You can use
this same dashboard

to
perform a host

of
activities

on your
volumes,

such as create, attach,
detach,

and monitor
performance,

to
name a few.

You can view any
particular EBS Volume's details

by
simply selecting it

and viewing

its
related

information in the
Description tab, as shown.

Here, you can view the

volume's ID, Size, Created date, the volume's current State as well as its Attachment

information,
which

displays
the volume's mount point on

a particular instance.

Additionally,
you can also view the

volume's
health and status by

selecting
the

Monitoring
and

Status Checks
tab,

respectively.
For

now, let's
go ahead and create

a

new
volume

using the
volume management dashboard.

Creating EBS volumes

From the
Volume Management dashboard, select

the
Create

Volume
option.

This

will pop up the
Create

Volume
dialog

box as
shown

here:

[100]

Chapter 4

Fill in the details as
required

in the
Create Volume dialog

box. For this tutorial,
I

went ahead and
created a simple 10-GB

general purpose
volume:

• Type: From
the Type

drop-down list, select
either

General Purpose (SSD),

Provisioned IOPS
(SSD),

or
Magnetic

as per your
requirements.

• Size (GiB): Provide
the size

of
your

volume
in GB.

Here, I provided 10 GB.

•
IOPS: This

field
will

only
be

editable
if you

have selected Provisioned

IOPS (SSD) as the volume's type. Enter the max
IOPS

value as per
your

requirements.

• Availability
Zone:

Select
the

appropriate availability
zone in

which
you

wish to create the
volume. Remember,

an
EBS volume

can span
availability

zones, but not
regions.

• Snapshot
ID:

This
is an

optional field.
You can

choose
to populate your

EBS

volume
based on

a
third party's

snapshot
ID.

In this
case, we have

left
this

field blank.

• Encryption:
As

mentioned earlier, you
can choose whether or not you

wish

to encrypt your
EBS Volume.

Select
Encrypt this volume

checkbox if you

wish to do so.

•
Master Key: On selecting the

Encryption option,
AWS

will automatically

create
a default

key
pair for

the AWS's KMS. You can make
a
note of the

KMS Key ID
as

well as the KMS Key ARN as these
values

will be
required

during the volume's
decryption process as

well.

Once
your configuration

settings are
filled

in,
select Create

to complete the volume's

creation process. The
new

volume
will take

a few minutes
to be

available
for use.

Once the
volume

is created, you
can

now go ahead
and attach

this
volume

to your

running
instance.

[101]

Security, Storage, Networking, and
Lots

More!

Attaching EBS volumes

Once the
EBS volume is created, make sure

it
is in

the
available state before

you go

ahead
and

attach it
to

an instance. You can attach multiple volumes
to

a single instance

at a time, with each volume having a unique device name. Some
of

these device names

are reserved, for example, /dev/sda1 is reserved for
the

root device volume. You can

find
the

complete list of potential and recommended device names at http://docs.

aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html.

The
following screenshot shows

the
option

of attaching
a
volume:

To attach
a volume, select

the
volume from

the
Volume Management dashboard.

Then
select

the
Actions

tab and
click

on the
Attach

Volume
option.

This
will

pop up

the
Attach Volume dialog box,

as shown:

Type in your
instance's

ID in the
Instance field

and
provide a suitable name

in the

Device field
as

shown.
In this

case, I provided
the

recommended device
name

of/

dev/sdf to this
volume.

Click on
Attach

once
done.

The
volume

attachment process

takes
a few minutes

to complete. Once
done,

you are now ready to make the
volume

accessible
from your

instance.

[102]

Chapter 4

Accessing volumes from an instance

Once the
volume

is attached to an
instance,

you can
basically format

it and use it
like

any
other block device.

In this
case,

I'll be
using

the
same

Amazon Linux instance

that we created back in
Chapter

3, Images and
Instances.

You can attach and
mount

volumes to Windows-based instances as well.

To get started,
first

up connect to your running instance
using

putty or any other

SSH
client

of
your

choice. Next, type
in

the
following

command to check the current

disk partitioning of
your

instance:

sudo df -h

You
should

see
a /dev/xvda1 like filesystem mounted

on the root
(/) partition along

with
few

other
temp filesystems, as shown

here.
This is more

or
less

the standard

disk partitioning scheme
that

your
instances

will
have.

Next, run the
following command

to
list

out
partitions

on your current instance.

You
should

see
a default /dev/xvda

partition along with its partition table and an

unformatted disk
partition

with
the name

/dev/xvdf
as

shown
in the

following

screenshot. The /dev/xvdf command
is the newly

added EBS volume
that we will

need to
format in

the upcoming steps:

sudo fdisk -l

[103]

Security, Storage, Networking, and
Lots

More!

Once
you

have
verified

the
name

of your newly
added disk, you

can go
ahead

and

format
with

a filesystem of
your

choice.
In this

case, I
have gone ahead and

used
the

ext4 filesystem
for my new

volume:

sudo mkfs -t ext4 /dev/xvdf

Now that your volume
is formatted,

you can create
a
new

directory
on your

Linux

instance and
mount

the
volume

to it
using

your standard
Linux commands:

sudo mkdir /my-new-dir

sudo mount /dev/xvdf /my-new-dir

Here
is

the screenshot of creating new
directory using

the preceding
commands:

Here's
a useful

tip! Once you have
mounted

your new volume, you
can

optionally

edit the Linux instance's fstab file and add the volume's mount information there.

This will make sure that the volume is mounted and available even if the instance is

rebooted. Make
sure

you take
a backup

copy of the
fstab file before you edit

it,
just

as
a precautionary measure.

Detaching EBS volumes

Detaching EBS
volumes

is
a fairly simple

and
straightforward

process.
You

will
first

need to unmount the volume from your
instance

and then
simply

detach it using

Volume
Management dashboard.

Run the
following command

to
unmount

the EBS volume
from

the
instance:

sudo umount /dev/sdf

[104]

Chapter 4

Make
sure you

are
unmounting

the
correct volume from

the instance.
Do not

try
and

unmount
the

/dev/sda or
any

other root partitions.

Once the
volume

is
successfully unmounted from

the instance, detach the
volume

by

selecting
the Detach

Volume option from
the

Actions
tab, as shown here:

Managing EBS volumes using the AWS CLI

You can create, attach, and
manage EBS

volumes using the
AWSCLI

as
well.

Let's

go ahead and create
a
new EBS

volume
using the AWS

CLI.
Type in the

following

command:

aws ec2 create-volume \

--size 5 --region us-west-2 --availability-zone us-west-2a \

--volume-type gp2

The
--volume-type attribute accepts

any
one

of
these

three
values:

• gp2:
General

Purpose instances (SSD)

• io1: Provisioned IOPS volumes (SSD)

• standard: Magnetic volumes

The
following

code will create
a 5

GB General
Purpose volume

in the
us-west-2a

availability zone.

[105]

Security, Storage, Networking, and
Lots

More!

The new
volume will

take
a
couple of

minutes
to be created. You

should see a similar

output as the
following screenshot.

Make
a note

of the new volume's
Volume ID

before
proceeding

to the
next steps.

Now that the new
volume

is created, we
can

go ahead and attach it to our
instance.

Type in the
following command:

aws ec2 attach-volume \

--volume-id vol-40993355 \

--instance-id i-53fc559a \

--device /dev/sdg

The
following command will attach

the
volume with

the
volume

ID
vol-40993355

to our
instance (i-53fc559a),

and the device name will be
/dev/sdg.

Once
again,

you can
supply

any
meaningful

device name here, but make
sure that it abides

by

AWS's
naming conventions and best practices

as
mentioned in http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html.

Once the
volume

is attached to your instance, the
next

steps are
pretty

easy and

straightforward.
First

format
the new

volume
with

a suitable filesystem
of your

choice. Next up, create
a
new

directory inside
your

instance
and mount the newly

formatted
volume on it.

Voila!
Your volume

is
now

ready for use.

You can detach and
delete

the
volume

as well
using

the AWS CLI.
First

up, we
will

need to unmount the volume from the
instance.

To
do

so, type in the
following

command in
your

instance:

unmount /dev/sdg

[106]

Chapter 4

Make sure you are
unmounting

the correct volume and not the root
partition.

Once

the
volume

is
unmounted, simply

detach it
from

the instance
using

the
following

AWS CLI code:

aws ec2 detach-volume \

--volume-id vol-40993355

The output
of

the
preceding command

is
as follows:

Finally,
go

ahead
and

delete
the volume

using
the

following
AWS CLI

code:

aws ec2 delete-volume \

--volume-id vol-40993355

Remember that
you

cannot
delete

volumes if
they are attached or in use by an

instance,
so make sure that

you
follow

the
detachment process before deleting it.

Backing up volumes using EBS snapshots

We
do

know for
a fact that AWS automatically replicates

EBS
volumes

so
that

your

data
is
preserved

even in
case the

complete
drive

fails.
But this

replication is limited

only to the
availability

zone in which the drive
or EBS volume

was created, which

means
if that

particular availability
zone was to go down

for some reason,
then there

is no way for you to back up your
data. Fortunately for

us, AWS
provides a

very

simple
yet highly

efficient
method of

backing EBS volumes, called
as EBS

snapshots.

[107]

Security, Storage, Networking, and
Lots

More!

An
EBS snapshot in simple terms is a state of your volume at a particular point in time.

You can take a snapshot
of

a volume anytime you want. Each snapshot that
you

take is

stored incrementally in Amazon S3, but, you will
not be

able
to

see these snapshots in

your S3 buckets;
they

are kind
of

hidden away and stored separately.

You can
achieve a

wide
variety

of
tasks using snapshots. A few

are
listed

as
follows:

• Create new volumes based
on

existing ones:
Snapshots are

a
great and easy

way to
spin

up new
volumes. A

new
volume spawned

from
a snapshot is

an

exact replica
of the

original
volume, down to the

last detail.

• Expand existing volumes:
Snapshots can also be

used
to expand an

existing

EBS
Volume's

size
as

well.
It is

a
multistep

process,
which

involves
you

taking
a snapshot

of your
existing EBS volume

and creating
a
larger new

volume
from the snapshot.

• Share
your

volumes:
Snapshots can be

shared
within your own account

(private)
as well publicly.

•
Backup

and disaster
recovery: Snapshots

are a
handy

tool
when it

comes
to

backing up your
volumes.

You can create multiple replicates of an
existing

volume within
an AZ, across AZs that

belong
to

a
particular

region,
as

well

as
across regions,

using
something called

an EBS Snapshot copy
mechanism.

To create
a
snapshot of your

volumes,
all you need to do is

select
the

particular

volume from
the

Volume Management
dashboard.

Click
on the

Actions
tab and

select
the

Create Snapshot option,
as shown here:

It
is really a good practice

to stop your
instance before taking

a snapshot if
you

are taking a snapshot of
its

root volume.

This ensures a consistent and complete snapshot
of your

volume at all times.

[108]

Chapter 4

You
should

see the
Create Snapshot dialog

box as shown in the
following

screenshot. Provide a
suitable Name and

Description
for your new

snapshot.

An
important

thing to note here is that this
particular snapshot is

not
supporting

encryption, but why? Well, that's
simple!

Because the
original

volume was not

encrypted, neither will the
snapshot

be encrypted. Snapshots of encrypted
volumes

are
automatically

encrypted.
Even

new volumes created from an encrypted
snapshot

are encrypted
automatically.

Once you
have finished providing

the
details,

click
on

Create
to complete the

snapshot process:

You
will

be shown
a confirmation

box, which
will display this particular snapshot's

ID. Make a note of this ID for future reference.

The new snapshot
will

take
a
good 3–4 minutes to go

from Pending
to

Completed.

You can check the status of your snapshot by
viewing

the
Status

as
well

as the

Progress
fields

in the
Description

tab, as shown here:

[109]

Security, Storage, Networking, and
Lots

More!

Once the
snapshot process

is
completed,

you can
use this particular

snapshot

and
Create Volume,

Copy
this snapshot

from
one

region to another, and
Modify

Snapshot Permissions
to

private
or public as

you see fit.
These options

are all

present in
the

Actions
tab of your

Snapshot Management
dashboard:

But for now, let's
go

ahead and use this snapshot
to

create our very first AMI. Yes,

you can use snapshots
to

create AMIs
as

well.
From the

Actions tab, select
the

Create

Image option. You should see
the

Create Image from EBS Snapshot wizard as shown

here. Fill in
the

required details and click
on

Create
to

create
your

very first AMI:

The
details

contain the
following options:

•
Name:

Provide a
suitable and

meaningful name for
your AMI.

• Description: Provide a
suitable

description for
your new

AMI.

• Architecture: You can either choose between i386 (32bit) or x86_64 (64 bit).

[110]

Chapter 4

•
Root

device
name:

Enter a
suitable name

for
your root device

volume.

Ideally, a
root

device volume should
be

labelled as/dev/sda1
as per EC2's

device naming
best practices.

• Virtualization type:
You can

choose
whether the instances launched from

this particular
AMI

will support Paravirtualization
(PV) or Hardware

Virtual Machine (HVM) virtualization.

You can read more about the various Virtualization

types
supported

by EC2 at
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

virtualization_types.html.

•
RAM disk ID, Kernel ID:

You
can

select
and

provide
your AMI with

its
own

RAM
disk

ID (ARI) and
Kernel ID (AKI); however,

in this
case I

have opted

to keep the
default ones.

•
Block

Device Mappings:
You can use this

dialog
to

either
expand

your
root

volume's size
or add

additional
volumes to it. You can change the Volume

Type
from

General Purpose (SSD)
to

Provisioned IOPS (SSD)
or

Magnetic

as per your AMI's
requirements. For

now,
I have left

these to their
default

values.

Click
on

Create
to

complete
the AMI creation

process.
The new AMI will take

a few

minutes
to spin up.

In
the meantime, you can

make a
note of the new AMI ID from

the
Create

Image from EBS
Snapshot confirmation box,

as shown:

[111]

Security, Storage, Networking, and
Lots

More!

You can view your
newly

created AMI under the AMIs
option from

the
EC2

dashboard's navigation
pane:

So, here we have
it!
You very own

AMI,
created

and ready
to use.

An
important

point to note here is that you
will

not be
able

to delete
this particular

EBS
Snapshot

now
as it is in

use
by your AMI. You

will
have to

deregister
your AMI

first from
the AMI Management

dashboard
and then try and

delete
the snapshot.

Planning your next steps
There are still

a
few important pieces that

I
would

really recommend
you try after

you have created your AMI. First up, try and launch
a
new instance

from
it. Once

the
instance

is
launched,

go
ahead

and check whether your
instance

has the
correct

root
partition

name and
size

as
allocated

or not.
Next

up, try and copy your AMI

to
a different

region. You can refer to
http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/CopyingAMIs.html for
the required

steps. Copying
an AMI

from one region to
another

is just
a simple

way to
build scalable

and
highly available

applications.
You can try the

same
with your EBS

volume
as

well.
Go ahead and take

a snapshot
of any

volume
of your choice and copy it over to

some
other AWS region

and attach it to
a running

instance.

Besides these
steps, there

is some additional EBS Volume related information

that
I
would

really recommend
you guys

read.
First up is

something called

EBS-optimized instances.
These are

specially
created

instances
that

provided

dedicated
throughput and IOPS

for performance-intensive applications. This
is an

add-on
feature

provided
by AWS and is charged separately on an

hourly basis.
To

know more about EBS-Optimized Instances,
go to

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html.

[112]

Chapter 4

Secondly, I would recommend
reading the

EBS Performance
tips

that
are

provided

by
AWS.

These tips will
help

you analyze and
benchmark

your volumes for
I/O

performance-intensive applications, configure
RAID on

your Linux instances,
and

help you
learn

how to prewarm your
EBS Volumes. These

are all
additional

tips and

practices
that you

can choose
to

leverage in
case you are working with

production

environments
and

high-performance-intensive
applications.

Another
very

interesting
thing worth mentioning is

public datasets. These
are

basically really
large

repositories
of

publically available datasets
such as the US

census
data,

transportation statistics,
human

genomic
data, and so on.

The whole

idea
here is that AWS

hosts these
and

provides
these

datasets for use
completely free

of charge,
so

you
don't spend

hours of your
time

locating and
downloading them.

Simply
create

a volume
from any one

of these public datasets which
are in the form

of public snapshots and
start

analyzing them.
Awesome,

isn't it!
You

can read more

about public
datasets at http://aws.amazon.com/public-data-sets/.

Recommendations and best practices
Here

are a
few handy

recommendations
and best practices to keep in mind when

working with
volumes:

•
Create and

use
IAM

policies
and allow only

a particular
set of

users
from

accessing your
EBS

volumes.

•
Create and

take periodic snapshots
of your

volumes.
Always

remember
to

provide suitable names and descriptions
for your

snapshots so
that they can

be
easily identified

and
re-used.

•
Always take

snapshots during
the

nonbusiness
hours of your

application.

•
Clean up

unused
or

older snapshots
to

save on unnecessary
costs.

•
Encrypt your

EBS volumes if
you have

some sensitive
data

stored on them.

•
Select and

use
the correct type of EBS

volume
as per your

application's needs.

Use
performance-optimized volumes for your high-performance applications

and
magnetic volumes

for
applications

that do not
need a

lot of data read

and write.

[113]

Security, Storage, Networking, and
Lots

More!

Summary

We
learned

plenty
of things in this

chapter, so
let's

take
a
quick recap of the things

covered
so

far. First up, we
learned

how to
edit

and create Security
Groups.

Next, we

saw
how our instances are

provided
with their networking, and we

also saw
how

to attach an
Elastic IP address

to
our

instance.
Finally,

we
dived

into the world of

EBS
volumes and created,

attached,
detached,

and deleted volumes using
both the

AWS
Management Console

and the
AWSCLI.

Toward the end, we even created our

very
first

AMI and
finally finished off

with
a
set of key

recommendations
and

best

practices.

[114]

Building Your Own Private

Clouds Using Amazon VPC

So,
in

the
previous

chapter, we covered
a lot of different things!

We started
off

with

some introductions
and working

examples
of security groups and

later
on

continued

with
understanding how

EC2
networking really

works, with
a
brief look at

Elastic
IP

addresses.
To top this

off,
we

also
learnt

a lot about EBS
volumes and their types and

how we
can create,

attach,
and manage

them.

This chapter,
however, is

going to be
a
lot

different
and

interesting
as in this chapter,

we
will explore

and
learn

about an
awesome service provided

by AWS called

Virtual Private Cloud (VPC)! We will
learn about the

different VPC
concepts and

terminologies,
deployment

strategies,
and

a whole
lot more,

so
stick

around;
we are

just
getting

started!

An overview of Amazon VPC
So

far
we have

learnt a
lot about EC2, its

features,
and

uses,
and how we can deploy

scalable
and fault tolerant applications

using
it, but EC2 does

come
with its own

sets of
minor drawbacks. For starters,

you do not
control

the
IP addressing

of your

instances,
apart

from adding
an

Elastic
IP address to your instance.

By design,
each

of your instances
will

get
a
single

private
and

public
IP

address,
which is routable on

the
Internet—again, something

you cannot control.
Also,

EC2 security groups have

the
capability

to add rules for inbound
traffic

only; there
is
no support

for providing

any
outbound traffic rules.

So, although EC2 is good
for

hosting
your applications,

it

is still not that
secure.

The answer to
all

your
problems

is
Amazon

VPC!

[115]

Building Your
Own

Private Clouds
Using

Amazon
VPC

Amazon VPC is a logically isolated
part of the AWS

cloud
that enables you to build

and use your own
logical

subnets and
networks.

In
a simpler sense,

you get to
build

your own network
topology

and
spin

up
instances

within
it.

But what
actually

separates
VPC from

your
classic

EC2
environment

is the
ability

to
isolate

and
secure

your environment.
Using VPCs,

you can
choose

which instances are
accessible

over

the Internet and which are not. You can create a bunch of different subnets within

a single VPC,
each

with their own
security

policies
and routing rules.

VPCs also

provided
an

added layer
of

protection
by enforcing

something called
as Network

Access
Control Lists (ACLs) besides

your
standard use

of security groups. This

ensures that you
have

total control over what
traffic

is routed in
and

out of your

subnets and the VPC as well.

VPCs
also provide

an added functionality
using which you

can connect and extend

your
on-premise

datacenters to the AWS cloud. This
is achieved using

an IPsec VPN

tunnel that connects from your on
premise

datacenter's gateway
device

to the VPC's

Virtual Private Gateway, as shown in
the

following image:

An
important

point to note here is that
a VPC is still a

part of the AWS Cloud.
It is

not
physically separate

hosting
provided

by AWS, it
simply

is
a
logically

isolated

part of the
EC2

infrastructure. This
isolation

is
done at

the network
layer

and is very

similar
to

a traditional
datacenter's network

isolation;
it's

just
that we

as
end users

are
shielded from

the
complexities

of it.

To know
more about VPN

and
virtual private

gateways, refer

to http://docs.aws.amazon.com/AmazonVPC/latest/

UserGuide/VPC_VPN.html.

[116]

Chapter 5

With
this

brief overview
in

mind,
let's

look
at
some

of
VPC's

key concepts and

terminologies
to get

a
better

understanding
of
how things

work.

VPC concepts and terminologies

By now you must
have understood

that
VPC

is
nothing more

than
a
network

service

provided
by AWS

using which
you can create logically

isolated environments for

your EC2
instances.

And just like any other network
service,

VPC too works on
some

key concepts,
explained

as
follows.

Subnets

Perhaps the
most important part

of the VPC, the subnets are nothing more than
a

range of
valid

IP
addresses

that you
specify.

VPC
provides

you with two
different

subnet
creation options: a publically

or Internet routed
subnet called

as
a public

subnet and an
isolated subnet called

as
a private subnet.

You can launch your

instances in either of these subnets
depending

on whether you wish your instances

to be routed on the Internet or not.

How
does

it
all

work? Pretty
simple!

When you
first

create
a VPC,

you
provide

it

with
a set

of IP
addresses

in the
form

of
a
CIDR,

for example, 10.0.0.0/16. The

/16 here
indicates

that this particular VPC can
support

up to
65,536

IP
addresses

(2^(32-16) = 65,536, IP address
range

10.0.0.0-10.0.255.255)!
Now that's

a
lot! Once

the
VPC's

CIDR block
is created,

you can go ahead and carve
out individual subnets

from it.
For example, a

subnet
with

the
CIDR block 10.0.1.0/24

for hosting your

web
servers

and another CIDR block
10.0.5.0/24

for your
database

servers and so

on and so forth.

The idea here is that from the 65,536 IP address block, we carved out two subnets,

each
supporting

256
IPs

(/24
CIDR

includes 256 IP
addresses

in it). Now
you

can

specify the subnet for the web
servers

to be public, as they
will

need to be routed to

the
Internet

and the
subnet

for the
database servers

to be
private

as they need to be

isolated from the outside world.

To know
more about

CIDRs and how they work,

refer to https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing.

[117]

Building Your
Own

Private Clouds
Using

Amazon
VPC

There is one
additional thing worth mentioning

here.
By default,

AWS will create

a VPC for
you in your

particular region
the

first time you sign
up for the

service.

This
is called

as the
default VPC.

The
default

VPC comes
preconfigured

with the

following set
of

configurations:

•
The

default VPC is always
created

with a CIDR block
of /16, which

means
it

supports
65,536

IP addresses
in it.

• A default
subnet is created in each AZ of your

selected
region. Instances

launched in
these default subnets

have both
a
public and

a private
IP

address

by default as
well.

•
An Internet Gateway is

provided
to the

default VPC
for instances to have

Internet
connectivity.

• A
few

necessary route
tables, security groups, and ACLs are

also
created by

default
that

enable
the instance

traffic
to

pass
through to the

Internet. Refer

to the
following

figure:

You can use
this default

VPC
just

as any
other

VPC by
creating additional

subnets in

it,
provisioning

route
tables, security

groups, and so on. In fact, the instances that we

launched back
in

Chapter 3,
Images

and
Instances,

were
based

out of the
default VPC!

Any
other VPC

that
you

create
besides the default VPC

is called

as the non-default VPC. Each non-default VPC in turn contains

non-default subnets, and so on and so forth.

[118]

Chapter 5

Security groups and network ACLs

We have
talked a

lot about
security

groups in the past two chapters already. We

do know that security groups are nothing but
simple firewall

rules that you can

configure
to

safeguard
your

instances.
You can create

a maximum
of 100

security

groups
for a single VPC,

with
each

Security Group
containing

up to 50
firewall

rules
in

them. Also,
it is very

important
to
remember

that
a
Security Group does not

permit
inbound

traffic
by

default.
You have to

explicitly set
inbound

traffic rules
to

allow traffic
to

flow
to your

instance. However, all outbound traffic from
the

instance

is
allowed

by
default.

Network
ACLs

are
something

new. These
provide

an added security
measure over

security
groups

as
they are instance

specific,
whereas Network ACLs

are subnet

specific.
Unlike your

security groups,
however, you can both

allow
and

restrict

inbound and
outbound traffic using

ACL
rules.

Speaking
of
ACL rules, they are very

much
similar

to your Security Group rules, however,
with

one
small exception.

Each

ACL rule is evaluated by AWS
based

on
a
number. The number can be anything

from 100
all

the way up to
32,766.

The ACL rules are
evaluated

in
sequence starting

from the
smallest

number and going
all

the way up to the
maximum value.

The

following is a small example
of how ACL

rules look:

Inbound ACL rules

RuleNo. Source IP Protocol Port Allow/Deny

100 0.0.0.0/0 All All ALLOW

* 0.0.0.0/0 All All DENY

Outbound ACL rules

RuleNo. Dest IP Protocol Port Allow/Deny

100 0.0.0.0/0 all all ALLOW

* 0.0.0.0/0 all all DENY

These are the ACL
rules created

by AWS for your
default

VPC; as
a result,

this

particular
ACL is called as the default Network ACL as

well.
What do

these
rules

mean? For starters, the rule number 100 for both the inbound and outbound ACL

specifies
the

traffic
to

flow
from

any
protocol running on any port in

and out
of

the subnet. The * is also considered as a rule number and is a must in all ACLs. It

basically
means

that
you drop any packets that do not match the

ACL's rules.
We

will be checking out ACLs and
security groups in action

later on in this chapter when

we create our
very

own
VPC for

the
first time.

[119]

Building Your
Own

Private Clouds
Using

Amazon
VPC

Routing tables

Route tables are pretty
straightforward

and easy to
implement in a VPC. They

are

nothing but
simple rules

or routes that are
used

to
direct

network
traffic from a

subnet.
Each

subnet in
a VPC

has to be
associated

with
a
single route table

at
any

given time; however,
you

can attach
multiple

subnets to
a
single route table as

well.

Remember the default VPC and the default subnets? Well, a similar default route

table is
also

created
when

you
first start

using your VPC. This
default

route table is

called as the main
route table

and it generally contains
only

one route
information

that enables
traffic

to
flow

within the VPC
itself.

Subnets that are not
assigned

to any

route tables are
automatically allocated

to the main route table. You can
edit

and add

multiple routes in the
main route

table as you
see fit; however,

you cannot
modify

the
local

route
rule.

The
following

an
example

of
a main

route table
viewed

from the

VPC
Management dashboard:

As you can
see,

there are
a
couple of

entries made
in this

table.
The

first is
the

local

route rule that
allows traffic

to
flow within this particular subnet (10.0.0.0/16). The

second route
is something called

as
a
route for VPC

endpoints.
This

is a
private

connection
made

between
your

VPC and
some

other AWS service; in this case, the

service is
S3.

Let's
look

VPC
endpoints

a little closely.

VPC endpoints

VPC endpoints
basically allow you

to
securely

connect
your

VPC
with other AWS

services.
These are

virtual devices
that

are highly available
and fault tolerant by

design. They
are scaled and managed by

AWS itself,
so you don't

have
to worry

about the intricacies
of maintaining

them.
All

you need to
do

is create
a
VPC

endpoint
connection between

your
VPC

and an AWS
service

of your choice, and

voila!
Your

instances
can now

communicate securely
with other AWS

services.

The instances in the VPC
communicate

with
other

services
using their private IP

addresses itself, so there's no need to route the traffic over the Internet.

[120]

Chapter 5

AWS currently only supports VPC endpoint connections for

Amazon
S3.

More services are planned
to be added

shortly.

When
an

endpoint
is created,

you
first

need to select either of your VPC's route

tables. The
traffic

between your VPC
instances

and the AWS
service will

be
routed

using this
particular

route table.
Similar

to any
other

route
information, a VPC

endpoint route also contains
a Destination field

and
a
Target

field. The Destination

filed contains
the AWS

service's prefix list ID,
which

is generally
represented by

the
following

ID:
pl-xxxxxxxx.

The
Target field contains

the endpoint
ID,

which
is

represented in
the

following format: vpce-xxxxxxxx.

In the
following

route
table example,

the
prefix list

ID
(pl-68a54001) represents

the S3

service whereas
the target

vpce-80cd2be9 represents
the endpoint

ID:

VPC Endpoint
Route

Destination
Target

10.0.0.0/16 Local

vpce

pl-68a54001 80cd2be9

Endpoints
also provided

an
additional feature using

which you
can

control and

govern
access

to the remote AWS
service.

This
is achieved using something called as

endpoint policies.

Endpoint
policies

are nothing more than
simple IAM-based

resource
policies

that

are
provided

to you when an
endpoint

is
first created.

AWS creates
a simple

policy

document that allows
full access

to the AWS
service

by
default. The following

is
a

sample
endpoint

policy
that is created by AWS

for
the S3

service:

{

"Statement": [

{

"Action": "*",

"Effect": "Allow",

"Resource": "*",

"Principal": "*"

}

]

}

To know
more about

the endpoint
policies and features, refer

to
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html.

[121]

Building Your
Own

Private Clouds
Using

Amazon
VPC

Internet Gateways

Internet
Gateways,

as the name
suggest,

are
primarily

used to
provide Internet

connectivity
to your VPC

instances. All
you have to

do
is create and attach an

Internet Gateway device to your
VPC

and
add a

route entry in your
public

subnet's

route table to point to the
Internet

Gateway!
That's it!

The
default

VPC
comes

with

an Internet
gateway already

deployed in it. So, any instance that you launch
from

the
default

subnet obtains
Internet connectivity automatically.

This does
not apply

for non-default VPCs, however, as an instance launched in a non-default subnet does

not receive
a
public IP

address
by

default.
You

would have
to either

assign
one to

the
instance during

the
launch phase

or
modify

your
non-default subnet's public IP

address attributes.

Once
you

have created and attached an Internet Gateway to your VPC, you will
also

have to make
sure that

the public subnet's route table
has

an entry for this gateway.

Plus,
you

will also have
to create the correct

set
of

security
groups

and
network ACL

rules
to

allow
your subnet's

traffic
to

flow
through the Internet. The

following
is an

example
of

a
VPC's route table showing the route

for a
subnet's

traffic
to the Internet

Gateway (igw-8c3066e9):

Besides
the Internet

connectivity, Internet
Gateways

also
perform NAT

on
the

instance's
private IPs.

The instances in
a
subnet are only aware of their private IP

addresses
that they use to

communicate internally.
The Internet

Gateway maps
the

instance's
private

IP with an
associated

public or
Elastic

IP
and

then routes
traffic

outside
the subnet to the

Internet. Conversely,
the Internet Gateway

also maps

inbound
traffic from

the
Internet

to
a public

or
Elastic

IP and then
translates it

to the

instance's
private

IP
address.

This
is
how your

instances
receive

Internet from within

a VPC, which brings
us to yet another

interesting topic called
as NAT

instances.

[122]

Chapter 5

NAT instances

So, we
have just

learnt that the
Internet

Gateway NATs the IP
addresses

of
instances

placed out in the public
subnet so

that
they

can
communicate with

the
Internet,

but

what about
instances

in the
private subnets?

How do they
communicate with

the

Internet without having direct
Internet connectivity

via the gateway?

That's where
a
NAT instance comes into

play. A
NAT

Instance
is
a special

instance

created
inside

your public subnet
that

NATs outbound
traffic

from
instances based

in your
private

subnet to the Internet.
It is important

to note here that the NAT

instance will
only forward

the outbound
traffic

and not
allow

any
traffic from

the

Internet to reach the
private subnets, similar

to
a
one way

street.

You can create
a
NAT

Instance
out of any AMI you

wish;
however, AWS

provides

few standard
Linux-based

AMIs that are well
suited

for
such purposes.

These
special

AMIs are
listed

out in the
community

AMIs page
and all

you need to do is
filter

out

the
amzn-ami-vpc-nat

AMI
from

the
list

and
spin

up an
instance

from
it.

The
following example

depicts the
traffic flow

from
a private

subnet
(10.0.1.0/24)

to

the NAT instance
inside a

public subnet
(10.0.0.0/24) via a

route table:

[123]

Building Your
Own

Private Clouds
Using

Amazon
VPC

In the
preceding example,

outbound
traffic from

the
public

subnet's route
table

is

routed to the Internet Gateway
(igw-8c3066e9)

while the outbound
traffic

from the

private
subnet's route table is routed to the NAT

instance.
Along with the route

tables, it is
also essential

that you correctly populate the
Security Group

for your

NAT instance. The
following is a simple

NAT
instance

Security Group
example for

your reference:

NAT instance
-
inbound

security
Rules

Source Protocol Port Remarks

10.0.1.0/24 TCP 80 Permit inbound HTTP traffic from private subnet

10.0.1.0/24 TCP 443 Permit inbound HTTPS traffic
from

private
subnet

<HOSTIP>* TCP 22 Permit
SSH

login
to NAT

instance
from remote N/W

The
* replace

the
<HOSTIP> field

with the IP
address of your

local desktop machine.

The
following

are the
outbound security rules:

NAT
Instance -

outbound
security

rules

Source Protocol Port Remarks

0.0.0.0/0 TCP 80 Permit HTTP access to Internet for the NAT instance

0.0.0.0/0 TCP 443 Permit HTTPS access to Internet for the NAT instance

DNS and DHCP Option Sets

VPCs
provide

an
additional

feature
called

as DHCP
Option

Sets
using

which you

can
set

and
customize

the DNS and DHCP for your
instances.

The
default VPC

comes with
a default DHCP

Options Set
that is

used to
provide

the
instances

with

a
dynamic

private
IP

address
and

a resolvable hostname.
Using the DHCP

Options

Set, you can
configure

the
following

attributes for your VPC:

• Domain
Name

Servers
(DNS): You can

list
down up to four DNS servers

here
of

your own choice or
even provide

the
Amazon

DNS
server details.

The
Amazon

DNS
server is provided

in your VPC and runs on
a reserved

IP
address.

For
example,

if
your

VPC has the subnet of
10.0.0.0/16,

then the
Amazon

DNS
Server

will probably run on the IP
10.0.0.2.

You can
additionally provide

the Amazon DNS Server's IP
address,

169.254.169.253,
or the

value AmazonProvidedDNS
as

required. Values

entered here are
automatically added

to
your Linux

instances
/etc/resolv.

conf file for name resolution.

[124]

Chapter 5

Domain name:
You can

either provide your
own

domain name value or choose

to use the
default

AWS
domain

name
values

using this
option.

The
default

AWS

domain names
can be

provided
only if you have

selected AmazonProvidedDNS
as your DNS server. For

example,
instances launched in the US

West
region

with

the
Amazon

DNS server
value

will get
a resolvable private DNS

hostname as us

west-2.compute.internal.

•
NTP servers: You can

list
up to four

NTP server
IP

addresses using
the

DHCP
Options

Set
wizard. Note,

however, that
this

will only accept IP

address values and not FQDNs such as pool.ntp.org.

•
NetBIOS name server: You can

list
down up to four NetBIOS name

servers

as
well;

however,
this field

is
optional.

•
NetBIOS node

type:
You can specify the NetBIOS node

value,
which can

either be 1, 2, 4, or 8. AWS
recommends

that you specify
2
as

broadcast,
and

multicasts are not currently supported.

You can create and attach only one DHCP
option set

with
a
VPC at

a time.
AWS uses

the
default

DHCP option if you do not specify one
explicitly for

your VPC. Instances

either running or
newly launched

will
automatically

pick up these
DNS

and DHCP

settings,
so there is no need

for
you to restart or

relaunch
your

existing instances.

VPC limits and costs

Okay,
so

far we
have

understood
a
lot about how the

VPC
works and what its

components are, but what
is

the
cost

of
all this?

Very
simple,

it's nothing!
VPC is a

completely free of
cost

service
provided

by
AWS;

however, you do have to pay for

the
EC2

resources that
you

use, for
example,

the
instances,

the
Elastic IP addresses,

EBS volumes,
and so on.

Also,
if you

are using
your

VPC
to connect to your

on

premise datacenter using
the VPN option, then you need to pay for the

data transfers

over the VPN
connection as

well as for the VPN
connection itself.

AWS charges
$0.05

per VPN
connection

hour.

Besides this,
VPCs

also
have

a
few

limits set on them
by

default.
For

example, you

can have
a maximum

of
five

VPCs per region.
Each

VPC can have
a max

of one

Internet gateway as well
as

one
virtual private

gateway.
Also,

each
VPC

has
a limit

of
hosting a maximum

of up to 200
subnets

per
VPC.

You can
increase these limit

by
simply requesting

AWS to do so.
To

view the complete
list

of VC
limits, refer

to

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_

Limits.html.

[125]

Building Your
Own

Private Clouds
Using

Amazon
VPC

Working with VPCs
Enough talk! It's time to get into some action! In this section, we are going to

look

at
how

AWS
facilitates

the
easy deployment

of VPCs
using something called

as the

VPC wizard as
well

as how to create your very
first,

fully
fledged

and operational

VPC! So, what are we
waiting

for? Let's get started!

VPC deployment scenarios

VPC
provides a simple, easy-to-use wizard

that
can spin

up
a
fully functional

VPC

within
a
couple

of minutes.
All

you
need to do is

select a particular
deployment

scenario
out

of
the

four scenarios provided and configure a few basic parameters

such as subnet
information, availability

zones in which you
want

to launch your

subnets,
and so on, and the

rest
is

all
taken care of by AWS

itself.

Let's have
a
quick

look
at the four VPC deployment

scenarios:

•
VPC

with a single public subnet: This
is by

far
the

simplest
of the four

deployment
scenarios. Using this scenario, VPC

will
provision a single

public

subnet with
a
default Internet

Gateway
attached to it. The subnet will

also

have
a few simple and basic route

tables, security groups, and network
ACLs

created. This
type of deployment is ideal for

small-scaled
web applications or

simple
websites that don't

require
any separate

application
or

subnet tiers.

•
VPC

with public
and

private subnets (NAT): Perhaps
the

most commonly

used
deployment scenario, this

option
will provide

you with
a
public subnet

and
a
private

subnet
as well. The

public subnet will
be

connected
to an

Internet gateway and allow instances launched
within

it to
have

Internet

connectivity,
whereas the private

subnet will not
have

any access
to the

outside
world.

This scenario will also provision a single
NAT instance

inside

the public subnet
using

which your
private subnet instances

can connect with

the outside world but not vice versa. Besides this, the wizard will also create

and
assign a route

table to both the public and
private subnets,

each
with

the

necessary routing information prefilled
in them.

This
type of deployment

is ideal for
large-scale

web applications and websites that leverage
a mix of

public facing
(web

servers)
and

non-public facing (database servers).

[126]

Chapter 5

VPC
with public

and
private subnets and hardware VPN access:

This deployment

scenario
is very

much similar
to the

VPC
with public and

private
subnets, however,

with one
component

added
additionally,

which
is

the
Virtual Private Gateway. This

Virtual Private Gateway connects
to your on

premise
network's

gateway using a

standard
VPN

connection. This type of
deployment is

well
suited

for
organizations

that wish to extend
their on premise

datacenters and networks in to the
public clouds

while
allowing their instances to

communicate with
the

Internet.

• VPC with a private subnet only and hardware VPN access: Unlike
the

previous deployment scenario, this scenario only provides you with a private

subnet that can connect
to

your on premise datacenters using standard VPN

connections. There is no Internet Gateway provided and thus your instances

remain isolated from the Internet. This deployment scenario is ideal for cases

where you wish to extend your on premise datacenters into the public cloud but

do not wish your instances to have any communication with
the

outside world.

With
this

understanding,
let's go ahead and

deploy our
very

first, fully functional

VPC using the VPC wizard!

Getting started with the VPC wizard

Before
we go ahead and

deploy our
VPC, let's

first
have

a quick
look at our

use case.

We need to create
a
secure website hosting

environment
for our friends

at All

About-Dogs.com, complete
with the

following requirements:

•
Create

a
VPC

(US-WEST-PROD-1 - 192.168.0.0/16)
with separate secure

environments
for hosting the web

servers
and

database
servers.

•
Only the web servers

environment (US-WEST-PROD-WEB - 192.168.1.0/24)should have direct Internet access.

• The database servers environment (US-WEST-PROD-DB - 192.168.5.0/24)
should be

isolated
from any direct access from the

outside
world.

•
The database servers can

have restricted Internet access
only through

a jump

server (NAT Instance).
The

jump server
needs to be

a
part of the web server

environment.

• The web servers environment should full have access to Amazon S3.

[127]

Building Your
Own

Private Clouds
Using

Amazon
VPC

The
following

is what the
proposed environment should

look
like:

To get started with
VPC,

we
first

have to
log in

to the AWS Account using your IAM

credentials.
Next,

from
the AWS

Management Console,
select the VPC

option from

under the
Networking

group, as
shown in

the
following screenshot:

This will bring
up the

VPC Dashboard using
which

you can create, manage,
and

delete VPCs
as per

your requirements. The VPC dashboard lists
the

currently deployed

VPCs, Subnets, Network ACLs, and much more under the Resources section.

You can
additionally

view and
monitor

the health of your
VPC service

by
viewing

the
status provided

by the
Service Health dashboard,

as shown in the
following

screenshot. In my
case, I'm operating

my VPC
out of the US

West (Oregon) region.

[128]

Chapter 5

The VPC Dashboard
also lists

any
existing

VPN
connections

that you
might

have
set

up
earlier.

You can view the VPN
Connections, Customer Gateways

information

as well as the
Current Status

of the VPN
connection

by
using

this
dashboard.

Remember that a
VPN

connection
has

a cost associated with
it when it is

provisioned

and in the
available

state. You can
additionally use

this
dashboard and even launch

your instances
directly

into
a VPC using

the
Launch EC2 Instances

option. These

instances
will most

probably be launched in your
default

VPC in
case

you haven't

already created
another one.

With
all this said and done, let's go ahead and create our

VPC using
the

VPC Wizard.

Select the
Start VPC Wizard

option. The
wizard

is
a simple two-step

process that

will guide you
with

the
required configuration settings for

your VPC. You will be

prompted
to select any one out

of
the

four VPC scenarios,
so with our use case in

mind,
go

ahead
and select the VPC

with Public
and

Private Subnets
option. Do

note that this
will create a

/16 network
with

two
/24 subnets

by
default,

one public

subnet and the other
a private

subnet. You
can always

create more subnets as

required once the VPC is created.

Also
worth

mentioning
here is that

this VPC scenario
will create and launch

a
NAT

instance as
well

in the public subnet. This
instance will

be
powered

on
automatically

once your VPC is created, so be
aware

about its
existence

and power
it down unless

you want to get
charged

for it.

This
NAT

instance launched
by the

wizard does
not

support

the t2.micro instance type
(Free Tier eligibility)

during launch;

however, you
can

always
change

this once your instance
is

launched from
the EC2

Management dashboard.

[129]

Building Your
Own

Private Clouds
Using

Amazon
VPC

The second step of the
wizard

is where you get to
configure

your VPC
network

and

subnets. Fill in
the

following details
as

required:

•
IP
CIDR

block:
Provide

the IP CIDR
blockaddress

for your
VPC's network.

Ideally, provide a
/16

subnet
that

will provide you
with

a
good 65,531 IP

addresses to use.

•
VPC name:

Provide a
suitable name

for your
VPC. In this case,

I have

standardized
and used the

following
naming

convention: <REGION>-<DEV/

PROD Environment>-<UNIQUE_ID>; so in our case, this translates to US

WEST-PROD-1.

• Public subnet:
Now,

since
we are going with

a public
and private

subnet

combination scenario, we have to
fill in

our public subnet
details

here.

Provide a
suitable subnet block for your instances to

use.
In this case,

I have

provided
a/24

subnet
which

provides a
good

251 usable
IP

addresses:

• Availability
Zone: Here's the fun part! You can

deploy
your subnets

in
any

availability zone available
in that

particular
region. Now,

US-WEST
(Oregon)

has three AZs and you can use any of those there. In my
case, I

have gone

ahead and
selected us-west-2a as

the
default

option.

• Public subnet name: Provide a
suitable

public subnet reference name.
Here,

too,
I
have gone ahead and used the standard naming convention, so

this

particular
subnet gets called as

US-WEST-PROD-WEB, signifying
the web

server instances
that will get

deployed
here.

[130]

Chapter 5

• Private subnet, Availability zone, Private subnet name:
Go ahead and

fill

out the
private

subnet's
details using

the
similar

IP
addressing

and
naming

conventions. Remember
that

although
you

can set
up your

private
subnet

in
a different

AZ,
as

compared to the public subnet,
ideally doing

that is

not
recommended.

If you
really

want to
set

up
a failover-like scenario,

then

create
a separate

public and
private

subnet
environment in a different

AZ

altogether,
for example, us-west-2c.

So,
even in

case
us-west-2a suffers

an outage, which by the way can happen, your
failover

subnets will still be

functioning out of the us-west-2c AZ.
Refer

to the
following screenshot:

Next up, we specify the details of
our

NAT instance:

• Instance type:
Select

your
NAT instance type

from
the

available
dropdown

menu. In my
case, I

have gone
ahead

and
selected

the
t2.micro instance

type as that is the
smallest

type
available.

Do
remember that selecting

any

other option
will

incur
additional

costs as only the
t2.micro

instance type is

covered
under

the free tier
eligibility.

•
Key

pair
name:

Select
an already

existing
key pair from the dropdown

list. Make sure
you

have
this particular key pair

stored safely
on your

local

computer, as without it you
will

not be
able

to SSH
into

the NAT
instance.

You can
alternatively

create
a
new key pair here as

well
using the

same
EC2

Management Console.

[131]

Building Your
Own

Private Clouds
Using

Amazon
VPC

Moving on, we
now add

the S3
endpoints

to our
particular

subnet. You can add

the endpoint to either your private or
public subnets,

or both of
them, depending

on

your
requirements.

• Subnet:
As per our

VPC's requirements,
the S3 endpoint is only

made

available
to the public subnet,

so
go

ahead
and

select
the

Public subnet

option from the
dropdown list.

• Policy:
You can either choose to

allow
any user or

service within
the newly

created VPC to access
your

S3 or
specify a

custom
IAM

access
policy

as you

see fit. In our
case,

let's go ahead and
select Full

Access for now.

• Enable
DNS

hostnames: Enabling
this

option
will

provide
your

instances

with the
ability

to
resolve

their DNS
hostnames on

the Internet.
Select

the Yes

option and
continue.

• Hardware tenancy: Although a
VPC runs

off a completely isolated
network

environment,
the underlying

server
hardware is still

shared
by

default.
You

can
change

this tenancy option by
selecting

either the
default

or
dedicated

option from the
dropdown list provided.

Pricing for a dedicated instance
is

slightly different
than

your

traditional
EC2

instances.
Check out the

complete pricing details

for a dedicated EC2 instance at http://aws.amazon.com/

ec2/purchasing-options/dedicated-instances/.

Once all the required
information is filled

out, go ahead and click on the
Create

VPC
option.

The
VPC creation

takes
a
few

seconds
to complete. You can even

view

your new
VPC's default routes, security groups,

and Network ACLs being
created.

Toward the end you
will

notice your NAT
instance

powering
on,

and
after a

few

seconds
of deployment

your
VPC

is
now

ready
for

use!

Here's
a
handy tip

for all first timers!
As

soon
as your NAT

instance
is created,

you can go ahead and change
its default instance

type to t1.micro from the
EC2

Management
Dashboard.

[132]

Chapter 5

To
do

so,
first

open up the
EC2 Management

Dashboard in
a
new tab on your

browser.
You

should see
an instance in the running

state, as shown in
the

following

screenshot.
First up, stop

your
instance

using
the

Actions
tab. Select the

Instance

State option
and click

on Stop. Wait for
the instance

state
to change to

Stop before

you proceed any
further.

Next,
select

the instance, and
from

the
Actions

tab,
select

Instance Settings
and then

Change Instance Type.

From the
Change Instance

Type
dialog box, select

the
t1.micro option and click

on

Apply. Voila!
Your NAT instance

is
now

officially a
part of

your
free tier as

well!

Simple, isn't
it!

Let's have
a
quick

look
at what actually happens behind the scenes when you create

a VPC using
the

VPC Wizard.
First up,

let's
look at the

VPC itself.

Viewing VPCs

Once the
VPC is

created and
ready,

you can
view it

from the VPC
Management

Dashboard
as

well.
Simply

select
the Your

VPCs option from
the

Navigation pane

provided
on the

left-hand side
of the

dashboard.

[133]

Building Your
Own

Private Clouds
Using

Amazon
VPC

You
should

see your newly created
VPC, as shown in

the
following screenshot.

You

can use the search bar to
filter

out results as
well.

Select the particular
VPC

to
view

its details.

Use the
Summary

tab to
view

the
description of

your
selected

VPC. Here, you

can
view

the VPC's
default

DHCP
options

set as
well

as the
Tenancy

and DNS

hostnames
and DNS

resolution options. You
can

optionally
change

these values
by

selecting
the

particular
VPC and from the Actions tab,

selecting either Edit DHCP

Options Set or Edit DNS Hostnames.

You
can

view
your default VPC

using the VPC
Management

Dashboard
as

well. Simply
check the

default VPC column

against
your

listed
VPCs. If the

value
in that

column
is

Yes,

then
that particular

VPC is
your account's default

VPC!

You can create
additional VPCs

as well
using

the
Create

VPC
option; however, as a

good practice, always keep things
simple

and
minimal.

Don't go over
creating

VPCs.

Rather use and
create as many

subnets as you
require. Speaking

of
subnets, let's have

a look at newly
created VPC's two subnets!

[134]

Chapter 5

Listing out subnets

You can
view, add,

and
modify existing

subnets
using

the
VPC Management

Dashboard
as

well.
Simply

select
the

Subnets
option from the

Navigation Pane.

This
will list

out
all

the
subnets present in

your account, so use the
search

bar to
filter

out the new ones that we
just

created.
Type

in the name
of

the
subnet

in the Search

bar until the
particular

subnet gets
listed

out,
as shown in

the
following screenshot:

You can
view additional

information
associated

with your
subnet

by
simply selecting

it and
viewing

the
Summary tab. The Summary

tab
will list

out the
particular

subnet's associated Route table, Network ACL, CIDR, and State as well. Besides

these values, you
can also

configure
your subnet's

ability
to auto

assign
public IPs to

its
instances. By default, this feature

is
disabled

in your
subnet,

but
you

can
always

enable it as per your
requirements. To

do
so, simply select

your
Public Subnet,

and

from the
Subnet Actions

tab, select the option, as
shown

in the
following screenshot:

In
the

Modify Auto-Assign Public
IP

dialog box, simply select
the

Enable auto-assign

public IP option
and

click on Save
to

complete
the

change setting. Do note
that

you

can always override this behavior for each individual instance
at

its launch time.

[135]

Building Your
Own

Private Clouds
Using

Amazon
VPC

Besides
the

Summary
tab, the

Subnet
Dashboard

option also provides additional

tabs such as Route Table, Network ACL, and so on. You can use these tabs to view

the
subnet's associated

route table as well the network ACL; however,
you

cannot

add or
modify

the
individual

rules from here. To add or
modify rules,

you need

to go to the Network ACL
option

or the
Route Tables option from

the
navigation

pane.
Let's have

a
quick

look
at the route tables created

for
our VPC.

Working with route tables

As
discussed

earlier in
this

chapter, VPCs come with
a
default route table (Main

Route Table) associated with a subnet. So, since we have two subnets created in this

VPC, we get two route tables
as

well, out of
which

one is the
main

route table. How

do you tell whether
a
route table is the

main
one? Quite

simple, actually!
Just

look

for
the Main

Column
in the

Route Table Dashboard,
as shown in the

following

screenshot. If
the

value
in that

column is
Yes, then that

particular
route table

is
your

VPC's
main route

table. Now, here's
a
catch! If you do not

explicitly associate a

route table with
a
subnet, then the

subnet
ends up

using
the

main
route table. In our

case, both the route tables created
do

not have any subnets
associated

with them by

default,
so

let's first
get that done.

To
associate a

route
table with a subnet explicitly, first

you need to select the

particular
route table

from
the

dashboard.
In this

case, I
have

selected
the

public

subnet's router (US-WEST-PROD-WEB-RT). Next, from the Subnet Associations

tab,
click

on the
Edit

button,
as shown in

the
following screenshot.

From here, you

can select either of the two subnets that are listed down; however, since this is a

public subnet's
route table,

let's
go ahead and

select
the

listed
public subnet

(US-WEST-PROD-WEB)
as shown.

Click
on Save to

save
the

configuration changes.

[136]

Chapter 5

With
this step

completed,
your

subnet
is now explicitly attached with

a particular

route table.
But

what about the
individual

route
rules?

How
do

we
list

and
modify

them?
That's

simple as
well.

Simply select
the

Routes
tab to

list
your route

table's

existing
rule

set.
Here, you

should
see

at least
three route

rules,
as

shown
in the

following screenshot.
The

first rule
is created by VPC for each and

every
route table,

and it
basically

allows
communication within

the VPC
itself.

You cannot delete
this

rule,
so

don't
even try it!

The next rule
is

basically a VPC endpoint route rule. Remember
the

S3 endpoint

that we configured earlier with
the

public subnet? Well this rule will basically allow

communication to occur between the instances belonging
to

this subnet and Amazon

S3, and
the

best part
is

that this rule is auto-populated when you create a VPC endpoint!

The
final

rule in the
list basically

allows for the instances to
communicate over

the

Internet
using

the
Internet

Gateway as the target. You can optionally
choose

to

edit
these rules by

selecting
the

Edit option.
Once you have

made
your

required

changes,
be sure to Save the

configuration changes
before you proceed with the

next

steps. Don't
forget

to
associate

the
private

subnet
(US-PROD-WEST-DB)

with the

remaining
route table

(US-WEST-PROD-DB-RT)
as

well.

Listing Internet Gateways

As
discussed

earlier in
this

chapter, Internet
Gateways

are scalable
and

redundant

virtual devices
that

provide
Internet connectivity for your

instances
present

in

the
VPC.

You can
list

currently
available Internet

Gateways within your VPC by

selecting
the

Internet Gateways option from
the VPC's

navigation pane.

[137]

Building Your
Own

Private Clouds
Using

Amazon
VPC

The VPC
wizard will

create and attach one
Internet

Gateway to
your

VPC

automatically; however,
you can create and attach

an
Internet

Gateway
to

a
VPC at

any
time using

the Internet Gateway. Simply
click

on the
Create Internet Gateway

option and
provide

the
VPC

to which this Internet Gateway has to be attached, that's

it! You can
list

down
available Internet

Gateways
and filter

the results
using

the

search
bar

provided
as

well.
To

view
your Internet Gateway's

details, simply
select

the
particular Internet

Gateway and
click

on the
Summary

tab. You
should

see your

Internet Gateway's
ID,

State (attached
or

detached),
as well

as
the

Attachment state

(available
or not

available),
as

shown
in the

following screenshot:

Also
remember that to

really
use the Internet Gateway, your public subnet's route

table must contain a route rule that directs all Internet-bound traffic from the subnet

to the
Internet

Gateway.

The
Internet-bound route rule is auto-populated

by
the

VPC

Wizard
when we

first configured
the VPC and

can
be viewed

in the Public Subnet's route table.

Working with security groups and Network ACLs

The VPC is all about
providing your applications a

much
more

secure environment

than what your traditional
EC2 service

can
offer. This security

is
provided

in two

layers
in

the form of
security groups and

Network
ACLs.

The
security

groups can

be used to set rules that can control both inbound and outbound traffic flow from

the instance and hence work more at the instance level. The Network ACLs on the

other hand operate at the subnet
level, either allowing

or
disallowing

certain type of

traffic
to

flow in
and out of your subnet. Important

thing
to remember here is that the

Network
ACLs

are
actually optional

and can be
avoided altogether if

your
security

requirements are at
a minimal.

However,
I would strongly recommend

that you use

both the security groups and Network ACLs
for

your VPC
environments.

As the

saying goes - better
safe, than sorry!

[138]

Chapter 5

Coming
back to your

newly
created VPC, the

VPC wizard
creates and

populates a

default Security
Group and

a default
Network ACL

option for
you to

use
in an

as-is

condition.
The

default
Security Group has

a single
inbound and outbound rule, as

explained
in the

following:

Default
inbound

security
rule

Source
Protocol Port

Range Remarks

Security_Group_ID All All Permits inbound traffic from instances

belonging
to the same

security group

Default Outbound
Security Rule

Destination Protocol
Port

Range Remarks

0.0.0.0/0 All All Permits all outbound traffic from the instances

You
can add, edit, and modify

the
rules

in the
default

Security
Group; however,

you cannot
delete

it. As
a good

practice, it
is always recommended that

you
do

not

use this
default Security

Group but
rather

create your own.
So,

let's go
ahead and

create
three security groups:

one
for

the
web servers in

the
public subnet,

one
for

the

database servers in
the

private subnet,
and one

for
the

specially
created NAT

Instance.

To create
a
new Security Group

using
the VPC Dashboard,

select
the

Security

Groups
option from the

navigation pane.
Next, from the

Security Groups

dashboard,
select

Create Security Group,
as

shown
in the

following screenshot:

Using
the

Create Security
Group wizard,

fill in
the

required information
as

described in
the

following:

•
Name

tag: A unique
tag

name
for your Security Group.

•
Group name:

A
suitable

name for
your Security Group. In

this
case,

I have

provided
it as

US-WEST-PROD-WEB-SG.

• Description:
An

optional description
for your

security
group.

[139]

Building Your
Own

Private Clouds
Using

Amazon
VPC

• VPC:
Select the newly created VPC from the

dropdown list,
as

shown
in the

following screenshot.
Click

on
Yes,

Create
once

done.

Once
your

Security Group has been
created, select

it
from

the
Security Groups

dashboard and
click

on the
Inbound Rules

tab. Click on the
Edit

option to add the

following
rule

sets:

Web
server inbound

security
rule

Source
Protocol Port

Range Remarks

0.0.0.0/0 TCP 22 Permit inbound SSH access to web server instance

0.0.0.0/0 TCP 80 Permit inbound HTTP access to web server instance

0.0.0.0/0 TCP 443 Permit inbound HTTPS access to web server instance

Similarly,
click on the

Outbound Rules
tab and

fill out
the

Security Group's

outbound
rules

as described in the
following:

Web
server

outbound
security

rule

Destination
Protocol Port Range

Remarks

Permits outbound Microsoft SQL
DB_SECURITY_GROUP TCP 1433 Server traffic to the database servers

DB_SECURITY_GROUP TCP 3306 Permits outbound
MySQL

traffic to

the database servers

[140]

Chapter 5

Replace
DB_SECURITY_GROUP

with the Security Group ID of your
database

server's
Security Group.

Remember
to

save
the rules by

selecting
the Save

option,

as shown in the
following screenshot:

Similarly,
let's go

ahead
and create

a
Security Group for our

database servers
as

well.

Populate the inbound rules as described in the
following:

Database server
inbound

security
rule

Source Protocol
Port Range

Remarks

Permits Web Server instances to

WEB_SECURITY_GROUP TCP 1433 access the Microsoft SQL Server

WEB_SECURITY_GROUP TCP 3306 Permits Web Server instances to

access
the MySQL Server

Replace
WEB_SECURITY_GROUP

with the Security Group ID of your web
server's

Security Group ID and
save

the rules
before you

continue with the
outbound rules

additions:

Database server
outbound

security
rule

Source Protocol
Port

Range Remarks

0.0.0.0/0 TCP 80 Permit outbound HTTP access to database server

instance

0.0.0.0/0 TCP 443 Permit outbound HTTPS access to database

server instance

Note that here we are
permitting

only the outbound Internet
access

to the
database

servers
so that they can

receive important
patches and updates from the net. In

reality, the
Internet

bound
traffic

from these
servers will

be routed through the NAT

instance,
which will forward

the
traffic

to the Internet via your Internet
Gateway.

[141]

Building Your
Own

Private Clouds
Using

Amazon
VPC

Finally,
go

ahead
and create the NAT

instance's
Security Group. Populate the

inbound
security

rules as
mentioned

in the
following:

NAT instance
inbound

security
rule

Source Protocol
Port

Range Remarks

0.0.0.0/0 TCP 22 Permits inbound SSH access to the NAT Instance

192.168.1.0/24 TCP 80 Permit inbound HTTP access to the NAT instance

192.168.1.0/24 TCP 443 Permit inbound HTTPS access to NAT instance

NAT
instance

outbound
security

rule

Source
Protocol Port Range

Remarks

0.0.0.0/0
TCP

80 Permit outbound HTTP access to NAT instance

0.0.0.0/0 TCP 443 Permit outbound HTTPS access to NAT instance

With
the

security
groups created, you are now ready to launch your instances into

the
VPC. Let's have a quick

look at the
steps

required to do
so!

Launching instances in your VPC

Once
your

VPC is ready and the
security

groups and Network ACLs
have

been

modified
as per requirement,

you
are now

ready
to

launch
instances

within

your
VPC.

You
can

either launch
instances directly

from the VPC
Management

Dashboard
or from the

EC2 Management Console
as well.

In
this case, let's go

ahead and use the EC2
Management Console.

Creating the web servers

From the
EC2 Management Console, select

the
Launch Instance option. This will

bring up the Instance
Wizard, using

which you can create and launch your web

server instances.
In my case,

I'm
using the AMI

(US-P-WebServer-Image-v1.0)
that

we created
earlier in

Chapter
4, Security, Storage, Networking,

and Lots More! Click
on

My AMIs and
you should

see the
custom-created

AMI
listed there,

as
shown in

the

following screenshot.
Select the AMI and continue with the

instance creation process.

[142]

Chapter 5

From the next page,
select

any
instance

type for the new web
server instances. In my

case,
I
went ahead and

used
the default

t1.micro instance
type.

Next, from the
Configure

Instance
Details

page, select the
newly created

VPC (US

WEST-PROD-1)
from the Network

dropdown list
and

provide
the web server's

public subnet (US-WEST-PROD-WEB),
as

shown
in the

following screenshot.
You

can optionally
choose

to change the
Auto-assign Public

IP
setting;

however, in this

case,
make

sure that this setting
is set

to
Enable otherwise

your web server instances

will not
receive

their
public IPs.

Add the required
Storage, Tag

the
instance,

and
provide it

with the web
server

Security
Group that we created

a while
back. Once you have

completed
the

formalities,
review your instance's settings and

finally launch
it in

your
VPC!

[143]

Building Your
Own

Private Clouds
Using

Amazon
VPC

Once the instance
starts, verify

whether it
received

both the
private

and the
public

IP

or not. Log in to
your

web server instance and check whether
it
can reach the

Internet

or
not

by
simply pinging

to one of
Google's

DNS servers like
8.8.8.8.

If
all

goes
well,

then your web server instances are all ready
for production

use!

Creating the database servers

The
same

process applies for the
database servers

as
well.

Simply
remember

to
select

the correct subnet (US-WEST-PROD-DB) for the database servers, as shown in the

following screenshot:

Also
note the

Auto-assign Public
IP setting

for
the

database
server's

private subnet.

By
default,

this
should

be
disabled for

the private
subnet

as we don't want our

database
instances to

communicate with
the

Internet directly.
All

Internet-bound

traffic from
the

database servers will
pass via the NAT instance only. But how do

you
test

whether your
database

servers
are working correctly?

By
design,

you
cannot

SSH into the database servers
directly

from your local
desktops

as the
private

subnet

is
isolated from

the Internet. So, an
alternative

would be to set up
something

called

as
a Bastion

Host.
A Bastion

Host is
a special instance

that acts as
a proxy using

which you can SSH into your
database instances. This Bastion Host will

be deployed

in your
public subnet

and
will basically only

route SSH
traffic from

your
local

network over to the database server instances. But remember, this feature comes

with its own set of security risks! Running
a
weak or poorly

configured Bastion
Host

can prove to be
harmful

in
production environments,

so use them with care!

Planning next steps

Well
we have

covered a
lot in this chapter, but there are

a few things still
that you

can try
out

on
your

own with regards to
VPCs. First

up, is
cleaning

up
a
VPC!

Creating
a VPC is easy enough

and
so

is
its deletion.

You can
delete

an
unused VPC

from the VPC
Management dashboard

by
simply selecting

the
VPC, clicking

on the

Actions tab, and
selecting

the
Delete

VPC option. This
will bring

up the
Delete VPC

dialog
as

shown
in the

following screenshot:

[144]

Chapter 5

As you can
see,

the
delete

VPC
option

will delete
all

aspects of your VPC,
including

subnets,
Network

ACLs,
Internet Gateways, and

so
on. You can

optionally even

delete any
VPN connections as

well
by

selecting
the

Delete VPN Connections

when
deleting the

VPC checkbox.
Remember

that once you delete
a VPC,

you can't

recover
it
back,

so make sure that you
don't

have any
active instances

running on

it before you go ahead and delete it.
Also remember

to clean up on the
instances

as

well,
especially

the NAT Instance and the
Bastion

Host if you have created
them.

The second thing that
I would recommend trying

out
is

called as
VPC peering. VPC

peering is nothing
more

than
network connections

between two
different VPCs.

Instances in one
VPC communicate with

instances
present

in another VPC
using

their
private

IP addresses alone, so
there is no need to route the

traffic over
the

Internet as well. You can connect your VPC
with a different

VPC that is either owned

by you or by
someone else's Bastion

Host. All it
needs

is
a request

to be generated

from the
source

VPC and sent to the
destination

VPC,
along with a few

route rules

that will allow the
traffic

to
flow from

one point to the other. The
following

is the

image
describing the VPC peering:

[145]

Building Your
Own

Private Clouds
Using

Amazon
VPC

You can read
more about

VPC
peering

at
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-peering.html.

The third thing that
really

is worth testing out is the
hardware VPN connectivity

with your
VPC. I

know you are
probably

thinking that
since

it's
a
hardware

VPN

connectivity, it
means

that I
need

some special
hardware

equipment like a
router

and so on.
Well

that's not
quite

true! You can
set

up an easy
VPN connection

using
software

as
well,

for
example,

OpenVPN. OpenVPN
basically allows you

to

create
a secure

network connection
from

your
local

network to
Amazon VPC using a

VPN connection.

All you need to do
is deploy

an OpenVPN server in
your

VPC and
configure

that

to accept
incoming traffic from

your private network. Then, install an
OpenVPN

client
on

your
remote desktop

and try
connecting

to the OpenVPN
server placed

in

the
VPC. If all

goes well, you should have access to your VPC instances from your

local
desktop!

Do note
that

you
will

have to open up
additional security rules

and

network
ACLs

to
allow

this type of
traffic

to
flow through

your VPC subnet.

Last
but

not least, I
would

also
recommend

for
you to have

a look
at

VPC's Flow

Logs.
This

is
a simple logging

feature
provided

in VPC to
capture traffic information

and store it
using

Amazon
CloudWatch

Logs. Flow Logs can
help

you analyze
your

network traffic flow for bottlenecks, observe certain traffic trends, as well as monitor

traffic that
reaches your

instances.
You can read

more about
Flow Logs at

http://

docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html.

Best practices and recommendations

The
following

are
some

key
best practices

and
recommendations

to keep in mind

when
using VPCs:

•
Plan and

design
your VPC before

actually implementing
one.

Determine
the

right choice of subnet that your
application will

need and build your VPC

around it.

•
Choose your

VPC's
network block

allocation wisely. A /16 subnet
can

provide
you

with a
potential 65,534 IP

addresses
that rarely will get

utilized.

So
ideally,

go
for a

/18
(16,382

IP
addresses)

or
a
/20 (4094 IP

addresses)
as

your
VPC

network choice.

•
Always plan and

have a
set of spare IP

address capacity for
your VPC.

For

example, consider
the network block

for
my VPC as

192.168.0.0/18.

•
In this

case,
we

design
the subnet IP

addressing
as

follows:

° 192.168.32.0/19 Public Subnet

° 192.168.64.0/19
Public Subnet spares

[146]

Chapter 5

° 192.168.128.0/20 Private Subnet

° 192.168.192.0/20 Private
Subnet spares

• Remember that
you

cannot
edit

a
network

block's size
once it is created

for a

VPC. The only way to change the network block is by
deleting

this VPC and

creating
a new

one in its place.

•
Use

different security
groups to

secure
and manage

traffic flows from your

instances.
For

example, a
separate Security Group

for
web

servers
and

a

different
one

for
your database servers.

Avoid using
the

default security

groups at
all times.

• Leverage multiple
AZs to

distribute your
subnets

across geographies.
For

example,
the

US-WEST region
has three

AZs, namely us-west-2a,
us-west

2b, and
us-west-2c.

So an
ideal situation

would have you
divide

your
VPC's

network
block

and create
subnets

in each of these AZs evenly. The more AZs,

the better the fault tolerance
for

your VPC.

• Leverage IAM
to

secure
your VPC at the user

level
as

well.
Create dedicated

users with
restricted access

to your
VPC and its resources.

•
Create and stick with

a
standard naming

convention so
that your

VPC's

resources
can

be
easily identified

and
tagged. For example, in

our
scenarios,

we
named

the
VPC as US-WEST-PROD-1, which

clearly
identifies

this particular
VPC to be

hosted
in the

US-WEST
region and to be

a

PRODUCTION environment.

Summary

So it's
been a

pretty long and intense
chapter

so
far with

lots to
learn

and try out!

Let's have
a
quick recap of the things

covered!

Well
we started off with

a
brief

overview
of
VPCs

and its components
and

terminologies
such as subnets, route

tables,
Network ACLs,

Internet
Gateways, and

much
more. Next

we had an in-depth
look

at some of the VPC deployment
scenarios

and even
went

ahead and created our
first

VPC
using

the VPC
wizard.

Toward

the end, we looked at
some

key
considerations

to keep in mind when
dealing with

security
groups

and
NAT

instances
and

finally
topped it

all off
with

some handy best

practices
and

recommendations!

[147]

Monitoring Your AWS

Infrastructure

In the previous chapter, we
covered a

whole lot about
Amazon VPC:

its
features,

components, and
architecture.

We
also looked

at
how

you can create and
deploy

your own
fully

functional VPC using just
a few simple

steps!

In this chapter, we will
focus primarily

on how to monitor your
cloud

infrastructure,

especially
your EC2 instances using

AWS's monitoring
service called as

Amazon

CloudWatch.
CloudWatch

is a cheap and easy-to-use centralized monitoring service

that
provides a variety

of
features

such as alerts,
logging, notifications,

custom

metrics, and
much more!

So, what are we waiting for?
Let's

get
started right

away!

An overview of Amazon CloudWatch

Before
we

move on
to
Amazon CloudWatch, it is important

to
understand

the

difference
in

a traditional monitoring solution
and

a monitoring solution based on

the
clouds. Unlike

your
traditional environments, infrastructure in

the
cloud can scale

up and
down dynamically in a matter

of
minutes. Most traditional server monitoring

tools
cannot

match
up to

this elastic requirement in
real

time
and thus

often end
up

either providing
the wrong

information
or

triggering a delayed response.
There is

also
the

problem of sheer numbers! A standalone monitoring tool can find
it

difficult

to
handle

the
monitoring

of
thousands of virtual machines at a single go. Plus, you

as

sysadmins also
need to

manage
the

monitoring tool, which adds
an

extra overhead

as
well.

That's where
a cloud-based monitoring solution

is
so different. A standard

cloud-based monitoring tool provides
the

following feature sets:

• Ease
of

use
and management:

Most
of the

cloud-based monitoring
tools

come

with
easy integration

and
management facilities, using

which you can
start

monitoring your
cloud infrastructure

in
minutes.

[149]

Monitoring
Your AWS

Infrastructure

• Dynamically
track instances as they

are
created, add them to the monitoring

inventory,
and

remove
them

from
the

inventory
when they are

deleted.

•
Trigger

real-time events
and

notifications
based on preset

alarms.

• Monitor
the

instance's
operating

system, networking,
CPU, and

disk

utilizations,
as well

as
its

applications
which can be web servers,

databases,

application
servers,

and
so

on.

• Perform/trigger
actions

based
on certain thresholds getting

crossed.

These are just
some

of the key
features

that are
provided

by
Amazon CloudWatch

as
well,

and you
don't have

to install or
configure it.

It's
available

as
a ready-to-use

service and
you only pay

for
the amount

of service
that you use!

Awesome,
isn't

it! Let's have
a
quick

look
at
Amazon

Cloud Watch's overall architecture as
well

as

some
of its key

components
and

concepts.

Concepts and terminologies

Before
we go ahead and

start
using CloudWatch,

it is essential
to

understand some

of its key concepts and
terminologies.

Metrics

Metrics
form

the core of Amazon
CloudWatch's

functionality.
Essentially, these

are

nothing
more

than certain
values

to be
monitored.

Each
metric

has
some data points

associated
with

it which
tend to change as

time progresses.
For

example,
the CPU

usage of any one of your
instances is a metric

and the
values

of the CPU
usage

over

a
period of time

are its associated data points! Each
data point has an

associated

timestamp provided
with it along with

a
unit of

measure.

There are
a ton

of metrics that AWS
provides

that can be
used in as-is scenarios;

however,
you

can additionally create
custom

metrics
as well,

as
per your

requirements. An important point to
remember

here is that
a metric

is
region

specific, which
means that

a
metric is only going to be

available in
the

region
in

which
it
was created.

A metric
is
uniquely identified

by
a
name,

a namespace,
or

a

set of dimension.

[150]

Chapter 6

Namespaces

Namespaces
are

a
standard string

of characters
that you

define
when you

first

create
a metric. These namespaces

act as
containers for your

metrics and help

in
keeping

them
isolated

from one
another. There

is no
default namespace

provided
as

such,
so you

will
have to

create one for each element
that gets

added

to
CloudWatch.

By default,
all
AWS

namespaces follow
the

following
naming

convention: AWS/<SERVICE_NAME> where <SERVICE_NAME> can be EC2, RDS, S3, and

so on. For a full list of AWS namespaces, refer to http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/aws-namespaces.html.

Dimensions

Dimensions
are

simple key-value pairs
that help

you identify
your

metrics.

These come
in

real handy when you
need

to
filter

out certain
result

sets
which a

CloudWatch
query returns. You can

assign
up to 10

dimensions
to

a
single metric.

For
example, consider

the
following

combination of
dimensions:

• Server=WEB, Domain=US-WEST

• Server=DB, Domain=US-WEST

• Server=NAT, Domain=US-WEST

You can
easily retrieve

statistics
based

on
these dimension combinations; however,

it is important to note that
you

will not be able to
retrieve

any statistics
for

the

combinations that you did not create. For
example, just

querying Server=NAT or

Domain=US-WEST
or even

Server=NAT, Domain=Null
will not give you any

results as the
corresponding metrics

were
never

created.

Time stamps and periods

Time stamps
are

assigned
to each of your metric's data points. These

are simple
date

and time
values

that are
generally provided using

the UTC or GMT
time zones.

The

time
stamp 2015-09-12T20:45:30Z translates

to the
September 9,

2015 at
8:45:30

PM

as per the UTC
time

zone. If no
time stamp

value is
provided,

then
CloudWatch will

automatically assign
that data point one

based
on its

time
of

arrival
or generation.

[151]

Monitoring
Your AWS

Infrastructure

Periods are
the length of

time associated
with

a
particular

statistic.
To put it

in simple

words, a
period is the

time
between

a start
time

and
the end time. You

can specify a

period
as short

as
60

seconds
and all the

way
up to 86,400

seconds,
which

accounts

for a complete day. Periods
play

a
crucial role in the creation of

alarms.
An

alarm

is generally
meant

to be
triggered

when
a
certain

threshold
value is

crossed, right?

Now
in many cases, you

will
receive false alarms

even if
these

threshold
values

are

crossed
for

a few seconds.
That's

just
going to

flood
your

mailbox
with unwanted

notifications!
So

ideally,
we specify the

alarms
with

a
threshold and

a time
period,

say
20

seconds.
So,

if
the threshold

is
breached

for
more than 20

seconds, only
then

will
CloudWatch

raise the
alarm. This

way you have
a more granular

control over

when your alarms get
triggered.

Units and statistics

Units
help you get conceptual meaning of your

metric data. Specifically,
these are

very
similar

to
units

of
measure, for example,

the metric NetworkIn that is
used

to

track
the

number of
bytes an

instance receives
will

have a measuring
unit of bytes

(for example,
300

Bytes). Similarly,
the

metric CPUUtilization
which is used to track

your instance's CPU
utilization will have a measuring

unit of
Percent (for example,

20% CPU
utilization)

and so on so forth. Here are
some

of the units that you will

commonly
come across when

working with CloudWatch:

• Count

•
Bytes,

Kilobytes,
Megabytes,

Gigabytes,
Terabytes

• Bytes/Second, Kilobytes/Second, Megabytes/Second, Gigabytes/Second,

Terabytes/Second

• Percent

• Milliseconds, Microseconds, Seconds

will auto-assign
it with the

None unit.

If you do not
specify a unit

for
a metric,

then
CloudWatch

Statistics
are metric data

that has been aggregated over
a period

of
time.

There are

five statistics provided
by

CloudWatch,
as

described
in the

following:

Statistic
Name Statistic

Description

Minimum This specifies
the

lowest data value observed during a specific period
of

time.
This

statistic is
useful in

determining
the

lowest points
of

activity

for your application.

[152]

Chapter 6

Statistic
Name Statistic

Description

Maximum This specifies
the

highest
data

value observed during a specific period
of

time.
This

statistic is
useful in

determining
the

highest points of activity

for your application.

Sum This statistic
adds

each of the metric
data

points together
for the

supplied period of
time and is

helpful
in

determining
the

total volume

of a metric.

Average The
average

is
indicated

by
Sum

divided by the
sample count.

The

average statistic comes in
handy

when you
want to

scale your resources

especially your
EC2

instances.

SampleCount This statistic provides
the

actual number of data points present in

the
sample during

the
supplied period

of
time.

It
is

useful in
cases

of

statistical calculations.

For
a
better

understanding,
the

following is simple example depicting a
few raw

metric data points collected over
a
period of

time
and their

statistics:

Raw Metric Data
Points Sum Minimum

Maximum
Average

SampleCount

120,130,50,160,185 645 50 185 129 5

15,25,100,210,15,235 600 15 235 100 6

Alarms

An alarm
basically

watches over
a
particular

metric for a stipulated period
of

time

and
performs some

actions
based

on its trigger.
These actions

can be
anything

from

sending a notification
to the

concerned user using
the

Simple Notification
Service

(SNS)
or

something a
bit more complicated

such as
triggering

and auto-scaling an

event. However, do
remember

that you can create and
associate alarms

to any
AWS

resource
provided

that they
reside

in the
same

region.

Tying
it all

together, the
following

is what
a CloudWatch alarm basically looks

like:

• Namespace=AWS/EC2

• Metric name=CPUUtilization (Percent)

• Period=5minutes

•
Statistics:

Average

• Threshold: 70

• Dimensions (Name=Web Server, Value="ï-dd42dd1b")

• Alarm action: <EMAIL_ID>

[153]

Monitoring
Your AWS

Infrastructure

So, we get to know
a lot

about
this alarm just

by looking at it.
First off,

we can

tell that this alarm
is
going to

monitor
the CPU

utilization
of one of our

specified

instances
using its

instance
ID. Secondly,

we can
also

tell that the
alarm will

monitor the
average

CPU
utilization

of the instance.
If
the CPU

utilization
breaches

the
threshold value

of 70
percent

for
a
period of

5 minutes,
then the alarm

will

automatically
trigger an

e-mail notification
based on the

e-mail ID
that you

specify.

Simple, isn't
it! The

following
is what the

preceding example
looks

like schematically:

We will be
learning a

lot
more about alarms later

on in this chapter and will even go

ahead and
create a

few for our
environment,

but
for

now, let us
have a quick

look at

CloudWatch's limits and associated costs.

CloudWatch limits and costs

CloudWatch,
by

default, monitors all
of your

instances, volumes,
and

Elastic
Load

Balancers (ELB)
at

a regular five-minute interval for absolutely
no charge at

all. This

is
CloudWatch's default behavior; however,

you can always change the
interval

to

as
low

as
a minute if

you need
it.

Changing the
interval

to
a minute will cost you

approximately $3.50 per instance
per

month. Besides this, CloudWatch also provides

10
metrics, 10 alarms, a thousand e-mail notifications using

SNS, and up to
a million

API
requests each month for

no charge
at all! Additional metrics

and
alarms are

charged
approximately $0.50

and
$0.10, respectively, on a monthly basis. CloudWatch

also provides
you

with
free

5
GB of

incoming data and 5
GB

of
data

archiving.

[154]

Chapter 6

From
a limits point

of view, here are
a few important limits that

you need to keep
in

mind
when working

with
CloudWatch:

• CloudWatch preserves metric data for
up

to 2 weeks, after which it is deleted

•
The

maximum
period value that you can specify is

1 day
or

86,400
seconds

•
You can create up to 5,000

alarms
per AWS account, with each alarm

supporting
up to

five actions

Keeping these things in mind, let's go
ahead

and create our
very first

alarm with

CloudWatch!

Getting started with CloudWatch
In this section, we

are
going to carry

out
two

tasks.
First up, we

will
check out

some

simple steps, using which you
will be

able
to create your

very first billing
alarm,

followed
by creating

a
few

simple
alarms for an instance

using
both the

AWS

Management Console as
well as the AWS CLI. So, without further ado

let's
get

started on some CloudWatch!

Monitoring your account's estimate charges

using CloudWatch

CloudWatch provides a really simple
alarm setup

using
which you as

an
end user

can
monitor

your
account's estimated

costs and
usage.

To
work

with
this,

you need

to log in to
your

AWS account as the
root user

and not as
an
IAM user, even if you

are the
administrator. I know

I'm not
following my own

rules here by
using

the

root
user,

but hey, that's what AWS
says!

Log in to your AWS
account using

your

root
credentials.

Once
logged

in,
select

the
Billing & Cost Management

option

highlighted
under your account's name, as shown in the

following
screenshot:

[155]

Monitoring
Your AWS

Infrastructure

This
will

pop up your account's management
dashboard,

using which you can view

your
account's Bills,

set new
Payment Methods, view

past
Payment

History, and so

on so
forth.

For now,
select

the
Preferences option from

the navigation page to bring

up the
Preferences dashboard,

as
shown in

the
following screenshot:

Select the
Receive Billing Alerts

checkbox to enable
monitoring

of your account's

usage. It's
important

to, however, note that once you enable this checkbox, there is no

going back! You will not be able to uncheck this
option afterward!

Click
on the Save

Preferences
option to

save your
new

settings
and then

select
the

Manage Billing Alerts
link to bring up

CloudWatch's Create Alarm wizard,
as

shown in the
following screenshot.

This option is
available from

the
CloudWatch

dashboard
to

billing
in the N.

Virginia region.

[156]

Chapter 6

The
wizard will

walk you through
some simple

steps to
configure

your
first billing

alarm.
Select the checkbox adjoining to the

EstimatedCharges option
and click

on
Next

to
continue

with the
process.

You can
optionally

change the
statistic

and

period; however, I have
gone

ahead
with the

default
values which is

Maximum
and

6 Hours respectively.

AWS does
not

allow
the

billing alarm's period
to be set

less than 6 hours.

Moving on to the
final step

of your
Create Alarm wizard, provide a

suitable Name

and
Description for

your
billing alarm,

as
shown

in the
following screenshot. Next,

configure
the

threshold for
your

alarm
by

selecting
the >= (greater than or

equal
to)

option and
providing a

threshold
monetary

amount
such

as $2
or $200, whichever

is

applicable to you. You can
even set

the threshold to $0.01,
which will

notify you the

moment
you start

going
out of the

free tier eligibility.
In either

case,
the

alarm will

only trigger when the actual cost of
usage

exceeds the monetary
threshold

that you

have
set.

You can
verify

the
setting

by
looking

at the
Alarm

Preview graph
as

well.

The red line indicates the threshold value set by
you,

whereas the blue
highlighted

portion is
your

account's
current

estimate
bill:

With
the

Alarm's
threshold

set,
the

final
thing that

you
need to do is

define
what

action
the alarm

must take
when it is

triggered.
From the

Notification section, fill
out

the
required details,

as
mentioned

in the
following:

• Whenever this
alarm:

This
option

will allow
you to

determine
when the

alarm will actually perform
an

action.
There

are
three states of an

alarm
out

of which you can
select

any
one

at
a single time:

° State is ALARM: Triggered
when the

metric
data breaches the

threshold value
set

by you

[157]

Monitoring
Your AWS

Infrastructure

° State is
OK: Triggered when the metric data is

well within
the

supplied threshold value

° State is INSUFFICIENT: Triggered
when the

alarm generally doesn't

have enough data with itself
to

accurately determine
the

alarm's state.

For this scenario,
I have selected

the
State is ALARM

option as
I
want to get

notified
as

soon
as
my threshold limit

is
breached.

• Send notification
to: As

discussed
earlier,

CloudWatch
leverages

Amazon

SNS to send
notifications

to
a particular set

of users and
e-mail IDs.

Since this

is our
first

SNS
topic,

go ahead and
select

the New
List option, as shown in

the
following

screenshot.
Provide a suitable

SNS topic name against the send

the Email list field, asnotification
to

option
and

a valid e-mail address
in

shown in the
following screenshot:

You can add multiple
e-mail

IDs
in

the
Email list field

by separating them with

commas.
Once done, click

on Save Changes
to

complete
the

alarm's creation
process.

[158]

Chapter 6

The alarm
will

take
a
few

seconds
to change from the

INSUFFICIENT
state to OK,

as shown in the
following screenshot. This

is
normal

behavior as the
alarm generally

takes
a few seconds

to
gather

the metric data and
verify

it
against

the
set threshold

value.

You can view
additional details

about
your

newly
created

alarm by
simply

selecting

it and
checking

out the
Details

and
History

tab
provided in

the
following:

Oh! And one very
important

thing
I almost forgot

to mention!
There

is
a catch

to creating
alarms, specifically billing ones, using CloudWatch.

Don't worry,
it's

nothing
serious!

It's just that by
design,

the
billing

metric
data

of your entire account,

which
includes

all your regions and
AWS

services, is
collected

and
stored only in

the

US
East

(N.
Virginia)

region. So
if
you want to create or update this

billing alarm
at

a later stage,
you

will
have to change your

default operating
region to US

East (N.

Virginia)
and then view and edit the

billing
alarm

as
required. You can, however,

create
EC2, ELB,

RDS, and other AWS
services

related
alarms

from any
particular

region
that you are

operating from.

Monitoring your instance's CPU Utilization

using CloudWatch

With
the

billing alarm created,
let's try out

something
even more exciting!

In this

section, we
will

be creating
a simple

alarm to
monitor

an instance's CPU
utilization.

If the CPU
utilization breaches a certain threshold, say

75 percent, then the alarm

will trigger an
e-mail notification

as
well

as
perform

an
additional task

such as
stop

the instance.

[159]

Monitoring
Your AWS

Infrastructure

To begin
with,

AWS
makes

creating alarms
a
really

simple
and

straightforward

process.
The

easiest
way to

do
this is by

selecting
your

individual instances from

the
EC2 Management Dashboard

and
selecting

the
Monitoring

tab, as
shown

in

the
following

screenshot. Each
instance

is
monitored

on
a five-minute

interval by

default. You
can

modify
this

behavior
and set the

time interval
as low as one

minute

by selecting the
Enable Detailed Monitoring option.

Enabling detailed monitoring
for you

instance will incur

additional costs.

Each
instance,

by default, gets its own set of
performance

graphs
as

well,
which

can be
viewed

in the
Monitoring

tab. These graphs
generally include

and
display

important metric information such
as CPU

utilization, disk Read/Writes,
bytes

transferred
in

terms
of network IO, and

so
on. You can

expand
on each of the graphs

by
simply selecting them.

This
gives

you
a
much better and

detailed view
of your

instance's
performance,

as shown in the
following

image:

[160]

Chapter 6

This
is
an

example
of an

enhanced graph view
of the CPU

utilization
metric. The

x axis displays
the CPU

utilization
in percent whereas the

y axis display
the time

as per the current
period's settings.

You can
view

the
individual

data points and

their associated
values by

simply hovering
over them on the

graph. Alternatively,

you can
also

switch between the
Statistics, Time Range,

and
Period

as per
your

requirements. Once you have viewed your instance's
performances,

you can create
a

simple alarm
by

selecting
the

Create
Alarm option

provided
in the

Monitoring
tab.

This
method

is great if you want to set
alarms for

your instances on an
individual

basis, alternatively
you can

use
the

CloudWatch dashboard as
well.

To
view

the
CloudWatch Dashboard,

from the AWS
Management Console's

home

page,
select the

CloudWatch
option, as

shown in
the

following screenshot:

This
will bring

up the CloudWatch
dashboard

for the
particular

region in which you

are currently
operating.

The
dashboard is divided

into two sections,
a navigation

pane to the
left

that groups and
lists

out your alarms based on their current state,

for example, ALARM,
OK, or

INSUFFICIENT.
It

also provides access
to the

CloudWatch
Logs and

Metrics,
as shown in the

following
screenshot:

Let's
go

ahead and
check out the

steps required
to

create our very first instance-based

alarm.
To

get started, select
the

Create Alarm option. This will bring
up the

Create

Alarm wizard,
as
shown

in the
following screenshot. The wizard is a simple two-step

process
that

will help you
with the

necessary steps required to create your alarm.

[161]

Monitoring
Your AWS

Infrastructure

First up, we
need

to
select

the correct metric that
needs

to be
monitored.

You can use

the Browse
Metrics

or the search bar to
filter

out the particular
metric,

which in this

case is CPU Utilization.

Next, select
the

particular instance for which you want
to

set this alarm. You can select

multiple instances here as well. Selecting the instance will view its
CPU

utilization

graph which
you can

modify using
the

statistics (Average) as well as
the

period

(5 Minutes) dropdown lists. For
now,

click on Next
to

continue with
the

wizard.

The second step of the
wizard

is where you
actually define

the
alarm, including its

threshold value, as
well

as what actions have to be performed in
case

the
alarm

is

triggered.
For

starters, provide a
suitable Name and

Description for
your alarm.

In this
case, I provided

the alarm with
a name US-WEST-PROD-WEBSERVER-CPU

—now that's pretty
self-explanatory!

Moving on, the
next

part of your alarm's
configuration is

the
threshold setting.

As

per our
scenario, this alarm

has to be triggered when the CPU
utilization

of the

instance breaches 75 percent.
Select

the >=
(greater than equal

to) option from the

is dropdown
list

and
provide

the
value 75

in its
adjoining

textbox,
as
shown

in
the

following screenshot. You
can check your

alarm's threshold
settings in the

Alarm

Preview box.

[162]

Chapter 6

With
the

threshold value set,
the

final
thing to

do
is create the actions

that
will get

triggered
when the

alarm
is

raised.
There are three

basic action items
that you can

create
for

each of your EC2
alarms described

as
follows:

• Notification:
This

option
will generate

a simple e-mail-based notification

using the
Amazon

SNS
service.

• AutoScaling Action: This
option is

useful
when we want to trigger an

auto-scaling
event. We will be

looking
at

AutoScaling a
bit

more in detail

in the
coming

chapter.

• EC2 Action: This option allows
you

perform a
set of EC2 related actions

on your instance.
These

actions can stop,
terminate,

reboot, or
even recover

an instance.

For this
particular

scenario, we need to generate an
e-mail-based notification

when

the
alarm

is raised and
perform

an EC2 action
on

the
instance

as
well.

Let's
first

create the notification action.

In the
Notification section, select

the
option State

is ALARM from the
Whenever

this
alarm

dropdown list. Next, click
on the

new list
option to create

a
new SNS

topic.
Provide a

suitable
SNS Topic name

is the
Send notification

to text
field along

with
a list

of
comma separated e-mail addresses

in the
Email list,

as
shown

in the

following screenshot:

[163]

Monitoring
Your AWS

Infrastructure

When the alarm
is

triggered, you will
start

receiving
e-mails

on the
supplied e-mail

list
stating the nature of the alarm as

well
as the instance's metric data points at

that
particular time. You

will
receive

these
mails

as long
as

the
threshold value

is

breached or until the alarm state changes back to OK.

To
add

an
additional

EC2 action to this alarm,
simply

click on the
+EC2 Action

option.
Follow

the
same process

of setting the alarm's trigger state by
selecting

the
State

is ALARM
option, as shown in

the
following screenshot.

Next,
select

the

particular
EC2 action that you want to perform

on this alarm's
breach. In

this
case,

I

have opted
for

the
instance

to be stopped by
selecting

the
Stop this instance option.

Do
remember

that
stopping

an
instance

is
only possible

when your
instances

are

backed by
EBS volumes!

Now,
here's something

new
for

you. You
will need

to
assign an

IAM
Role

that
will

basically allow AWS
to

perform
the

EC2 actions on
your

instance.
The

alarm will

auto-create
an

EC2ActionsAllow IAM Role for
your

convenience. The following
is

the
code sample

of the
IAM Role for

your
reference.

You can
optionally create

and

assign
your

own IAM Roles as well
use the

IAM Management Dashboard (Chapter
2,

Security
and

Access Management); however,
this

basic
role

should suffice for
the

time:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"cloudwatch:Describe*","ec2:Describe*",

"ec2:RebootInstances",

[164]

Chapter 6

"ec2:StopInstances",

"ec2:TerminateInstances"

],

"Resource": "*"

}

]

}

Select the
Create

IAM Role checkbox and
verify

the newly
created

IAM
role.

You

can optionally
even create additional action

items that can get
triggered

when the

alarm's
threshold value changes to OK. Simply

select
the

+Notification
option and

provide
the

details,
as shown in the

following screenshot.
Remember, you can only

create up to
five

actions
for

each
alarm,

so use them
wisely!

Click
on

Create
Alarm to complete the alarm's creation

process.
You can test your

alarm's functionality
by

generating
CPU load on your

instance using a variety
of

tools such as Stress (http://people.seas.harvard.edu/~apw/stress/), Lookbusy

(https://www.devin.com/lookbusy/),
an

so
on.

I
personally use

Lookbusy
to

generate
artificial

loads on my instances as it's pretty
straightforward and easy

to

use. Do
remember

that
these

tools
should

only be
used

for testing and in no way

are
these

tools
recommended

to be deployed on
production

workloads or
instances.

With
this

basic alarm
created

and tested,
go

ahead
and create

similar
alarms for

monitoring your
instances disk

as
well

as network
utilization

and performance!

[165]

Monitoring
Your AWS

Infrastructure

Monitoring your instance's memory and disk

utilization using CloudWatch Scripts

Although CloudWatch
does an excellent

job at monitoring your
instance's

performance and status,
it still has

a few short comings
to it. For

starters,

CloudWatch
monitors your instance's CPU

utilization,
but cannot

measure
its

load.

Similarly,
it can

monitor
the instance's

memory size
or

a disk's
IO

performance,
but

cannot
tell

you the
exact memory

usage or the
disk

usage of
a particular partition

or layout. Why not?
Well, simply

because CloudWatch gets its
monitoring

metrics

directly
from the Xen

hypervisors
which

host
your instances. As

a
result, you don't

get to
see

the
performance

and
utilization

of your instances at
a
very

granular level.

Luckily, CloudWatch
is
designed

to accept
metric values

from
other

sources as

well as from the
hypervisor. These

metrics are called as
Custom Metrics

and can

be
pushed

into
CloudWatch using a

variety of
ways.

In this section, we
are

going

to send
custom metrics

to
CloudWatch using a

set of
simple

Perl
scripts provided

by CloudWatch
itself. These scripts have

to be
installed

in your
instance

and are

designed
to send metric data

periodically
to

CloudWatch.
But

before you
begin, let's

go through
a few necessary prerequisite

steps
as follows.

Creating CloudWatch access roles

Just as with
the

alarm actions,
the

instances need
to be

provided
with

a special set of

permissions
to

write
to

CloudWatch.
There are two ways to go

about this. The first

method
is to

copy
your

secret and access
keys to

your instance,
which

let's face it is

not the
best

of
options!

The
second method

is to create
a role using IAM and assign

your
instances

that
role during their launch.

The
role will provide

the
instance

with

the
necessary access

rights to
CloudWatch without having

to
expose

any of your
keys.

So,
let's

go ahead and create
a simple access role

for our instance using the IAM

Management
Dashboard.

From the IAM
Management Dashboard, select Roles

from the
navigation pane.

Next,
select

the option
Create

New Role.
Provide a

suitable
Role

Name for your new

role and
select

Next
Step

to continue with the
process:

[166]

Chapter 6

Next up,
from

the
Select Role

Type page,
select

the
Amazon

EC2 option. This
will

bring up the
Attach

Policy
page, as shown in

the
following screenshot. Using

the

Filter, search
and select the

CloudWatchFulllAccess policy
as shown. You

can

alternatively
create your

very
own custom

CloudWatch access
policy and attach

that to your role
if
you want or

use
this

default policy,
which is the

easier of
the two.

Click
on Next

Step
to proceed with the

wizard.

Review your role's information and
finally select

the
Create Role

option to complete

the
process.

Once
your

role is
defined,

go ahead and launch
a
new instance

using
the EC2

Management dashboard. Remember
to

assign this
new role to your

instance
using

the IAM
role

dropdown
list,

as shown in the
following screenshot:

A role is only assigned
to an

instance during its launch phase.
You

cannot assign roles to instances
that

are already running.
To

know

more about IAM roles, refer to http://docs.aws.amazon.com/

IAM/latest/UserGuide/id_roles.html.

[167]

Monitoring
Your AWS

Infrastructure

With
your instance

launched, SSH
into it using any of the options

discussed in

Chapter 3,
Images

and Instances. You are now
ready

to go ahead and
install

the

necessary
CloudWatch

scripts!

Installing the CloudWatch monitoring scripts

Installing
the CloudWatch

scripts
is
a fairly straightforward process.

The Perl
scripts

report
an instance's memory, swap, and

disk utilization
metrics to CloudWatch. You

can run these
scripts off

any Linux operating system, including the
Amazon Linux

AMI as well.

Run the
following command

in your instance's
terminal

to install and
configure

certain
pre-requisite software:

sudo yum install perl-DateTime perl-Sys-Syslog perl-LWP-Protocol-https

Once
completed,

download the latest copy of the
CloudWatch

monitoring
scripts

using the
following command:

wget http://aws-cloudwatch.s3.amazonaws.com/downloads/

CloudWatchMonitoringScripts-1.2.1.zip

The
current version

of the
CloudWatch monitoring scripts

is
1.2.1.

Next,
unzip

the contents
of

the
downloaded

Zip
file using

the
following command:

unzip CloudWatchMonitoringScripts-1.2.1.zip

cd aws-scripts-mon

The output
of

the
preceding commands

is as
follows:

[168]

Chapter 6

The
following

are
some

of the
important files

that the
CloudWatch

monitoring
script

ZIP contains:

• CloudWatchClient.pm: This is a shared Perl module file that is used to make

remote
procedure

calls to Amazon
CloudWatch from

other
scripts.

• mon-put-instance-data.pl:
This Perl

script
is

responsible for collecting

your instance's metrics
(memory,

swap,
disk

space
utilization)

and
sending

them to Amazon
CloudWatch for processing.

• mon-get-instance-stats.pl: This
Perl

script
is
used

to
query

CloudWatch

and
display

the
most

recent
utilization statistics

for the
EC2

instance on

which this
script

is
executed.

• awscreds.template: This file
is
used

to
store

your
AWS

Secret and
Access

Keys. We
will

not be
requiring this file

as we have
opted

to use
an
IAM

Role instead.

With
this

basic understanding
in

mind, let's
use the

mon-put-instance-data.

pl
script

to
view

the
instance's memory utilization (mem-util).

Run the
following

command as shown here:

./mon-put-instance-data.pl --mem-util --verify --verbose

Note that this
command

will not
publish

any
metrics

to
CloudWatch because

of the

--verify attribute.
Instead, it

will
only output the

instance's memory utilization
on

the
terminal,

as
shown in

the
following:

The script will initially
search

for the presence of the secret and
access

keys
in

the

awscreds.template file. Since
we have not

provided
the keys

explicitly in
the

instance, the script then
resorts

to
using

the
IAM

role which we created
earlier.

Make

sure that you receive
confirmation from

the
script

of
its successful verification

before

you
move

on to the next
steps.

[169]

Monitoring
Your AWS

Infrastructure

You
can additionally

use the
--mem-used (memory

used)

and
--mem-avail (memory available) metrics

to
query

your instance's memory performance
as

well.

Next, run the
following command

to
collect

all your
instance's memory related

metrics and send them to CloudWatch:

./mon-put-instance-data.pl --mem-util --mem-used --mem-avail

You can even create
a
cron job and

schedule
the

mon-put-instance-data.pl script

to
collect

and send metric data over
a
period of

time using
the

following
set of

commands.
First, create

a
new

file and save
the

following
cron task in it:

vi /etc/cron.d/Monitor_MEM
Add the

following lines
to

your
cron

file:

*/5 * * * * ~/aws-scripts-mon/mon-put-instance-data.pl --mem-util --mem

used --mem-avail --from-cron

The cron
will execute

every
five

minutes and send the
instance's memory

details over

to CloudWatch:

You can create additional cron files to monitor the instance's disk utilization as well.

For
example,

if you
want

to be
notified

when the
instance's

root (/) or
/var partition

starts to
fill

up. In that
case, create a simple

cron task
with

the
following information

in it:

*/5 * * * * ~/aws-scripts-mon/mon-put-instance-data.pl --disk-space-avail

--disk-path=/ --disk-path=/var --from-cron

[170]

Chapter 6

You can
optionally

even
use

the
--disk-space-util (disk utilization)

and the

--disk-space-used (disk space used) metrics
to

query
your

instance's disk

performance as
well.

Viewing the custom metrics from CloudWatch

You can view your
custom metrics from

the
CloudWatch management

dashboard

as
well. Simply select

the
Metrics

option from the CloudWatch
navigation pane.

Next,
browse

the
listed metrics for a

Linux System
metrics,

as
shown

in the
following

screenshot.
You can optionally even use the Browse

Metrics
search bar to

filter
out

the
required metrics.

Select the
Linux System Metrics

option to view your instance's
memory

and
disk

utilizations,
as

shown in
the

following screenshot.
You can use these

metrics
to

list

and create your
very

own custom
alarms,

as well use the
Create Alarm option.

[171]

Monitoring
Your AWS

Infrastructure

For
example, raise

an
alarm

when
Memory Utilization

of the instance
crosses a

threshold of 75 percent, or
send a notification alert

to the concerned
sysadmins

when the root (/)
partition's available disk space is

below 10 percent, and so
on.

With this,
we

have
now

successfully started monitoring
our

instance's memory and

disk utilizations
as

well!
Next up,

let's
look at

how
you can

leverage CloudWatch
to

monitor your instance's or your
application's

log
files using

CloudWatch
Logs!

Monitoring logs using CloudWatch Logs

Imagine
that you have

a
bunch of

web server
instances with

some
web applications

running
on

top
of

them.
Now, what if you wanted to

collect
the log

files off these

instances and the web app and
store it in a

central
repository such

that you can

troubleshooterrors
and

faults
more

effectively?
That's

precisely what CloudWatch

Logs is
all

about!

CloudWatch
Logs

basically
allows you to monitor custom

application log files

as well as
log files

generated by your EC2
instances

in real
time.

You can even

create and
associate CloudWatch

alarms which can send you
notifications

in
case a

particular
log

file displays
errors. For

example, you
can monitor your

application's

logs for
NullPointerExceptions

or even your
classical 404 status

codes
provided

by your
Apache

web
servers

log
files.

You can
additionally even store

your log
files

to S3
for further analysis

or to be
loaded

into
some

other log
processing system.

In this section, we will learn how to monitor our application's web
server

(Apache

HTTP) logs
using CloudWatch

Logs; however, before we proceed with that,
let's first

have
a look at some of CloudWatch

Log's concepts and
terminologies.

CloudWatch Log concepts and terminologies

The
following

are
some important

concepts and terms that
you

will
come across

while using CloudWatch
Logs:

•
Log

events: A
log

event
is an

activity
that

is recorded
by

either
your OS

or your application. It
consists

of two
main parts: a timestamp

entry that

signifies when
the log event was generated and

a
raw

message
that

describes

the
logging

event. For
example, a simple log

event
for

an HTTP
web server

would look like: [17/Sept/2015:14:44:54 +0000] "GET /index.html

HTTP/1.1 404".

•
Log

stream: A sequence
of log events generated

from
the

same source
is

called as
a log stream.

[172]

Chapter 6

•
Log

groups: A log
group

is a collection
of

log streams
that share

some

common set of properties
together. For

example,
an
HTTP log

group can

contain log
streams for

Apache's
HTTP

as
well

as Nginx web servers.

• Metric filters:
Metric

filters
are

responsible for
extracting certain key pieces

of
information

from your log
files and

then
converting

them into

CloudWatch metrics.

• Retention policies:
Retention

policies dictate
how long

a particular log event

has to be
retained.

Retention
policies are applied

to log groups and thus are

inherited by log
streams

as
well.

•
Log

agent: Log
agents are

small agent
based

software
that you need to

install

on your
individual

EC2
instances. Each

log agent
is

responsible for storing

and
pushing

the
log events

to
CloudWatch.

So, how does all this work? Well for starters, we will need to allow our instances to

communicate
with

CloudWatch
Logs just as we

did
with the

custom
metrics. You

can go ahead and create
a different

role or
use

the
CloudWatchFullAccess

role as we

did before.

Once
a
role is

associated
to your

instances,
the

next steps
require us to

configure

CloudWatch
Logs and install the

log
agent

on
the

instance itself. Let's
go ahead and

get started with the
CloudWatch

Logs
dashboard first.

Getting Started with CloudWatch Logs

CloudWatch
Logs can be

accessed
from the

CloudWatch management dashboard

itself. Select
the

Logs option from
the

navigation
pane to bring up the

CloudWatch

Logs dashboard.
From

the
main page, select

the option
Create

Log Group, as shown

in the
following screenshot:

[173]

Monitoring
Your AWS

Infrastructure

In this
scenario,

we
are

going to monitor the HTTP logs of our web server instance,

so go
ahead

and
provide a suitable name

for the log group, as
shown in

the

following. Click
on

Create
Log Group when

done. In this
case,

I have
named

my log

group as
HTTP_LOG_GROUP.

With
the

log
group now created, the next

step is
to create

a log
stream

associated

with it. From the log groups
dashboard,

select the name of your newly
created

log group. Here, you can create
different log streams for

your
applications

or OSs

based on your
requirements. Next, click

on the
Create

Log
Stream

option.
Provide

a suitable name
for your

log stream
and

select
the

Create
Log

Stream
button to

complete the
process. In

this
case, I

have named
my

log stream as
HTTP_LOG_

STREAM,
as shown in the

following screenshot:

With these
basic steps

out
of the

way,
now

comes
the fun part where we

actually

get to
install

and
configure

the
log

agent on the instance. To do
so,

launch
a
new

Linux-based instance (I would recommend the Amazon Linux AMI or the Private

Web Server AMI that we created
in

Chapter 4, Security,
Storage, Networking,

and
Lots

More!) and associate the CloudWatch access role with it. SSH into the instance and

type in the
following command

to install the
log

agent:

sudo yum install awslogs

[174]

Chapter 6

With
the

log
agent now

installed,
there are

just a
couple of

files
that you need to edit

in order for the
agent

to work. The
first file

is the
awscli.conf file.

Open the
file

using any text
editor

of your
choice

and in the
[default]

section and
specify

the region

where you want to
view

the log data.
Since I

am operating my instance out of the

US-WEST (Oregon) region, I have provided us-west-2
as the

region
of my choice.

You can
provide

either of
these

values as per your
requirements: us-east-1, us-west-1,

us-west-2,
eu-west-1,

eu-central-1, ap-southeast-1, ap-southeast-2,
or

ap-northeast-1.

Now, run the
following command:

vi /etc/awslogs/awscli.conf

Once done, save the file and exit the editor:

You can
optionally provide your AWS secret

key and
access

key

information in the awscli.conf file; however, we have not done

that
as

our instance
is

already associated with
an IAM

role.

The
next file

that
you

will need to
edit

is the
awslogs.conf file.

This
is

the
primary

log agent
configuration file, using

which you can
define

one or more
log streams

as

well as
define

the logs
that

you
want

to track. Open the
file

using any text
editor

of

your
choice

and
paste

the
following lines toward

the end of the
file:

vi /etc/awslogs/awslogs.conf

[/etc/httpd/logs/access_log]

file = /etc/httpd/logs/access_log

datetime_format = %b %d %H:%M:%S

initial_position = start_of_file

log_group_name = HTTP_LOG_GROUP

log_stream_name = HTTP_LOG_STREAM

[175]

Monitoring
Your AWS

Infrastructure

What do
all these

lines
mean?

Here's
a quick

look at the
awslogs.conf file's

parameters:

• file:
The

file
parameter

specifies
the

log file
whose contents you want to

push on
to the

CloudWatch Logs.
In my

case, I
want to

specify
the HTTP web

server's
access log

file,
hence the path of the Apache web

server's
access log

file (/etc/httpd/logs/access_log).

• datetime_format:
This parameter

specifies
how the

timestamp
value is

extracted from
supplied

log
file.

°
%b

specifies
month as in Jan, Feb, and so on.

°
%d

specifies
day of month in numbers

as
in

1,2,3,…31.

°
%H

specifies hour
in

a
24 hour clock format.

°
%M

specifies minutes.

°
%S

specifies
seconds.

The
access_log file's

log entries
have

the
timestamp

of %b
%d %H:%M:%S

which translates to Sep 9 18:45:59.

• Initial_position:
This

parameter specifies
where to

start
to read the

log
data from

the log
file.

It supports two
values: start_of_file and

end_of_file.

• log_group_name:
As the

name implies, this
parameter refers to the log group

name
that

you created
in CloudWatch

Logs
earlier.

• log_stream_name:
This parameter refers to the

destination
log

stream name.

Besides these
standard parameters, the

awslogs.conf file
supports

a few additional

parameters as
well. A

complete
list

can be found at
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AgentReference.html.

With
the

necessary
entry made in the

awslogs.conf file,
we

are
now

ready
to

start

the
log agent.

Type
in

the
following command in

your
instance's

terminal
screen

to

start the
log

agent service:

sudo service awslogs start

sudo chkconfig awslogs on

[176]

Chapter 6

Viewing the logs

With
the

log
agent up and

running,
you can now go

ahead
and view the HTTP logs

from the
CloudWatch

Logs UI. Select the
particular

log group for which you
want

to

view
the log data. Next,

select
the

appropriate
log stream

for
the

same.
In this case,

I

had to
select HTTP_LOG_GROUP

as my log group and
HTTP_LOG_STREAM

as

its
associated

log stream. You should
see a

bunch of log
statements,

as shown in the

following screenshot:

You can use the
Filter option

to
search

for particular errors or status events from

your
log data. Alternatively,

you can
also

use the
Date/Time adjustor

to
view

log

data
from a particular

time
period.

With this step, we
are

now
ready

to go ahead
and

create
a few metric filters for our

log data.

Creating metric filters and alarms

CloudWatch
Logs provide

a really awesome method, using
which you can

filter

and
search out

patterns,
phrases,

and
even values from

your log
data.

For
example,

you can create and
set a filter

that will
raise

an alarm when
it encounters

the
words

FATAL or
ERROR

from your
application logs

or even create
a filter

that searches

for
any

4XX-based
errors

from
your HTTP logs such as

400 -
Bad

Request,
401

-

Unauthorized, 403 - Forbidden, 404 -
Not

Found,
and

so
on.

Each
time any of

these values
are

found,
CloudWatch registers them as

a
metric value,

which
can then

be
compared with

the
rest of

the
log

data.

[177]

Monitoring
Your AWS

Infrastructure

To create
a
metric

filter, select
your

log
group's

name
from the

CloudWatch
Log

dashboard and select
the

Create Metric Filter
option. This will

bring
up the

Metric

Filter
wizard, as shown in the

following
screenshot:

Provide a
suitable pattern to

filter
your log

stream
in the

Filter Pattern field.
In my

case,
I have

created
a simple filter

that will
extract

the
host, logName,

user,
request,

size,
and

the
status_code

option if the status
code has

any 4XX
values

in it,
which

includes 401,403, 404, and so on.

You can
read more about filter patterns and how

to
use

them

at http://docs.aws.amazon.com/AmazonCloudWatch/

latest/DeveloperGuide/FilterAndPatternSyntax.html.

Next,
select

the correct log
stream

on
which

you
wish

to test
this filter

pattern.
In

my case,
I selected

the HTTP_LOG_STREAM
option. Next, select

the Test
Pattern

option to
test

your
filter

pattern. You
should

see
a few results

show up in the
Results

section if your
filter

pattern is accurate. This
validates

that the
filter

patter
is

correct,

so move
on

to the next phase of the wizard where we
assign a metric

to this
filter.

Click
on Assign

Metric
to

continue.
You should

see
the

Create Metric Filter
and

Assign a Metric
page, as shown in the

following
screenshot:

[178]

Chapter 6

Using
this page, you can

assign a metric
to your

filter
that can be

used
to graph

as well as
set alarms. Provide a suitable Filter

Name for your newly created
filter

pattern. In my
case, I

have used the
default

values
itself.

Next, in the
Metric Details

section,
provide

an appropriate
Metric Namespace, Metric

Name, as well as
a

Metric Value
for your

filter.
Click on

Create Filter
to

complete
the metric

filter

creation process.
You should receive

a confirmation box,
as

shown
in the

following

screenshot. Click
on

Create Alarm
to create and

assign
an

alarm
to this

newly

created metric filter.

That's all there is to it! You can
refer

to
some interesting and easy

to
follow metric

filter examples
by

following http://docs.aws.amazon.com/AmazonCloudWatch/

latest/DeveloperGuide/MonitoringPolicyExamples html.

[179]

Monitoring
Your AWS

Infrastructure

Planning your next steps

Well,
we

have covered a
lot about CloudWatch in

this
chapter; however, there are

a

few
things

that
I
would

really recommend
you to try out next. First off is

exporting

your
log data

to S3. Although an optional step,
exporting

your logs
over

to S3 can be

really
beneficial in

terms of analyzing and monitoring your application's as
well

as

your instance's
performance

and
trends.

How
do

you get started with
this? Well,

it's

very
simple!

You
will

need to
first

create an S3 bucket in the
same

region as that of your
log

data. Next,
provide a

set of
permissions

to your S3 bucket
so

that it and its contents

are writeable by
CloudWatch

Logs. You
can

use an IAM policy or even
use

S3's

access polices
for the

same. Finally,
create

a CloudWatch
Logs

Export
task

that

includes
your

log
group's

name
as the input and the S3 bucket's

destination
as the

output. That's it! You can read more about the
detailed

steps
required

for exporting

logs to S3 at http://docs.aws.amazon.com/AmazonCloudWatch/latest/

DeveloperGuide/S3ExportTasks.html.

The second thing worth
trying

out is
log data processing using Amazon Kinesis.

Why is this
so important?

Well to be honest,
CloudWatch

Logs
is a

good
tool,

but

it is not
designed

to process and
handle

large log
files that

too
close

to real time.

That's where
Amazon Kinesis comes

into play! Kinesis is
a
managed

service used

for
the

rapid processing of
large

amounts
of data,

particularly
logs,

application

usage
statistics,

and so on.
Working

with
Kinesis

is pretty
straightforward.

To begin

with, you
will first

need to create
a Kinesis stream. This is

where your
log events

will be
delivered

to
for processing. Next,

you
will

need to
create something called

as
a subscription filter using CloudWatch. A subscription filter basically

will
filter

out the required
log events from

your
log data using a defined filter

pattern.
These

log events are
then sent

to the
Amazon

Kinesis stream
for

further
analysis

and

processing. You
can read more about

subscription filters
and Amazon

Kinesis
at

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

Subscriptions.html.

Recommendations and best practices
The

following
are

some
key

recommendations
and best

practices
to keep in mind

when working with
CloudWatch:

•
Create

a
monitoring plan

for
your

infrastructure
and abide by it. Note down

all the
metrics

that you need to
collect

along with the
method

of its collection

before
actually

deploying your
infrastructure

on the cloud.

• Monitor
each

and every aspect
of your infrastructure,

including EC2

instances,
EBS

volumes, Elastic Load Balancers,
and so on. Create

specific

[180]

Chapter 6

alarms for monitoring
each AWS

resource independently

• Avoid
storing secret and

access
keys

in
your

instances,
and instead create

and use
specific

IAM
roles for permitting

the instances to
communicate

with

CloudWatch.

•
Create and check

log files periodically for application
or instance related

faults

and alerts.

• Perform
stress tests

on
your application and instances and create alarms that

respond
accordingly.

Summary

Phew!
This

has been
a
long but

interesting
and worthwhile chapter

indeed!
Let's

quickly recap the things we
learnt

so
far!

First
up, we

started off with a quick introduction
to
Amazon CloudWatch, its features,

concepts, and terminologies. Next,
we went

ahead
and

created our very first alarm

in
the

form of an estimate billing alarm. We then even saw how
to

create alarms for

monitoring
the

performance of our EC2 instances, as well as how
to

perform certain

actions when
the

alarms
are

triggered. Toward the
end

of this chapter,
we

looked at

CloudWatch Logs and how you can leverage it
to

monitor your web server's logs. And,

finally,
we

finished
the

chapter with a brief look at custom metrics and metric filters

and
how we can

use
them

effectively
to

monitor our instances
and

applications.

In the next chapter, we will be taking CloudWatch and
monitoring

to the
next

level

by exploring the
awesome

concept of
auto scaling, so

stay tuned!

[181]

Manage Your Applications

with Auto Scaling and

Elastic Load Balancing

In the previous chapter, you learnt
a lot about

monitoring our AWS
infrastructure,

especially
the EC2

instances
using Amazon

CloudWatch.
We

also
created our very

first alarms using CloudWatch
and monitored our

instance's
CPU,

memory,
and

disk

utilization
and performance

using
the

same.

In this chapter, we are going
continue

where we
last

dropped off and
introduce

an

amazing
and

awesome
concept

called Auto Scaling!
AWS has been one of the

first

public
cloud

providers
to

provide this feature
and really it

is something
that you

must try
out

and use in your
environments! This

chapter
will

teach you the
basics

of

Auto
Scaling,

its concepts
and terminologies,

and even how to create an auto scaled

environment using
AWS. It will

also cover Amazon Elastic
Load

Balancers
and how

you can
use

them in conjunction with Auto
Scaling

to
manage

your applications

more
effectively!

So without
wasting

any more time,
let's first

get started by

understanding
what Auto

Scaling
is and how it

actually works!

[183]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

An overview of Auto Scaling
We have been talking about AWS and the concept of

dynamic scalability, also
known

as
Elasticity

in general
throughout

this book;
well now

is the
best time

to look at it in

depth with the
help of

Auto
Scaling!

Auto
Scaling basically

enables you to
scale

your compute
capacity (EC2 instances)

either up or down,
depending

on the
conditions

you
specify. These conditions

could

be as
simple

as
a
number that

maintains
the count

of
your EC2

instances at
any

given time,
or even

complex
conditions

that
measure

the load and
performance

of

your instances such as CPU
utilization, memory utilization,

and
so

on. But
a simple

question
that may arise here is why

do I even
need Auto

Scaling?
Is

it really
that

important?
Let's

look
at

a
dummy application's load and

performance
graph to get

a

better
understanding

of
things;

let's take
a look at

the
following screenshot:

[184]

Chapter 7

The graph to the
left depicts

the
traditional approach

that
is usually taken

to map an

application's performance requirements
with

a fixed infrastructure capacity.
Now,

to
meet

this
application's unpredictable performance requirements,

you
would have

to
plan and

procure
additional hardware upfront,

as
depicted

by the red
line.

And

since
there is no

guaranteed
way to plan

for unpredictable workloads, you generally

end up procuring
more

than
you need. This

is
a standard approach employed

by

many businesses and it doesn't come
without

its
own

set
of

problems.
For

example,

the
region highlighted

in red
is
when

most of
the procured

hardware capacity is idle

and
wasted

as the
application simply does not have

that
high a requirement. Whereas

there
can

be
cases as well where

the procured
hardware simply did

not match the

application's
high

performance requirements, as
shown by the

green region. All

these issues, in
turn,

have
an

impact
on your

business,
which

frankly can prove
to be

quite expensive.
That's where the

elasticity of a cloud comes
into

play.
Rather than

procuring
at

the nth hour and
ending

up
with wasted resources,

you grow
and shrink

your
resources dynamically

as
per

your
application's requirements, as depicted in

the graph
on

the right. This not only
helps

you in
saving overall costs

but
also makes

your
application's management a lot more easy

and
efficient.

And
don't worry

if your

application does
not

have
an

unpredictable load
pattern! Auto

Scaling is designed

to
work with

both
predictable

and
unpredictable workloads

so that no
matter

what

application
you

may have,
you can

rest assured
that the

required compute capacity
is

always
going to be

made available for use
when

required. Keeping
that

in mind,
let us

summarize some of
the

benefits
that

AWS Auto Scaling provides:

•
Cost savings: By far the biggest

advantage provided
by Auto

Scaling,
you

can
actually gain a

lot of control over the
deployment

of your instances

as well as
costs

by
launching instances

only when they are
needed

and

terminating
them when they aren't

required.

•
Ease of use: AWS

provides a variety
of tools

using which you
can create

and manage your Auto
Scaling, such as

the
AWS

CLI and
even

the EC2

Management Dashboard.
Auto

Scaling
can be

programmatically
created and

managed
via a simple

and
easy

to
use

web
service

API
as

well.

• Scheduled scaling actions:
Apart

from scaling
instances as per

a
given

policy,
you

can
additionally even schedule scaling

actions
that

can be

executed
in the future.

This
type of scaling

comes in handy
when your

application's workload
patterns

are
predictable and

well known in
advance.

• Geographic redundancy
and

scalability:
AWS Auto

Scaling
enables you

to scale,
distribute,

and load
balance

your application
automatically across

multiple
availability

zones
within a

given
region.

• Easier maintenance and fault tolerance: AWS Auto Scaling replaces unhealthy

instances automatically based
on

predefined alarms and thresholds.

[185]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

With these
basics

in mind,
let us

understand
how Auto Scaling actually works out

in AWS.

Auto scaling components

To get started with Auto
Scaling

on AWS, you
will

be required to work with three

primary components,
each

described briefly
as

follows.

Auto scaling groups

An Auto Scaling group
is a

core component of the Auto
Scaling service. It is basically

a logical grouping
of

instances
that

share some common
scaling characteristics

between them. For
example, a

web
application

can contain
a
set of web

server

instances that can
form

one Auto Scaling group and another set of
application

server instances
that become

a
part of

another
Auto

Scaling
group and

so
on. Each

group
has

its own set of criteria
specified that includes

the
minimum

and
maximum

number
of instances that the group should have,

along
with the

desired
number of

instances that the group
must

have at
all times.

The
desired number

of
instances

is an
optional field

in
an

Auto

Scaling group.
If the

desired capacity value is
not

specified,
then

the
Auto

Scaling Group will consider
the

minimum number
of

instance values as the desired value instead.

Auto
Scaling

Groups are
also responsible

for performing
periodic health

checks

on the instances
contained

within
them.

An
instance with

degraded health is then

immediately swapped
out and

replaced
by

a
new one by the Auto

Scaling
Group,

thus ensuring that each of the instances within the Group works at optimum
levels.

Launch configurations

A launch configuration is a set of blueprint statements
that the Auto

Scaling
Group

uses
to

launch instances.
You can

create a single launch configuration and use it

with
multiple

Auto
Scaling Groups; however,

you can
only associate one Launch

Configuration
with

a single
Auto

Scaling Group
at

a time.
What

does a Launch

Configuration contain? Well
to

start off with, it contains
the AMI ID

using which
Auto

Scaling launches
the

instances
in the

Auto Scaling
Group. It

also contains additional

information about
your

instances such as instance
type, the

security
group

it
has to be

associated with, block device mappings,
key

pairs, and so
on. An

important
thing to

note
here is that

once you
create a Launch Configuration,

there is no
way

you can
edit

it
again. The

only
way

to
make changes

to
a Launch Configuration

is by
creating a

new one in
its place

and
associating that

with the Auto
Scaling

Group.

[186]

Chapter 7

Scaling plans

With
your Launch

Configuration
created, the

final step left
is to create one or more

scaling
plans. Scaling

Plans
describe how the Auto Scaling Group

should
actually

scale. There are three
scaling mechanisms

you can
use with

your Auto
Scaling

Groups,
each

described as
follows:

• Manual scaling:
Manual

scaling
by far is the

simplest
way of

scaling
your

resources.
All you

need
to do here is

specify a
new

desired number
of

instances value or change the
minimum

or
maximum

number of instances

in an Auto Scaling Group
and

the rest is taken
care

of by the Auto
Scaling

service itself.

• Scheduled scaling: Scheduled scaling
is

really helpful
when

it comes
to

scaling resources based
on

a particular time
and

date. This method of scaling

is
useful

when the
application's load patterns are highly predictable, and

thus

you know
exactly when

to
scale

up
or down.

For
example, an application that

process a company's payroll cycle is usually load intensive during
the end of

each month, so
you can

schedule
the

scaling requirements accordingly.

• Dynamic scaling: Dynamic
scaling, or scaling on

demand
is
used

when the

predictability
of your application's performance is unknown.

With dynamic

scaling,
you generally

provide a
set of

scaling policies using some
criteria;

for example, scaling
the instances in

my
Auto Scaling Group by 10 when

the
average

CPU
utilization exceeds

75 percent for
a
period of

5 minutes.

Sounds familiar, right? Well
that's because these

dynamic scaling policies

rely on
Amazon

CloudWatch to trigger
scaling

events.
CloudWatch

monitors

the
policy conditions

and
triggers

the auto
scaling events

when
certain

thresholds
are breached.

In either case,
you will require

a minimum
of two

such
scaling policies:

one for
scaling

in
(terminating instances)

and one for

scaling
out

(launching instances).

Before
we go ahead and create our

first
Auto Scaling

activity,
we need to

understand

one
additional

AWS
service

that
will

help us balance
and distribute

the
incoming

traffic across our auto scaled EC2 instances. Enter the Elastic Load Balancer!

Introducing the Elastic Load Balancer

The
Elastic

Load
Balancer

or ELB is
a web service

that
allows

you to
automatically

distribute incoming traffic across a fleet
of EC2

instances. In simpler
terms, an

ELB

acts as
a
single point

of
contact between your

clients and
the EC2

instances
that are

servicing them.
The

clients query
your application via the

ELB;
thus, you can

easily

add and
remove

the underlying
EC2

instances without having to worry
about

any of

the
traffic

routing or
load distributions. It is all taken

care of by the
ELB itself!

[187]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Coupled
with Auto

Scaling, ELB provides
you with

a highly resilient
and

fault

tolerant environment to
host

your
applications. While

the Auto Scaling
service

automatically removes
any

unhealthy
EC2 instances from its group, the

ELB

automatically
reroutes the

traffic
to
some other

healthy
instance.

Once
a
new

healthy

instance
is launched

by the Auto
Scaling service,

ELB
will

once again re-route the

traffic
through it and

balance
out the

application load
as

well.
But the

work
of the

ELB doesn't
stop there! An ELB can

also
be

used
to

safeguard
and secure your

instances by enforcing
encryption

and by
utilizing only

HTTPS and SSL
connections.

Keeping these
points in mind,

let us look at how
an ELB actually works.

Well to begin with, when you create an ELB in a particular AZ, you are actually

spinning
up

one
or

more ELB nodes. Don't worry, you cannot physically see these

nodes nor perform any actions on them. They are completely managed and looked

after by AWS itself. This node is responsible for forwarding
the

incoming traffic
to

the healthy instances present in that particular AZ. Now here's the fun part! If you

configure
the

ELB to work across multiple AZs and assume that one entire AZ goes

down or
the

instances in that particular AZ become unhealthy for some reason, then the

ELB will automatically route traffic to the healthy instances present in the second AZ:

[188]

Chapter 7

How
does

it
do

the
routing? The ELB,

by
default, is provided with a public DNS

name,
something similar

to
MyELB-123456789.region.elb.amazonaws.com.

The
clients

send
all

their
requests

to this particular Public DNS
name.

The AWS

DNS servers then
resolve

this public DNS
name

to the
public

IP
addresses

of the

ELB nodes. Each
of the

nodes
has one or

more listeners configured
on them which

constantly
check

for
any

incoming connections. Listeners
are

nothing
but

processes

that are
configured

with
a combination

of
protocols;

for
example,

HTTP and
a
port,

for example, 80.
The ELB

node
that

receives
the particular

request
from the client

then routes the
traffic

to
a
healthy

instance using a particular
routing algorithm. If

the
listener

was
configured with

an
HTTP

or HTTPS protocol, then the preferred

choice of
routing algorithm is

the least outstanding
requests

routing
algorithm.

If you have
configured

your ELB
with a

TCP
listener,

then

the preferred routing algorithm
is
Round Robin.

Confused?
Well

don't be, as
most

of these things are handled internally by the ELB

itself.
You don't have to

configure
the ELB

nodes
nor the routing

tables.
All

you
need

to do
is set

up the
listeners

in your ELB and
point all client requests

to the
ELB's

Public
DNS name, and that's it! Keeping these

basics
in mind,

let
us go

ahead
and

create our very
first ELB!

Creating your first Elastic Load Balancer

Creating
and

setting
up

an ELB is a fairly easy
and

straightforward process provided

you
have planned

and
defined

your
Elastic Load Balancer's role from

the
start.

The

current version
of
ELB supports HTTP, HTTPS,

and TCP, as well as
SSL connection

protocols; however, for
the

sake
of

simplicity,
we

will
be

creating a simple
ELB

for

balancing HTTP traffic
only.

I'll
be

using
the

same VPC environment
that we

have

been developing since Chapter 5, Building
Your

Own Private
Clouds

Using Amazon VPC;

however, you can easily substitute
your

own infrastructure in this place
as

well.

[189]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

To access the
ELB Dashboard,

you
will

have to
first

access the

EC2ManagementConsole. Next,
from the

navigation
pane,

select
the

LoadBalancers

option, as
shown in

the
following screenshot.

This
will

bring up the
ELB Dashboard

as
well, using

which you can create and
associate

your
ELBs.

An
important point

to
note

here is that
although ELBs

are created
using

this
particular portal,

you can,

however,
use them

for both
your EC2

and VPC environments.
There is no

separate

portal for
creating ELBs

in
a VPC

environment:

Since this is our
first ELB, let

us go
ahead

and select the
Create Load Balancer

option.
This

will bring up
a seven-step wizard

using which you can create and

customize
your

ELBs.

Step 1 – Defining the Load Balancer

To begin
with, provide a

suitable
name for

your ELB
in

the Load
Balancer

name

field.
In

this
case,

I have
opted to stick to

my naming convention
and

name
the

ELB US-WEST-PROD-LB-01. Next
up,

select
the

VPC
option in which you

wish

to deploy your
ELB.

Again,
I
have gone ahead and

selected
the

US-WEST-PROD-1

(192.168.0.0/16) VPC
that we created

in
Chapter

5,
Building Your

Own Private

Clouds Using Amazon VPC. You
can alternatively select

your own VPC
environment

or even select a standalone EC2 environment if it is available. Do not check the

Create
an

internal
load

balancer
option as in this

scenario,
we are creating an

Internet-facing
ELB for our

Web Server instances.

There are two types of
ELB that

you can
create and

use
based

on your
requirements.

The
first is

an
Internet-facing

Load
Balancer,

which is
used

to balance out
client

requests that are inbound from the Internet.
Ideally,

such
Internet-facing

load

balancers
connect

to the
public subnets

of
a
VPC.

Similarly,
you

also have something

called as Internal Load
Balancers

that connect and route
traffic

to your
private

subnets.
You can

use a
combination of

these
depending

on
your application's

requirements and architecture; for
example,

you
can

have one
Internet-facing

ELB as

your application's
main

entry point and an
internal

ELB to route
traffic

between your

public
and private

subnets; however, for simplicity, let
us create an

Internet-facing

ELB for now.

[190]

Chapter 7

With these
basic

settings
done, we now

provide
our

ELB's Listeners. A Listener
is

made
up of two parts:

a
protocol and

port number for
your frontend

connection

(between
your client and the

ELB),
and

a protocol and a
port

number for a backend

connection (between the ELB and the EC2 instances).

In the
Listener Configuration section, select

HTTP from the Load
Balancer

Protocol

drop-down list
and

provide
the port number 80

in
the Load

Balancer
Port

field,
as

shown in the
following screenshot. Provide

the
same

protocol and port number for

the Instance Protocol and Instance Port fields as well:

What does this mean?
Well,

this
listener

is now
configured

to
listen

on the
ELB's

external
port

(Load Balancer
Port)

80 for
any

client's requests.
Once it receives

the
requests,

it will then
forward it out

to the
underlying

EC2
instances using

the

Instance Port,
which

in
this case is port 80 as

well.
There is no rule of

thumb
as

such

that both the port
values

must
match;

in fact, it is
actually

good practice to keep them

different.
Although your

ELB
can

listen
on port 80

for
any client's

requests,
it can use

any ports
within

the range of
1-65,535

for forwarding the
request

to the
instances.

You can
optionally

add
additional listeners

to your
ELB such

as
a listener for

the

HTTPS protocol
running

on
port 443

as
well;

however, that
is something

that
I
will

leave you do
to later.

The
final configuration

item
left

in step
1

is where
you

get to select the
Subnets

option to be
associated

with your new
Load Balancer.

In my
case, I

have gone

ahead and created a set of subnets each in two different AZs so as to mimic a

high-availability scenario:

[191]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Select any
particular subnets

and add them to your
ELB

by
selecting

the adjoining

+
sign. In

my case, I
have

selected
two

subnets,
both belonging to the web server

instances;
however, both present in two

different AZs.

You
can select a single subnet

as
well;

however,
it

is

highly recommended that
you go for

a
high

available

architecture, as described earlier.

Once
your

subnets are
added, click

on
Next: Assign Security

Groups to continue

over to
step

2.

Step 2 – Assign security groups

Step
2

is where we get to
assign

our ELB with
a
security group. Now, here's

the catch: You
will

not be prompted
for a

Security Group if you
are using

an

EC2-Classic environment for
your

ELB. This
Security Group is only

necessary
for

VPC environments and
will basically

allow the port
you designated

for inbound

traffic
to pass through:

In this
case, I

have created
a
new dedicated Security Group for the

ELB. Provide a

suitable
Security

group
name

as well as
a Description,

as shown in the
preceding

screenshot. The
new

security
group

already
contains

a
rule that

allows traffic
to the

port that you
configured

your
Load Balancer

to
use;

in my case
it's port 80.

Leave the

rule
at its

default
value and click on Next:

Configure Security Settings
to

continue.

Step 3 – configure security settings

This
is
an

optional
page that

basically allows
you to secure your

ELB
by

using either

the HTTPS or the SSL protocol
for

your frontend
connection.

But
since

we have

opted for
a simple HTTP-based ELB,

we
can

ignore this page
for

now. Click on
Next:

Configure Health Check
to

proceed
to the next step.

[192]

Chapter 7

Step 4 – Configure Health Check

Health
checks

are
a very important

part of an
ELB's configuration

and hence you

have to be extra cautious when
setting

them up. What are
health checks? To

put

it in
simple

terms, these
are basic tests that

the ELB conducts to ensure that your

underlying EC2 instances are
healthy

and
running optimally. These tests include

simple pings,
attempted connections, or

even some send requests. If
the

ELB senses

either
of

the
EC2

instances in
an

unhealthy
state,

it
immediately

changes its
Health

Check Status to OutOfService. Once the instance is marked as OutOfService, the

ELB
no longer routes any

traffic
to it.

The ELB
will

only start
sending

traffic
back to

the
instance only if

its
Health

Check State changes to
InService

again.

To
configure

the
health

checks for your
ELB, fill in

the
following information

as

described here:

• Ping
protocol:

This field indicates
which

protocol
the

ELB
should use to

connect to your
EC2

instances. You can
use

the TCP,
HTTP, HTTPS,

or the

SSL options; however, for
simplicity, I

have
selected

the HTTP protocol here.

• Ping
port: This

field
is
used

to
indicate

the port which the ELB
should use

to
connect

to the
instance.

You can supply any port
value from

the range
1

to
65,535;

however,
since

we are
using

the
HTTP protocol, I

have opted to

stick
with

the
default

value of port
80. This

port value is
really essential

as

the
ELB

will
periodically

ping the EC2 instances on this port number. If any

instance
does

not reply in
a timely fashion,

then
that instance will

be
deemed

unhealthy by the
ELB.

• Ping path:
This

value
is

usually used for
the

HTTP and
HTTPS

protocols.

The ELB sends
a simple

GET
request

to the EC2
instances based

on the Ping

Port and Ping Path.
If
the ELB receives

a
response other than

an
OK, then

that
particular

instance
is deemed

to be unhealthy by the
ELB

and it will

no longer route
any traffic

to it. Ping paths
generally

are
set

with
a
forward

slash,
/, which indicates the

default
home page of

a
web

server.
However,

you can
also use a /index.html

or
a /default.html value

as you see
fit.

In my case,
I have provided

the
/index.php value

as
my dummy

web

application
is actually a

PHP app.

[193]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Besides
the ping checks, there are also

a
few

advanced configuration
details that you

can
configure based

on your
application's health

check
needs:

• Response time:
The Response

Time is
the

time
the

ELB
has to wait in order

to
receive a

response. The
default

value is
5 seconds

with
a maximum

value

up to 60
seconds.

Let's take
a look

at the
following screenshot:

• Health Check Interval: This field indicates the amount of time (in seconds)

the ELB waits between health checks of an individual EC2 instance. The

default
value is 30

seconds;
however, you can specify

a maximum
value of

300 seconds as well.

• Unhealthy Threshold:
This

field
indicates the number of

consecutive failed

health checks an ELB must wait before declaring an
instance unhealthy.

The

default value is 2 with a maximum threshold value of 10.

• Healthy Threshold:
This

field
indicates the number of

consecutive successful

health checks an ELB must wait before declaring an
instance healthy.

The

default value is 2 with a maximum threshold value of 10.

Once
you

have
provided

your
values,

go ahead and
select

the
Next:

Add EC2

Instances
option.

[194]

Chapter 7

Step 5 – Add EC2 instances

In this section of the
wizard,

you can select any running instance
from

your Subnets

to be
added

and
registered with

the
ELB. But since

we are
setting this particular ELB

for
use with Auto Scaling, we will leave this

section for
now.

Click
on

Next:Add

Tags to proceed with the wizard.

Step 6 – Add tags

We
already

know the
importance

of tagging our AWS
resources, so

go
ahead

and

provide a
suitable tag for

categorizing
and identifying your

ELB. Note
that you can

always
add/edit

and
remove

tags
at a

later
time

as well
using

the ELB Dashboard.

With
the tags

all
set up,

click
on

Review and Create.

Step 7 – Review and Create

The
final step

of our
ELB

creation
wizard

is where we
simply review

our
ELB's

settings, including
the

Health
Checks,

EC2 instances, tags,
and so on. Once reviewed,

click
on Create

to begin your
ELB's creation

and
configuration.

The ELB
takes a

few
seconds

to get created, but once it's
ready,

you can
view and

manage it
just

like any other AWS resource
using

the
ELB dashboard,

as
shown in

the
following

screenshot:

Select the newly created ELB and view its
details

in the
Description

tab. Make
a
note

of the
ELB's public

DNS Name as
well.

You can
optionally

even view the
Status

as

well as the
ELBScheme (whether Internet-facing

or internal) using the
Description

tab.

You can
also view

the
ELB's Health Checks

as
well

as the
Listeners configured with

your
ELB.

[195]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Before
we

proceed
with the

next section
of this chapter,

here
are

a
few

important

pointers
to

keep
in
mind when working

with
ELB. Firstly,

the
configurations that

we

performed
on our

ELB
are

all
very

basic
and

will help
you to get through the

basics;

however, ELB also provides
us with

additional advanced configuration options such

as
Cross-Zone Load Balancing, Proxy Protocols, Sticky Sessions,

and
so

on, which

can
all

be
configured using

the
ELB dashboard.

To
know

more
about these advanced

settings, refer to http://docs.aws.amazon.com/ElasticLoadBalancing/latest/

DeveloperGuide/elb-configure-load-balancer.html. Second important thing

worth
mentioning

is the
ELB's costs.

Although
it

is
free (Terms

and
Conditions apply)

to
use under

the
Free Tier eligibility, ELBs are

charged
approximately $0.025

per

hour
used.

There is
a nominal charge on

the
data transferring

as
well, which

is

approximately $0.008
per GB of

data processed.

With these points
in
mind

and our
ELB all prepped, let

us go
ahead

and get
started

with the
fun

part
of
Auto

Scaling!

Getting started with Auto Scaling

With
your

ELB
all set up, you are now ready to go

ahead
and start

configuring
the

Auto
Scaling service.

As
discussed earlier,

there are
basically three

parts to Auto

Scaling: The
Launch Configurations,

the Auto
Scaling Group,

and,
finally,

the Scaling

Triggers.
In this section, we are going to check out

some simple
steps using which

you
will

be able to create and
configure

your own auto
scaled

environment; but

before
that,

here are
a
few tips and tricks worth

mentioning!

First
up,

prepare your
Machine

Image or
AMI. By prepare

I mean make sure
you

have

already installed and configured your web server (in
my case,

I'm using a simple Apache

HTTP web server)
to

start
on

instance
boot up as well as

place your application's

code
or

website files
in the

correct directories. Additionally,
you

can even install
and

configure
the

CloudWatch Log agent
in your

AMI such
that it

captures
the

essential

web
server logs

and
sends

them to
CloudWatch for further processing.

The second most important part
of

any Auto Scaling activity
is
planning and

understanding instance quantity, that is, what is the desired capacity of your Auto

Scaling Group and what are the minimum and maximum number of instances

you want your application to scale to. Since
we

are just starting off, I would really

recommend doing
the

basics. Have a desired capacity set
to

1 instance, which means

that there will be a single instance hosting your web server at all times. Next, set up

a minimum instance value of 1 and a maximum instance value of, say, 5. Remember

that you can always change the Auto Scaling Group values but not the Launch

Configuration details.

[196]

Chapter 7

The third
and final

thing that
I
would

like
to

mention
is the

famous moto:
Plan for

failure, and nothing will fail. Although you can
set

up Auto
Scaling

using
a single

AZ,

it is
highly recommended

that you
distribute

your
workloads across

AZs as much as

possible.
The

following is a look at my simple
Auto Scaling

example:

In this
case,

we
have

already
deployed

and
configured

our
ELB,

and the
only

thing

remains
is the Auto

Scaling configuration.
So without

further ado,
let's get

started!

Creating the Launch Configuration

The
first step

to
setting

up
an

Auto
Scaling activity is

to
create

and
configure a Launch

Configuration. To do so, from
the

EC2 Management Dashboard option, select
the

AutoScaling Groups option from
the

navigation
pane as

shown in
the

following

screenshot. This will
bring up the

Auto Scaling Groups dashboard.
Next,

select
the

Create Auto Scaling
group

option
to bring up the

Auto Scaling setup wizard.

The
wizard

is
a simple six-step

process that
will first enable you

to
create and

configure a
Launch

Configuration, followed
by

a five-step process
to

associate
an

Auto
Scaling

Group
with

it. Let us go through each of the steps in
detail.

[197]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Step 1 – Choose AMI

From the Choose AMI page, select your choice of AMI for your Launch Configuration.

You can either select the Amazon Linux AMI to get started with or even select the

custom
AMI

that
we

created back in Chapter
4,

Security, Storage, Networking, and Lots

More!, by selecting the My AMIs option and then selecting your particular custom AMI.

Step 2 – Choose Instance type

Select the
appropriate

instance type
required

for your
Launch Configuration. In

my case,
I have selected

the
General purpose t2.micro

instance type for my
demo

purposes; however, feel free
to

select
an appropriate

instance
type as per your

requirements.
Click

on
Next: Configure details

to continue with the
process.

Step 3 – Configure details

Provide a
suitable

Name
for your

Launch Configuration.
In my case,

I have named

it using the
same

naming convention that I'm
following throughout this

book, that

is, US-WEST-PROD-WEB-LC-1. You
can

Request
Spot

Instances instead
of the

default On-Demand Instances
as

well.
Spot instances are

a
great way to

save costs

compared to your
on-demand instances;

however, use them
with caution.

Spot

instances are spun up the
moment

your bid price
rises

above the instance's market

value and are
terminated when the

market value exceeds
your spot price.

You
can optionally even assign a particular

IAM
Role for

your
Auto Scaled instances

by
selecting

an
appropriate Role name from

the IAM
role drop-down list. In this

case, I have not provided
any

roles
to
my Launch Configuration. Select

the
Enable

CloudWatch detailed monitoring checkbox
if you

wish
to have your

instances

monitored for a duration
of 60

seconds. By default your instances will
be

monitored

by
CloudWatch for a minimum period of

300
seconds (five minutes) for

no
charge

at

all. Selecting detailed monitoring will incur additional charges, so use
it with

caution.

Note: Enabling the CloudWatch
detailed monitoring

option is highly recommended
in case the

instances belong

to a production environment.

[198]

Chapter 7

Once
your basic details

are
filled

out, you can
even set

the instance's IP
addressing

scheme by selecting the Assign
a public

IP
address

to every instance option from the

Advanced
Details section.

This
option

comes in handy when you
wish

to connect

and log into to
your

VPC instances from your
home

network.

Step 4 – Add storage

With
your Launch

Configuration
created, you

can
now

continue
to

adding
and

configuring
the

remaining elements
of your

instances,
which

includes
the Storage

and Security
Groups.

You can add an
optional Volume

to your instances by
selecting

the
Add NewVolume

button
on

the
Add Storage

page. The rest of the
fields

are

pretty
self-explanatory,

so I'm
really

not
going

to talk about them here. In
my case,

I
have not

provided
any

additional volumes
to my instances and opted for only

a

single EBS
root volume

(/dev/xvda).
Click on Next:

Configure Security Group
to

either create or select an
existing security

group
for

your auto
scaled instances.

Step 5 – Configure Security Group

From the
Configure Security

Group
page, select

an appropriate
Security Group

for

your Auto
Scaled instances.

Since we are
working

with web
server instances, I have

selected my US-WEST-PROD-WEB-SG (Web
Server

Security
Group). The group

has

the
following

set of inbound
rules:

Web Server
Inbound Security

Rules

Source Protocol
Port Range Remarks

0.0.0.0/0 TCP 22 Permit inbound SSH access to web server instance

0.0.0.0/0 TCP 80 Permit inbound HTTP access to web server instance

0.0.0.0/0 TCP 443 Permit inbound HTTPS access to web server instance

You can
optionally

even create
a
new

Security Group
as per your

requirements;

however, make
sure to have the SSH as well

as
the HTTP ports opened up before

you proceed with the next
steps.

Step 6 – Review

Phew! After all those
intense configurations,

we are now
officially

ready to review

and create our Launch
Configuration.

Make
sure

the
AMI details, Instance Type,

and your
Launch Configuration

settings are correct. Once
verified,

click on
Create

Launch Configuration
to complete the

process.

[199]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

The
wizard will

now
automatically

set and create
a
new Launch

Configuration based

on your
specifications.

You can create as
many

Launch
Configurations

as you need;

however,
you

will
be able to

specify
only

a single
LC

for
an Auto

Scaling Group
at

a time. Also,
once

a
LC

is created,
there is no way you can edit its

configurations.

The
only

way to do
so

is by
creating a

new
LC

and
associating

that with your

Auto
Scaling

Group. Instances that were
launched

as
a
part

of
the

old
LC

remain

unaffected
by this change;

however, any
new instances that are created

will
use the

new LC
as their blueprint for

the Auto
Scaling activity.

Creating the Auto Scaling Group

With
your Launch

Configuration ready,
the next and

final stage
of

creating
your

first

Auto
Scaling

task
involves

the setting up of an Auto
Scaling

Group. We have
already

talked about Auto Scaling Groups in the beginning of this
chapter,

so
let's have a

quick recap of the
same.

As
discussed previously,

an Auto
Scaling

Group is
nothing more

than
a logical

grouping of instances that share
some common scaling characteristics

between them.

Each group has its own
set

of
criteria specified

which
includes

the
minimum

and

maximum
number of

instances that
the group

should have
along

with
the

desired

number
of instances which the group

must
have at all

times. Besides these,
an

Auto
Scaling group also helps

us to
create

and
define scaling triggers

which, when

triggered,
result in either

instances getting added
or removed from the group. These

scaling triggers
rely on CloudWatch

Metrics
and

periodic health
checks to determine

whether
a particular instance

is
unhealthy

or
unresponsive. If such

an instance
is

found,
then the Auto

Scaling service will automatically
terminate the unhealthy

instance and replace it
with a

brand new one!
Awesome, isn't

it!

With these
basics

in mind,
let us go ahead and continue where we

left
off from

the
Launch Configurations

stage. Log in to your AWS
account using

your
IAM

credentials
and

select
the EC2 option from the AWS

Management Console. Next,

from the navigation pane
provided, select

the Auto
Scaling Groups

option. This will

bring up the Auto
Scaling Group

dashboard, as
shown in

the
following screenshot.

Select the
Create Auto Scaling

Group
option

to get
started:

[200]

Chapter 7

Here, you will be
provided

with two options: either create
a
new launch

configuration
or create an Auto Scaling Group

out
of an

existing
one. Since we

have

already created
our

LC, select
the

Create
an

Auto Scaling
group from an

existing

launch configuration option. Select
the newly created LC

and click
on Next

Step

to proceed. Now
comes

the fun part where we
actually get

to
configure

the Auto

Scaling
Groups.

Follow the next
steps carefully

and
fill out

the
required fields

as per

your
requirements:

Step 1 – Configure Auto Scaling group details

The first step in creating your
Auto

Scaling Group requires you to provide a suitable

name for your
Auto

Scaling Group as well as its Network
and

Load Balancing details.

Fill in the required
fields

as per
your

requirements:

•
Group name:

Provide a suitable
name for your Auto

Scaling Group.
In this

case, I have used the name US-WEST-PROD-WEB-ASG-1.

•
Group

size:
Here, enter the

desired capacity for
your Auto Scaling Group.

Remember that
the value entered here

represents
the number of instances

Auto
Scaling

must have at
all times,

so choose
a smaller

number to start
with.

In my case,
I have

chosen
1
as this is just

a demo:

• Network:
From the Network

drop-down list, select
your

appropriate
VPC in

which you
wish

to enable Auto Scaling.

• Subnet:
Once your

Network is selected, you
can now

select
your

corresponding
subnets. Auto Scaling

will
then launch the instances based

on the
subnet

that you
select here.

In my
case, I

have
selected

two
subnets,

each created in
a different

AZ.
This

setup
maximizes

the
availability

of your

application while
minimizing

any unwanted
downtime.

[201]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Each instance
in

this
Auto

Scaling
Group

will
be

provided

with a public
IP

address.

With these
basic

settings filled
out, we now

move
on to the Advanced

Details section

of our Auto
Scaling Group:

•
Load

Balancing:
These are optional

settings
that you can configure to work

with your Auto
Scaling

Group.
Since

we
have already

created
and configured

our ELB, we will be
using

that
itself

to
balance

out
incoming traffic for our

instances.
Select the

Receive
traffic from

Elastic
Load

Balancer(s)
option, as

shown in the
following screenshot.

Next, type
in

the
name

of your
ELB

(US-WEST-PROD-LB-01) in
the Load

Balancing
text

field:

• Health Check Type:
You can

use
either your

EC2
instances or even your

ELB
as

a health
check

mechanism
to make sure that your

instances
are in

a
healthy

state
and

performing optimally.
By default, Auto

Scaling
will

check your EC2 instances
periodically for

their
health status. If

an unhealthy

instance
is found,

Auto
Scaling

will
immediately

replace that
with a

healthy

one. Here,
I have selected ELB

as
my

health check type,
so

all the instance

health checks are now going to be
performed

by the ELB
itself.

• Health Check
Grace

Period:
Enter the

health
check's grace period

in seconds.

By
default,

this value is set to 300
seconds.

[202]

Chapter 7

Once
your

Auto
Scaling

Group's
basic configuration

is
complete,

the next
step

is

where you
actually

get to create and
define

the
scaling policies. Click

on
Next:

Configure scaling policies
to

continue with
the

process.

Step 2 – Configure scaling policies

The second
most

important part of creating any Auto
Scaling Group

is
defining

its

scaling policies. A
scaling

policy is a set
of

instructions
used by the Auto

Scaling

service
to
make adjustments

in your Auto
Scaling

group's
size (number

of
instances).

Each
Scaling

Policy is
attached

with
a CloudWatch alarm

and
a notification action.

When the alarm
is

breached, the appropriate
scaling

policy is triggered, which will

either
add

or
remove instances from

your Auto
Scaling

Group
depending

on
its

definition. Let
us go ahead and create

a few such scaling policies for
our own use.

First up, we need to
define

whether this
particular

scaling
policy

will be
used

to

maintain
the Auto Scaling Group's

initial size (desired capacity)
only or whether you

wish to adjust the
Group's size

by
adding

or
removing instances.

In this
case, I

have

selected
the Use

scaling policies to adjust
the

capacity
of

this
group option, as

shown in the
following screenshot. I

have
also provided

the minimum
(1

instance)

and
maximum

number (5
instances)

of instances
I
want to the group to

scale

between. You can
provide

your
own

set of values here as per your needs; however,

stick to the
basics

if this is your
first

time:

Next, we
define

and
create

our
scaling policies.

There are two
policies

that are
used

by an Auto
Scaling

Group: one to
increase

the instance count based on certain alarms

and the other to
decrease

the instance count. To begin with, let us
first

go
ahead

and

populate
the Increase Group

Size policy,
as shown in the

following screenshot:

•
Name:

Provide a
suitable

name for
your

scale-out
policy.

[203]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Execute policy
when:

In
this

field, you
have to

select a
pre-configured

alarm using which
the

policy will
get triggered. Since this is our

first time

configuring,
select the Add new alarm option. This

will
pop up the

Create

Alarm dialog, as shown in
the

following screenshot:

Filling
out and creating the alarm

is a very simple process; for example,

we want our Auto
Scaling Group

to be monitored based on the
CPU

Utilization
metric for an interval of

5 minutes.
If the average CPU

Utilization
is greater than or equal to 50

percent
for at

least
one

consecutive

period,
then

send a notification mail
to the

specified
SNS Topic

(in
this

case,

All-About-Dogs-Admins).
You can

verify your alarm's configuration
by

comparing it to the
Alarm

Graph as
well.

Once you are
satisfied

with your

settings,
click

on Create Alarm.

•
Take

the action:
With

your basic alarm now set,
you can

further
tell your

policy what action it has to take if the
particular

threshold is
breached.

Select

Add from the
dropdown list

and
provide a suitable

number of
instances

that you
wish

to
add

when
a
certain

condition
matches. For

example, I

have
created a four-step scaling

policy that
first

adds one
instance

to the

group when the average CPU
utilization

is within
a particular

threshold

range,
such as 50-55

percent.
Next,

another
instance

is added when the CPU

utilization increases even further
to

55-65
percent, and so on so forth. You

can
add

multiple
such

steps by selecting the Add step
option,

as shown in

the
following

screenshot. Once the
steps

are
added,

your
Increase

Group Size

policy
should

look
something like

the
following:

•

[204]

Chapter 7

Adding
steps in

a policy
is
an optional setting

and
is only

meant
to

provide
you

with
finer

grained control
over

when
exactly your instances are

to
be launched.

• Instances need:
With the

steps added,
the

final field left
is the

Cooldown

period. By default,
this

value is set
to

300 seconds
and can be changed as per

your
requirements. What

is this
cooldown

period and why
is

it
important?

Well, a Cooldown
period

is
kind of

like a grace
period that we

assign
to the

Auto
Scaling

Group to
ensure

that we don't launch
or

terminate any
more

resources before the
effects

of
previous scaling activities

are
completed.

It is

just a
way of telling the Auto

Scaling Group
to

wait
for

a
short

period
of

time

before initiating another scaling event.
Ideally,

this
field

is very
important

and should not be
taken

for granted.
There

have been
cases

where the Auto

Scaling
activity

goes into
a loop-like

condition where an
instance

is launched

and
terminated repeatedly, only because

the
cooling period

and the ELB

health check timeout did not match, so use this value with utmost care!

Once the
Increase

Group Size
policy

is created, you can
conversely

create and

configure
the

Decrease
Group

Size policy as
well.

Follow
the

same
steps by

first

creating and
assigning

an alarm
that

now triggers when the average CPU
Utilization

is
less

than or equal to
75 percent.

Next,
add

the
scaling steps

that
will remove

one

instance
from

the Auto Scaling Group at
a time depending

on the
alarm's threshold

ranges,
such as

removing
one

instance
from the group when the average CPU

utilization
is between 65 percent

and 75
percent and

so
on

so forth.
Once

configured,

click
on

Next:
Configure Notifications

to proceed with the
next steps.

[205]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Step 3 – Configure notifications

Notifications
play

a very important
role in

an
Auto

Scaling
activity. You can

basically

configure
your Auto

Scaling Group
to send

notifications
out to any

particular

endpoint,
such

as an
e-mail address,

whenever
a specified

event gets
triggered,

such

as the successful launch of an instance, or a failure to launch an instance, and so on.

To
configure notifications, all

you need to
do

is create an SNS
Topic

and
subscribe

when it has to
notify

you in case
a particular event

is
triggered.

To create
a
new SNS

Topic,
simply click

on the
create topic

option, as
shown

in the
following screenshot.

Fill in the SNS
Topic Name

as well as the
required Email Addresses

that you
wish

to subscribe
to.

In this
case, I

have
already

created an SNS Topic that
will send

notifications
to the

administrators
whenever the

instances successfully
launch

and

terminate
as well

as
when they

fail
to launch or

terminate
correctly:

You can optionally add more notifications
to

your Auto Scaling Group
by

selecting the

Add notification option
as

well.
Once

done, click on Next: Configure Tags
to

proceed.

[206]

Chapter 7

Step 4 – Configure tags

We
do

know the
importance

of tags and tagging from
our previous

chapters.

Tagging helps us
organize, manage,

and
identify our

resources more
effectively

and
efficiently

by
specifying one

or
more metadata

in the
form

of
a
key and

a
value

pair. Auto
Scaling

Groups too can be
assigned

tags
using

the
Configure

Tags page.

Provide a
suitable Key and

Value
for your new Auto

Scaling
Group. You

can

optionally
even tag your

instances
that

will
be launched by your Auto

scaling Group

by selecting the Tag New
Instances

checkbox,
as shown in

the
following screenshot:

Tag keys and values are case
sensitive.

Remember,
you can add up to 10 tags

for
each Auto

Scaling Group
that you create as

well as remove them at any
time.

Once you have tagged your Auto
Scaling

Group,

move
on to the

final step of
the

process
by

clicking
on the

Review option.

Step 5 – Review

Congratulations
if
you made

it
this far!

You are
almost done

with your
first fully

functional Auto
Scaling

Group, but
before

you
finish, review

the settings once
more

and make
sure that all

the
configuration settings

and auto scaling values
are

correct.

Once
satisfied with

the checks, click on
Create

Auto
Scaling Group.

The group
will

first
check the

number of desired instances
that you

have specified.
In our

scenario,

we
specified

one as the
desired value,

so Auto Scaling
will automatically

launch one

instance
in either

of the subnets that we
specified

during the group's
configuration

stage. You can
view

and
verify

the instance
launch from

the
EC2 Management

Dashboard
as

well.
With the instance

successfully launched,
we now

move
on to an

important
part of

verifying
and

actually testing
the Auto Scaling

configurations.

[207]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Verifying and testing Auto Scaling

Once
your Auto Scaling configuration and deployment

is
completed, you are

now

ready
to go

ahead
and

verify its validity.
The

first step
to
do so is

by
checking

the

instance deployment itself using the ELB dashboard. Select the Elastic Load Balancer

option from the EC2 dashboard and select your ELB, as shown in
the

following

screenshot. Next, select the Instances tab and make a note of the instance's Status

column. It should display
the

status
as

InService as shown in the following screenshot.

This basically means that
the

instance
is

associated with
the

ELB
and that

its health

status is being continuously monitored
by the

ELB
as

well.
In
some cases, your Status

column may show the status
as

Pending, so don't worry, give it a bit more time and

the
status should

change
back

to
InService again. You can optionally even view the

number of instances launched as well
as the

overall health of your
AZ by

viewing
the

Instance Count as well as the Health columns highlighted in the following:

The
next

way to
verify

the Auto
Scaling configuration as

well as the
ELB

is by

actually viewing
the

ELB's
DNS

name
in

a
local web browser. If all goes

well,
you

should
see

your application's landing
page,

or
in this

case the
index.php

page.
Make

a
note of the ELB's

public
DNS name and copy

it over
to any web

browser
of your

choice. Don't forget to
append

the
/index.php

landing path to the
public

DNS as

well, as shown in the
following

screenshot:

[208]

Chapter 7

Now
in my

case, the
index.php file

is nothing
more

than
a simple

PHP page that

displays
the IP address of the

running
underlying

instance
along with

a simple

welcome message.

The code for the index.php file is as follows:

<?php

echo "Hello! I am a Web Server instance and my IP address is:

".$_SERVER['SERVER_ADDR']; ?>

This
IP address

is actually
a
part of the Web

Server
Subnet

(us-west-2a)
that we

created back in
Chapter

5, Building Your Own
Private

Clouds Using Amazon VPC. If

you got it till this far, then you are on the
right

track! However, in
case

you
don't

see

your application's landing
page

here, then
I might suggest

changing your
instance's

cooldown period as well as the ELB's
Health

Check
period

to
suit

your
needs.

Once the
verification is

completed, you can go ahead and
test

your Auto Scaling

configuration.
To do

so, simply
SSH into your launched

instance
and

increase
its

load
using any

load
synthesizer

tool you can
find. I

personally
like Stress

as well

as
Lookbusy as

they are really
simple

and
easy

to
use.

For this
scenario, I used

Lookbusy to increase the instance's CPU
Utilization

to 60 percent.
After a

good
5

minutes
of

continuously loading
the instance, the Increase Capacity scaling

policy

was triggered and
a
new

instance
was

automatically
created to balance out the

application's
load.

You can verify
this newly added instance

by once
again

checking

your
Instances

tab from the
ELB dashboard.

You should
see

two
instances

now,
as

shown in the
following screenshot:

Similarly,
gradually

increase
the CPU

utilization
of your

instances from
60

percent
to

70 percent
and, finally,

to 85 percent. If all goes
well,

you
should

see
instances launch

up
as

per your increase scaling
policy.

Once the
instances

are
all added, gradually

reduce the CPU
utilization and

watch the
instances

terminate
automatically

as
well.

This
is
one of the real

reasons
why

I love
AWS so much! It's

simple
and

so
easy to

use! Once
configured properly,

your Auto
Scaling service

as well as
ELB

can run

completely
independently

from all
manual interventions,

so you
can

concentrate on

your business while the
heavy lifting

is
taken care of

by AWS
itself!

[209]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Suspend, resume and delete Auto Scaling

Yup! You heard it right! You can additionally even suspend and resume
an

Auto

Scaling activity in your Auto Scaling Group. Why would someone want
to
do that?

Well, at times, you may want
to

run some minor configuration changes in your

instances but don't want that to trigger
an

auto scaling event;
or

there may
be

a

configuration issue in your Auto Scaling Group, or some problem with your application

and you want
to

investigate it but without starting
up

the Auto Scaling process, and so

on. In such cases, suspending an Auto Scaling process comes in really handy!

There is
a small

catch though! You cannot
suspend

or resume
an

Auto
Scaling

activity using
the EC2

Management Console;
you have to use the AWSCLI to get

this
done. Let us go through

few commands
and

see
how

easy it is
to put an Auto

Scaling Group
in a suspended

state.

First up,
let

us describe our Auto
Scaling

Group
using

the AWS CLI. Type in the

command as
shown

in
the

following
and substitute the Auto Scaling Group's

name

with your own:

aws autoscaling describe-auto-scaling-groups --auto-scaling-group

names US-WEST-PROD-WEB-ASG-1

Now go ahead and
suspend

the Auto
Scaling

Group
using

the
following command:

aws autoscaling suspend-processes --auto-scaling-group-name US

WEST-PROD-WEB-ASG-1

Verify
the status of

your
Auto

Scaling
Group by running the

describe-auto

scaling-groups command
once

again.
You

should see
its

status shown
as

SUSPENDEDPROCESSES:

[210]

Chapter 7

To
resume

an Auto
Scaling

Group, type in the
following command as shown in

the
following:

awsautoscaling resume-processes --auto-scaling-group-name US-WEST

PROD-WEB-ASG-1

Once
again,

check the
status of your

Auto
Scaling Group

to
make sure

that the
process

has indeed been initiated. Both the suspend-processes and resume-processes

commands
can be

used
to

suspend
and

resume, respectively,
the

entire scaling activity

in one
go;

however,
if you

wish
to

suspend
or

resume only a particular process from

the
entire

Auto
Scaling activity, then

you
will have

to
use

the
--scaling-processes

attribute along with your suspend-processes and resume-processes commands.

For
example, consider

the
following example

that
suspends

an Auto
Scaling's

Health

Check
process:

awsautoscaling suspend-processes --auto-scaling-group-name US-WEST

PROD-WEB-ASG-1 --scaling-processes HealthCheck

You can use the
following

set of
processes

with the
suspend/resume commands:

Launch, Terminate, HealthCheck, ReplaceUnhealthy, AZRebalance,

AlarmNotification, ScheduledActions, and AddToLoadBalancer.

Tip:
To

know more about
each of these

individual processes,

refer to http://docs.aws.amazon.com/AutoScaling/

latest/DeveloperGuide/US_SuspendResume.html.

With
your

process suspend
and resume operations

done,
the

final
thing

left
to do

is
clean

up
your

Auto
Scaling

Group. To
delete your

Auto
Scaling

Group, you
first

need to make
sure

that it has no running instances in it. To
do

so,
simply set

the

minimum
and

maximum
number of instances to zero! You can edit the group's

size
by

using
either the Auto

Scaling
Group Dashboard or the

AWSCLI using
the

following set
of

commands:

First, set the minimum and
maximum size

to zero using the
following command:

awsautoscaling update-auto-scaling-group --auto-scaling-group-name

US-WEST-PROD-WEB-ASG-1 --max-size 0 --min-size 0

[211]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

Before
you proceed with the

deletion
of the group, check the

status of
the group

using the describe-auto-scaling-groups command. Make sure there are no

instances running at all.
Next,

type in the
following command

to
delete

your Auto

Scaling Group:

awsautoscaling delete-auto-scaling-group --auto-scaling-group-name

US-WEST-PROD-WEB-ASG-1

Once the Auto scaling Group
is deleted,

you can
optionally

go ahead and delete the

Launch
Configuration

as well as the ELB
using

the
following

set of
commands:

awsautoscaling delete-launch-configuration --launch-configuration

name US-WEST-PROD-WEB-LC-1

Similarly, delete
the ELB as well

using
the

following command:

awselb delete-load-balancer US-WEST-PROD-LB-01

To know
more about

the
various additional

Auto
Scaling

CLI
commands

and

their usage, refer to http://docs.aws.amazon.com/cli/latest/reference/

autoscaling/index.html.

Planning your next steps

Well,
we

covered a
lot about Auto Scaling and ELB

in
this

chapter; however,
there

are
a few things

that
I would

really
recommend

you try out next. First up,
let's have

a look at ELB!
In this chapter, we have

looked only at
how to

set
up and

configure

a very basic HTTP-based ELB.
However,

in a
real

production scenario,
this just

doesn't
cut it. That's where you need to

deploy
your ELB

using
HTTPS and SSL

like secure protocols.
To know more about how you can create and

leverage ELBs

securely, refer to http://docs.aws.amazon.com/ElasticLoadBalancing/latest/

DeveloperGuide/elb-https-load-balancers.html.

With
your

ELB securely configured,
there's one

additional
step that you can

configure
to

enable easier access
to your

applications hosted
on AWS. Route 53 is

a

highly
scalable

and
available

DNS
service provided

by AWS that can be
leveraged

to

replace
the long and

complicated
public DNS

name
of an

ELB
with

something a
bit

more convenient and easier to remember, such as all-about-dogs.com. Amazon

Route 53
effectively

connects your user
requests

to infrastructure running in AWS,

whether it
is
your EC2

instances,
or

ELB,
or

even
your S3 bucket. It can also be

used

as
a health

check
mechanism

to
periodically monitor

the health of your
application

and its endpoints. To know more about Route 53 and how you can
leverage it

with

your applications, refer to http://docs.aws.amazon.com/Route53/latest/

DeveloperGuide/routing-to-elb-load-balancer.html.

[212]

Chapter 7

On
a similar note,

there are
a
couple of things that you can try out for Auto

Scaling

as
well.

First up is Scheduled Auto Scaling. We have
already talked

about it in

the
beginning

of this chapter, so I'll not dwell on it
for long. Just a

few
pointers

that you
should

keep in
mind

when working with
Scheduled

Auto
Scaling:

Each

scheduled scaling
action has to

have a unique date
and

time provided
to it in the

UTC
format

that is generally
represented

as
YYYY-MM-DDThh:mm:ssZ.

You can

create
a
recurring

scheduled
scaling

activity
as

well; however,
note that

this
will not

work
side

by
side with a

onetime
scheduled activity. Last

but not the
least,

AWS

currently does
not support scheduled

scaling
using

the EC2
Management Console,

which
means

that you
will

have to use the AWSCLI for it. To know
more

on how to

leverage Scheduled
Auto

Scaling for
your

environments, refer
to

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/schedule_time.html.

Note: Auto scaling can also
be

applied
to AWS SQS.

I
think

it is

nice
to just

mention it
and

point to
further

reading
at:

http://docs.aws.amazon.com/AutoScaling/latest/

DeveloperGuide/as-using-sqs-queue.html.

The
final recommendation

with regard to Auto
Scaling

is
something a bit

new and

is
called as Lifecycle

Hooks. Hooks
basically allow

you to add
a
custom event to

your instances before
they

are
actually terminated

or
added

to the Auto
Scaling

Group by the Auto
Scaling service. These

events can be anything
from retrieving

logs from your
instances

to
installing

and
configuring software,

and so on. The
main

idea
behind hooks

is
very

similar
to the concept of

suspending
and

resuming
Auto

Scaling
processes; however,

here we don't
suspend

the Auto
Scaling activity

but
just

put the
instance

into
a definite wait state. It

is
during

this wait state that you get to

perform
your

selected action
on your instance. Do

note,
however, that the

default

wait
period

is
only

an hour. So
if
you do not perform any

action over
your instances

during
this

period, Auto Scaling
will automatically terminate

the instances once the

time has
passed.

And very
similar

to Schedule Auto
Scaling,

you
cannot perform

Lifecycle
Hooks

using
the EC2 Management

Console.
You can use the AWSCLI

or

the
AWS

API to perform the
same.

Recommendations and best practices
Now that we have come to the end of

this
chapter, let us

look
at
some

key

recommendations
and

best practices
that you need to keep in mind when working

with
ELBs and

Auto Scaling:

•
Plan and

provide
the

ELB
with enough of

a
grace

period (by default
its 300

seconds)
so that it does not put an instance

in
the

unhealthy
state even before

the application
has

had time to
initialize completely.

[213]

Manage
Your

Applications
with

Auto Scaling and Elastic Load Balancing

•
Use

Amazon
Route 53

and provide a suitable domain
name

for
your

applications. Additionally, leverage
Route

53
to balance your

application's

load
across multiple

regions as well.

• Although
ELBs

can handle
large

loads (up
to 20k/sec), they can

only do

so if the load increases
gradually,

say over
a
period of

several hours.
If

your application spikes
in load

in
minutes

rather than
hours,

then you

are better
off

by
using

pre-warmed
ELBs.

To know more about pre

warmed ELBs and how to
get

them, refer to http://aws.amazon.com/

articles/1636185810492479#pre-warming.

•
Configure HTTPS and SSL

listeners for
your ELB

whenever possible.

•
Plan your Auto

Scaling well
in

advance.
This

includes deciding on
the

number
of instances that

will
be required

for
your

application
as

well
as the

type of instance
family.

• Plan on which monitoring metrics (CPUUtilization, MemoryUtilization, Disk Space

used, and so on) you tend
to

use and set
up

the scaling policies accordingly.

•
Deploy your Auto

Scaling
Groups across multiple

AZs. This provides
an

additional
layer of high

availability
in

case
an entire AZ should

fail.

• Prepare, test,
and

bootstrap your application
on an AMI

before adding
it to

the

Auto Scaling activity. Try and keep
your

application
as

decoupled as possible.

•
Always

monitor
and set up

notifications
for your Auto

Scaling activity.

This
will help

you
track

and
maintain

your application's as well as

instances' performance.

Summary

So it's
been a really long

but
interesting

chapter and
I really

hope that you have

got to
learn

about Amazon
ELB

as well as Auto
Scaling

as much as
possible.

Let's

quickly recap all the
things

covered
so far in this

chapter.

To begin
with,

we
talked

about the
importance

of Auto Scaling
and

how it
proves

to

be super
beneficial

when
compared

to the
traditional mode

of
scaling infrastructure.

You then learnt
a
bit about AWS Auto

Scaling
and its core

components.
Next, you

learnt
about a

new
service offering

called
Elastic Load Balancers and saw

how easy it

is to deploy one for your own use. Toward the end of this chapter, we
also

deployed

our
first

Launch
Configuration

and an Auto Scaling Group and,
finally,

topped it all

off
with

some simple steps
to

help verify
and test the entire setup.

In the next chapter we are going to
dive into

the
amazing

world of
databases and

learn how AWS
provides some simple and easy

to
use

database services, so
stay

tuned
for

lots
more coming

your way!

[214]

Database-as-a-Service

Using Amazon RDS

In the previous chapter, you learnt
a lot about

the concepts of Auto Scaling and

Elastic
Load

Balancing,
and how you can

leverage
them to host

highly scalable
and

fault
tolerant

applications.

In this chapter, we are going to
shift

our
attention from

all those web
servers

and

EC2
instances

and talk about more on the
database offerings provided

by AWS, with

some
special

emphasis
on

Amazon
RDS.

This
chapter

will
help you

understand
the

overall concept
of RDS and even

demonstrate
how you can

leverage
RDS

in
your

own application's hosting
environment.

We will
also

be
studying some

of
AWS's

other
popular database-as-a-service options

along the way;
so

let's get started

without any further ado!

An overview of Amazon RDS

Before
we go ahead and

dive into
the

amazing
world of RDS,

it is essential
to

understand what exactly
AWS

provides
you when it

comes
to

database-as-a-service

offerings
and how can you

effectively use
them. To start

off,
AWS

provides a
bunch

of
awesome

and
really simple-to-use database services that

are
broadly divided

into two
classes:

the relational
databases,

which
consist

of
your

MySQL and
Oracle

databases,
and the

non-relational databases,
which

consist of a propriety
NoSQL

database similar
to
MongoDB.

Each of
these

database services
is designed

by
AWS

to

provide
you

with
the

utmost
ease and

flexibility of
use

along
with

built-in robustness

and
fault

tolerance.
This means

that all you need to do as an end
user or a developer

is
simply configure

the
databases service once,

run it
just as

you would run
any

standard
database

without
worrying

about the internal
complexities

of
clustering,

sharding, and so on, and only
pay for

the
amount

of
resources

that you
use!

Now

that's awesome, isn't it!

[215]

Database-as-a-Service
Using

Amazon
RDS

However,
there is

a small
catch to

this!
Since the

service
is
provided

and
maintained

by
AWS,

you as
a
user or

developer
are not

provided
with all the

fine
tuning and

configuration
settings that

you would generally find
if you were to

install
and

configure a database
on your own. If

you really
want to have complete control

over

your
databases

and their
configurations,

then
you might

as well
install

them on EC2

instances
directly. Then you

can
fine-tune

them
just

as you would
on

any
traditional

OS, but
remember that in doing so,

you will
have

to
take

care of the database and all

its inner
complexities.

With these
basic concepts in mind,

let
us go ahead and

learn a
thing or two about

Amazon Relational Database Service (RDS). Amazon RDS is a database service that

basically
allows you to

configure
and scale your popular

relational databases such

as MySQL and Oracle
based

on
your

requirements.
Besides

the
database,

RDS
also

provides additional features such as
automated backup

mechanisms, point-in-time

recovery,
replication

options
such as multi-AZ

deployments and
Read

Replicas,
and

much
more! Using

these
services

you can
get

up and running with
a
completely

scalable
and fault tolerant

database
in

a matter
of

minutes,
all with just

a few
clicks

of
a
button! And the

best
part of all this

is
that you don't need to

make any
major

changes to your
existing applications

or code. You can run your apps with RDS
just

as you
would

run them with any other
traditional hosted

database, with one
major

advantage:
you don't bother about the underlying

infrastructure
or the

database

management. It is all taken care of by AWS
itself!

RDS currently
supports five

popular
relational database

engines,
namely MySQL,

Oracle,
Microsoft's

SQL Server,
PostgreSQL,

and MariaDB
as

well.
Besides these,

AWS
also provides a MySQL-like propriety database called Amazon

Aurora.

Aurora
is a drop-in

replacement for MySQL
that provides

up to
five times

the

performance
that

a
standard MySQL

database provides.
It is

specifically designed

to scale with ease without
having

any major
consequences for your application or

code. How
does it achieve

that?
Well,

it uses
a combination of something called as

an Aurora Cluster
Volume,

as well as one
Primary Instance

and one or more Aurora

Replicas.
The

Cluster
Volume

is nothing
more

than
virtual

database
storage

that

spans across multiple AZs. Each AZ is
provided

with
a
copy of the

cluster data
so

that the database
is available even if

an
entire

AZ goes
offline. Each cluster

gets
one

Primary Instance
that's

responsible
for

performing
all the

read/write operations,

data
modifications,

and so
on. With

the Primary Instance, you
also get a

few Aurora

Replicas
(also

like
Primary Instances). A Replica

can only
perform

read
operations

and is generally used to
distribute

the
database's workload across

the Cluster.
You

can have up to 15
Replicas

present in
a Cluster besides

the Primary Instance, as

shown in the
following

image:

[216]

Chapter 8

You can also read more on Amazon Aurora at

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Aurora.html.

With this basic information in mind, let us now understand some of RDS's core

components and take
a look

at how RDS
actually works.

RDS instance types

To begin
with,

RDS does
operate in a very similar

way as EC2.
Just

as you
have

EC2

instances
configured with a certain amount

of CPU and storage
resources,

RDS too

has instances that are
spun

up each
time

you
configure a database service. The major

difference
between

these
instances and your traditional

EC2
ones is that they cannot

be
accessed remotely

via SSH even if
you

want to. Why?
Well, since

it's
a
managed

service and everything
is
provided

and
maintained

by
AWS itself,

there is no need

for
you to SSH

into them!
Each

instance
already

has a
particular

database
engine

preinstalled and configured
in

it.
All you need to do is

select
your

particular
instance

type and
assign

it
some

storage, and
voila!

There you
have

it!
A running

database

service of
your

choice in under 5 minutes!
Let's have

a quick look
at
some

of the RDS

instance types and
their common uses:

• Micro instances (db.t1.micro): Just as we have micro instances in our EC2

environments,
the

same
is

also provided
for RDS as

well.
Each

database

micro
instance

is provided with just 1
CPU

and approximately
600 MB of

RAM, which is
good

enough if you
just

want to
test

RDS or play around

with it. This instance type, however, is
strictly

not
recommended

for any

production-based workloads
at

all.
Along with this

particular
micro

instance,

RDS
also provides a slightly

better instance type in the
form

of
a db.m1.

small, which provides 1
CPU with

a slightly
better 1.7 GB RAM.

[217]

Database-as-a-Service
Using

Amazon
RDS

Standard instances (db.m3): Besides
your micro instances, RDS

provides a

standard
set

of instance types
that

can be
used

on
a daily basis

for
moderate

production workloads.
This

class
of instance

provides
up to

8
CPUs and

about
30
GB of RAM as well, but more

importantly,
these

instances
are

specially
created

for
better network

performance
as

well.

• Memory optimized (db.r3): As
the

name suggests, this instance class provides

really high-end, memory optimized instances that are capable of faster

performance
and

more computing capacity
as

compared
to

your standard

instance classes. This instance class provides a maximum of 32 CPUs with

a RAM capacity of
up to

244
GB

along with a network throughput
of

10 GB/second.

The
db.r3 DB instance classes are

not
presently

available in the South America (Sao Paulo) and AWS

GovCloud
(US)

regions.

•
Burst

capable (db.t2): This
instance

class provides a baseline performance

level with
the

ability
to burst to full CPU usage if required. This

particular

class of database
instance,

however, can only be launched in
a
VPC

environment.
The

maximum
CPU

offered in
this category is up to

2
CPUs

with
approximately 8

GB of RAM.

Along with an
instance

type, each RDS
instance

is also backed by an
EBS

volume.
You can

use
this EBS volume

for
storing your

database files,
logs,

and lots more! More
importantly,

you can
also select

the type of storage to

go
with

your instances as per your
requirements.

Here's
a quick look at

the

different
storage types

provided with
your RDS

instances:

• Magnetic (standard):
Magnetic storage is an

ideal choice for applications
that

have
a light

to moderate
I/O requirement. A magnetic

volume can
provide

up to
100

IOPS
approximately

on
average

with burst
capability

of up to

hundreds
of

IOPS. The
disk sizes

can range anywhere
between 5

GB to
3 TB.

An
important

point to note here,
however,

is that since magnetic storage is

kind of
shared,

your overall
performance

can
vary depending

on the overall

resource
usage

by other
customers

as
well.

•

[218]

Chapter 8

•
General purpose

(SSD):
These are the

most commonly used
storage types

from the lot and are
generally a good choice

of storage if you are
running a

small
to

medium-sized database. General purpose
or SSD-backed storage

can
provided

better performance as compared to your
magnetic

storage at

much
lower

latencies and higher
IOPs. General purpose

storage volumes

can
provide a

base
performance

of
three IOPS/GB

and have the
ability

to

burst
up to 3,000

IOPS
as per the

requirements. These volumes
can range in

size
from

5
GB to

6
TB

for
MySQL,

MariaDB, PostgreSQL,
and Oracle DB

instances, and from 20 GB to 4 TB for SQL server DB instances.

•
Provisioned IOPs:

Although general
purpose

volumes
are good for

moderate database workloads,
they are not

a
good

option
when it

comes

to
dedicated performance

requirements and higher
IOPs.

In such
cases,

provisioned
IOPs are the best

choice
of storage type

for
your

instances.
You

can
specify

IOPs
anywhere

between the
values

1,000
all

the way up to
30,000

depending
on

the
database engine

you
select

as
well

as the amount
of disk

size
that you

specify. A
MySQL, MariaDB,

PostgreSQL,
or Oracle

database

instance with
approximately 6

TB
of storage

can get up to
30,000 IOPs.

Similarly,
an SQL server DB

instance with approximately
4TB of

disk size

can get up to
20,000 IOPs.

You
cannot decrease

the
storage

of
your

RDS
instance once

it is allocated to it.

With
the RDS

instance
types

in mind,
let's now

look
at some of the key

services
as

well as
processes provided

by Amazon RDS.

Multi-AZ deployments and Read Replicas

We
all

know the
importance

and the hard work
needed

to keep
a
database,

especially
the one running

a production workload
up and running at all

times.

This
is
no

easy feat, especially
when you have to

manage
the intricacies and

all
the

tedious
configuration

parameters.
But

thankfully,
Amazon

RDS
provides

us with
a

very
simple

and
easy-to-use framework,

using which tasks such as
providing

high

availability
to your

databases, clustering,
mirroring, and

so
on

are all
performed

using just
a click

of
a
button!

[219]

Database-as-a-Service
Using

Amazon
RDS

Let's take high availability for example. RDS leverages your region's availability

zones and mirrors
your

entire primary database over
to
some other

AZ
present in

the

same region. This is called
as

a Multi-AZ deployment and
it
can easily

be
enforced

using
the

RDS database deployment wizard. How does it
work?

Well it's quite

simple actually. It all starts when you first select the Multi-AZ deployment option

while deploying your database.
At

that moment, RDS will automatically create and

maintain another database as a standby replica in some different
AZ.

Now
if you

use a

MySQL, MariaDB, Oracle,
or

PostgreSQL as your database engine,
then the

mirroring

technology used
by RDS

is AWS propriety. Whereas, if you
go

for
an SQL

server

deployment, then
the

mirroring technology used is SQL server mirroring
by

default.

Once the
standby replica database instance

is
created, it continuously syncs

up
with

the
primary database instance from time

to
time, and in

the
event

of
a database failure

or even a planned maintenance activity, RDS will automatically failover from the

primary
to

the standby replica database instance within a couple of minutes:

Amazon RDS guarantees
an SLA of

99.95 percent!
To know

more about the RDS
SLA

agreement, refer
to
http://aws.

amazon.com/rds/sla/.

However remarkable
and

easy
multi-AZ

deployment may
be,

it still
has some minor

drawbacks
of its

own. Firstly,
you can't use

a multi-AZ
deployment for

scaling
out

your
databases, and, secondly,

there is no
failover provided

if your
entire

region

goes
down.

With
these issues

in mind, RDS
provides

an
additional feature

for our

database
instances

called
as Read Replicas.

[220]

Chapter 8

Read Replicas are database
instances

that enable you to
offload

your primary

database
instance's

workloads
by having all the read

queries
routed through

them.
The data from your

primary instance
is copied asynchronously to the read

replica
instance using the

database
engine's

built-in
replication engine. How

does

it all work?
Well it's

very
similar

to the
steps

required
for

creating an AMI from
a

running
EC2

instance! First
up, RDS

will
create

a
snapshot

based
on your primary

database
instance. Next,

this snapshot
is
used

to span
a
read replica instance. Once

the
instance

is up and
running,

the
database engine

will then
start

the asynchronous

replication
process such that whenever

a
change is

made
to the

data
in the

primary,

it gets automatically replicated over to the read
replica instance

as well.
You

can then

connect your application to the new read
replica

and
offload

all your
read

queries

to it! As of date, RDS
supports only MySQL, MariaDB,

and PostgreSQL
database

engines
for read replicas:

You can
create

up to
five

Read
Replicas

for
a
given

database instance.

You can additionally use these Read Replicas as a failover mechanism as well by

deploying read replicas
in

a different region altogether.
The

only downside to this is

that you will have to manually promote
the

replica as a primary when the latter fails.

We will
be

creating and promoting a Read Replica later on in this chapter,
but

for
now

let's look at
how you

can create and get started with your first database using RDS.

[221]

Database-as-a-Service
Using

Amazon
RDS

Working with Amazon RDS

In this section, we
are

going to create our
very first

scalable
database

using the

Amazon
RDS

service. For simplicity, I
will be deploying

a simple
MySQL

database

using the RDS
Management Console;

however, you can
use

any of the
database

engines provided
by RDS for your

testing purposes, including
Oracle,

MariaDB,

PostgreSQL, as
well

as SQL Server. Let's
first examine

our use case up to now:

For starters,
we

have already set
up

Auto Scaling and Load Balancing for
our

application's
web

server instances (see Chapter
7,
Manage

Your
Applications with Auto

Scaling and Elastic
Load

Balancing), as shown in
the

preceding image. We have also

created a separate private subnet in each
AZ

for hosting
our

database instances. These

subnets are named US-WEST-PROD-DB-1 (192.168.5.0/24) and US-WEST-PROD

DB-2 (192.168.6.0/24), respectively. Another extremely important point
here

is
that

the
communication between

the
public subnets

and the
private subnets is also set

up

using a combination of network ACLs
as

well as security groups
that can be

found in

Chapter
5,

Building
Your

Own Private Clouds Using Amazon VPC.
Now,

if you haven't

been following this book from the very beginning,
you

might find all these things a bit

vague to set
up

all over again,
but

don't worry! You can replicate the next steps even

with a standalone VPC subnet as well.

[222]

Chapter 8

With
our

subnets
in place, the next

thing
to do is jot down the

database's essential

configuration parameters
as well

as
plan whether you want to

leverage a
Multi

AZ deployment and
Read Replicas for

your deployment or not. The
configuration

parameters
include

the
database name,

the
database engine's version

to use, the

backup and maintenance window
details,

and
so

on. For
this deployment, I

will be

deploying my database
using

the Multi-AZ
deployment

option as well.
Do

note,

however,
that the

Multi-AZ
deployment

scheme
is not

included
in the AWS Free

Tier
eligibility

and,
hence, you

will be charged for the
same. To

know more about the

costs
associated

with
your

RDS
services,

refer to
https://aws.amazon.com/rds/

pricing/.
Once you have thoroughly

planned
out these

details, you
can go

ahead

and start off
with

the
actual

deployment of the database.

Getting started with MySQL on Amazon RDS

You can
access

and
manage

your RDS
deployments

by using the AWS
CLI,

the
AWS

SDK, as well as the
AWS

Management
Console.

For this
activity,

we will be
using

the

AWS
Management Console.

Log on to your AWS account
using

the
IAM credentials,

and from the AWS
Management Console, select

the
RDS option from

the
Database

group, as shown in the
following screenshot:

Next, from the RDS
Management Dashboard, select

the
option Subnet Groups

from

the
navigation pane. A Subnet

Group is an
essential

step
toward setting

up the

security
of

your database. For starters, a
subnet group is

a
logical

grouping or
cluster

of one or
more

subnets that
belong

to
a
VPC; in

this
case, the

cluster is
of our two

database subnets (US-WEST-PROD-DB-1 and 2).When we first launch a DB Instance

in
a VPC,

the subnet
group

is
responsible for providing

the
database

instance with an

IP
address from a

preferred subnet present
in a particular availability

zone.

[223]

Database-as-a-Service
Using

Amazon
RDS

To get started,
provide a

suitable Name and
Description for your

DB Subnet Group

as shown in the
following screenshot. Next,

from the VPC ID
drop-down list,

select

a VPC
of

your
choice. In my case,

I have selected
the

US-WEST-PROD-1
VPC

(192.168.0.0/16).
Once your

VPC
is

selected,
you can now add the required

set of

subnets to your DB Subnet
Group.

To
do

so,
first select

the preferred
Availability

Zone
and its

corresponding Subnet
ID. Click

on
Add to add your subnet to the DB

Subnet Group:

Now as
a
good

practice, provide
at

least
two subnets that are

present
in

different

AZs
for

your DB Subnet
Group.

For
example,

in my
case, I

have
provided

two

private
subnets that are

present
in

us-west-2a (US-WEST-PROD-DB-1)
and

us-west-2c (US-WEST-PROD-DB-2), respectively. Click
on

Create
when done.

With
this step

complete,
you can now go

ahead
and create your

first
RDS

database

instance
in

your
VPC!

Creating a MySQL DB instance

Creating an RDS database
instance involves a simple four-step process.

To

begin with, select the
Instances

option from the
navigation

pane, as shown in the

following screenshot. Next,
select the

Launch
DB

Instance
button to bring up the

DB Launch Wizard:

[224]

Chapter 8

Step 1 – Select Engine

To get started,
select

the
appropriate

database engine of your
choice.

For our

scenario, I
have

selected
the

MySQL database; however,
feel

free
to

select
any of the

database
engines as per your

requirements.

Step 2 – Production?

Now here
comes

the fun part! RDS
basically allows

you to create
a database based

on your
requirements; for example, a production database

with
multi-AZ

support

and
provisioned

IOPS
storage

or
a simpler database

that has none of these
add

on
features. With Multi-AZ deployments,

your DB
instance

is guaranteed with
a

monthly uptime
SLA

of
99.95 percent!

However,
because of such

high SLAs,
Multi

AZ deployments are not
covered

under the AWS Free
Tier usage scheme. Click

on

Next
Step

to
continue,

as shown in the
following screenshot:

Step 3: Specify DB Details

The
next

page of the wizard will
help

you
configure some

important
settings for

your DB
instance:

• License Model: Select
the

appropriate database License
Model

as
per your

database
engine's

selection.
MySQL databases

have
only one

license model;

that
is, general-public-license.

Other propriety
databases

such as
Oracle

and SQL servers offer two license modes: Licenses Included and the BYOL

(Bring
Your

Own
Licenses)

model.
With

licenses included,
AWS

provides
the

required
license

keys
for your databases, so you don't have

to separately

purchase one. Alternatively,
you

can even
use the BYOL

model
to

provide

your own
licenses

or obtain new ones from the
database provider itself.

[225]

Database-as-a-Service
Using

Amazon
RDS

DB
Engine Version:

Select the appropriate DB
Engine

Version
as

per your

requirements. RDS
provides

and
supports a

variety of
database engine

versions
that you can

choose
from. In this

case, I
have

selected
the MySQL

database
engine

version 5.6.23
as shown:

•
DB

Instance Class:
From

this
dropdown

list, select
the appropriate

class
of

DB
instance you

wish to
provide for your

DB
instance.

For
a complete list

of supported instance
class types,

refer to
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html.

• Multi-AZ Deployment:
Select

Yes from
the

dropdown list
to ensure

a
multi

AZ deployment for your
database.

Selecting No
will

create your
DB

instance

only in
a
single

availability zone.

• Storage type:
Select an

appropriate storage option
from the dropdown

list.

In this
case, I

have opted for
General

Purpose
(SSD); however,

you can
also

select
between

Magnetic
and

Provisioned
IOPS

as
well.

• Allocate storage: Allocate some
storage for your

database
instance. You

can

provide anywhere
between

5
GB to

6
TB.

•

[226]

Chapter 8

With these
basic

configurations
out of the way,

configure
your

database's settings
as

shown in the
following screenshot:

Here
are

the
parameters

you need to
provide

in
Settings panel:

•
DB

Instance Identifier: Provide a suitable name
for

your DB instance. This name

will be
a unique representation

of
your

DB
instance

in
the region

it is
getting

deployed in. In
my

case, I have provided the name US-WEST-PROD-DB.

•
Master

Username: Provide a suitable username
for your MySQL database.

You
will

use
this

username to log in to your DB
instance

once
it is deployed.

•
Master

Password: Provide a strong password
for your

DB
instance. You

will

use
this password

to log in to your DB instance
once

it is deployed. You can

provide a password
that's up to 41 characters long; however, do not

provide

the
following

characters
in

it:
(@, " ,

/).

With
the

settings configured, click
on Next

Step
to proceed with your database's

configuration.

Step 4: Configure Advanced Settings

The
final step

of
configuring

your
database

instance can be split up into three parts.

The
first

part
involves

the
setting

up of the DB instance's
Network & Security,

that

includes selecting
the VPC along with the

Subnet
Group that we created

a while

back. The
second

part
involves configuring various

database options such as the

database name,
the

database
port number on

which
the application can connect

to it, and so on.
The final part consists

of the database's
Backup

and
Maintenance

window details.
Let's have

a quick
look at each part

a
bit more in

detail:

• VPC:
Select the

name
of the VPC that will

host
your MySQL DB

instance.

You can
optionally select

the option Not in
VPC

as
well

if
you

wish to

deploy your DB instance in
a standard EC2 Classic

environment.

[227]

Database-as-a-Service
Using

Amazon
RDS

Subnet
Group: Select the newly created Subnet Group

from
the dropdown

list,
as

shown
in the

following screenshot:

• Publicly Accessible: You
can

optionally set
your

DB instance
to

have public

connectivity
by

selecting Yes from
the

Publicly Accessible dropdown list;

however, as best practice, avoid making your
DB

instances public at all times.

• Security Group(s):
There are two

levels
of

security
group

that
you

can
use

here.
The first

is
a
DB

security
group that is

basically
used to control access

to your DB
instances

that are
outside a VPC. When

working with
DB security

groups, you only need to
specify

the subnet
CIDR associated

with
your

DB

instance,
and

no DB port or protocol
details are required.

The second is your

traditional VPC security
group that can be

used
to control

access
to your DB

instances that are
present

in
a VPC.

Here,
however,

you need to
specify

both

inbound and
outbound firewall rules,

each with
associated

port
numbers

and

supported protocols.

You can
select

one or more
security

groups here for your
DB

instance;
in my

case,

I
have

selected a
VPC

security
group as shown in the previous

screenshot.
Just

remember
to open up only the required ports whenever

you
work with

VPC security

groups.
In

this
case, I have

opened up ports 3306 (MySQL)
and 1433 (SQL

Server).

Moving on to the second part of the Advanced
Settings,

we will now set up the

Database Options
as

shown
in the

following:

• Database Name: Provide a suitable database name here. RDS will not create

and
initialize

any
database unless

you specify
a
name here.

• Database Port: Provide
the port number using which you

wish
to

access

your
database.

MySQL's default port number is
3306:

•

[228]

Chapter 8

You
will not

be
able

to change the
database port

number

once the DB instance is created.

•
DB

Parameter
Group: DB parameter groups are logical groupings of

database
engine

configurations that
you

can
apply to one or

more
DB

instances at the
same time. RDS

creates
a
default DB

parameter
group

that

contains
mostly

AWS
specific configuration

settings and
default values.

You

cannot edit the
default

DB
parameter

group,
so

in
order

to
make changes,

you
will have

to create
a
DB

parameter
group of your own.

In
this case,

I

have left it as the default value.

• Option
Group:

This
option is

similar
to DB parameter groups

in that
they

too
provide and support

few
additional configuration parameters

that make

it
easy

to
manage databases;

for
example,

MySQL DB
Instances support

for

Memcached and
so

on.
RDS

currently supports option groups
for Oracle,

MySQL, and SQL Server
database

engines. To know more about
option

groups,
refer to http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithOptionGroups.html.

• Enable Encryption:
RDS

provides standard AES-256
encryption

algorithms

for encrypting
data at rest. This includes

your
DB

instance,
its

associated

Read Replicas, DB
Snapshots,

as well as the
automated backups.

An

important
point to note here is that encryption is not supported on the

t2.micro DB instances.

For encryption to work, you will need your DB instance to be one of the
following

instance classes:

Instance
Type

Supported Instance Class

db.m3.medium

General
purpose

(M3)
current generation

db.m3.large

db.m3.xlarge

db.m3.2xlarge

[229]

Database-as-a-Service
Using

Amazon
RDS

Instance
Type

Supported Instance Class

Memory optimized
(R3)

current generation db.r3.large

db.r3.xlarge

db.r3.2xlarge

db.r3.4xlarge

db.r3.8xlarge

Burst
capable

(T2)
current generation db.t2.large

In this
case,

we are not going to
encrypt

our DB
instance,

so select No from the

Enable Encryption field
as

shown
in the

previous screenshot.

The
final part

of the
Advance Settings page is

the
Backup

and
Maintenance window

selection. Using
this

section,
you can

configure automated
backups

for your database

as
well

as
provide designated maintenance windows for

the
same.

You can set the

Backup Retention Period as well as the Backup window's Start Time and Duration,

as
shown

in the
following screenshot.

In
my case, I have

opted
for

the
backups

to be

taken
at 12:00AM

UTC.
If you

do not
supply a

backup
window time, then

RDS
will

automatically assign a 30-minute backup window based on
your

region.
For

example,

the
default

backup
time block for

the
US West (Oregon) region is 06:00

to
14:00 UTC.

RDS
will select a 30-minute backup window from

this
block

on
a random basis:

[230]

Chapter 8

The
same can

be
set for your Maintenance window

as
well.

An
additional

feature

provided
here is that you can

choose
whether or

not
the database

should receive

automated minor version
updates from

AWS
or not. These

minor
updates for the

database
engine

will
be

automatically installed
on the

database based
on their

availability
as

well
as the

maintenance window's time frame.
You can make changes

in
these

settings even after
your

DB
instance

is created;
however, remember

that the

backup window should not overlap the weekly maintenance window for your DB

instance. Once you
have configured

the
settings,

click on
Launch

DB Instance to

complete the
launch process.

The DB
instance will

take
a
good

2
to

3 minutes
to

spin
up

depending
on whether

you have opted
for

the
Multi-AZ

deployment or not. You can check the status of

your
newly created

DB
instance using

the
RDS management dashboard,

as
shown

in

the
following

screenshot.
Simply

check the
Status

column for
all

the
status

changes

that occur while your DB instance is created:

Let's take
a quick

look at
some

of the
states

that
a
DB

instance
goes through

during

its
lifecycle:

• Creating: This
is the

first
stage of any DB

instance's lifecycle
where the

instance
is actually

created by
RDS.

During this time, your database will

remain inaccessible.

• Modifying: This state occurs whenever
the DB instance enters any

modifications
either set by you or by RDS

itself.

• Backing-up:
RDS will

automatically take a backup
of

your
DB

instance
when

it is
first

created. You can
view all

your DB
instance

snapshots using the

Snapshots option
on the

navigation pane.

• Available: This status indicates
that your DB

instance
is

available
and

ready for use. You can now access your
database

remotely by
copying

the

database's
endpoint.

[231]

Database-as-a-Service
Using

Amazon
RDS

To read the
complete list

of DB
instance status messages,

refer

to http://docs.aws.amazon.com/AmazonRDS/latest/

UserGuide/Overview.DBInstance.Status.html.

Connecting remotely to your DB instance

Once
your

DB
Instance

is in the
Available

state, you can now access your database

remotely from any other
EC2

instance or even remotely from your
desktop

if you

have
set

the security groups right.
In
my case,

I have
launched

a
new

EC2
instance

in my VPC, as shown in the
following screenshot. This instance

is
a
part of the Web

ServerSubnet
(US-WEST-PROD-WEB-1)

we
used

in the
previous

chapter:

The
first

thing to do
is make

sure you
have

the
required

MySQL
client packages

installed
on

your
web

server
EC2 instance. To do

so, simply
type in the

following

commands as shown:

sudo yum install mysql

With
the client

installed, you
can now

access
your

remote
RDS

database
using the

following command:

mysql -u <USERNAME> -h <DATABSE_ENDPOINT> -p

Substitute
the

values
with your

master
username and

password
that

you set for

the
database

during the
Create

DB Instance
phase.

Here,
<DATABSE_ENDPOINT>

is

the Endpoint (<DB_IDENTIFIER>.xxxxxxxxxxxx.us-west-2.rds.amazonaws.

com:3306)
that is

provided
by each DB

instance
when it is created. If all goes

well,

you
should

see the MYSQL
command

prompt. Go ahead and run
a few

MYSQL

commands
and check whether your database was created or not:

> show databases;

[232]

Chapter 8

You can
additionally connect

your
database

with tools such as the MySQL

workbench as well.
Just remember

to
provide

your
database's

endpoint in the

hostname
field followed

by the
master

username and
password.

With the
database

connected
successfully,

you can now run
a few simple tests just

to
make

sure that the

DB
instance

is
accessible

and
working

as
expected.

Testing your database

In this section, I'm going to show you
a simple exercise, using which

you can
test

the

configurations
and the

working
of your database, as well

as
your DB

instance.
First

up,
log

in to your database
using

the
following command

as done
earlier:

mysql -u <USERNAME> -h <DATABSE_ENDPOINT> -p

Next, let's go ahead
and

create
a simple dummy

table
called

doge.
Type

the

following command
in your MySQL

prompt:

CREATE TABLE doge

(

idint(11) NOT NULL auto_increment,

namevarchar(255),description text,

sizeenum('small','medium','large'),

date timestamp(6),PRIMARY KEY (id)

);

Fill in
some data

in your newly created table
using

the
following INSERT commands:

INSERT INTO doge (name,description ,size,date) VALUES('Xena','Black

Labrador Retreiver','medium',NOW());

INSERT INTO doge (name,description ,size,date) VALUES('Betsy','Browndachs

hund','medium',NOW());

INSERT INTO doge (name,description ,size,date) VALUES('Shark','Mix bread

Half dachshund','small',NOW());

[233]

Database-as-a-Service
Using

Amazon
RDS

With
your

basic
table and

data
created, you can now access the

same
using your

Web Server
Instances.

In my
case,

I'm
using a simple

PHP
script (index.php)

that
is

installed
on the web server instance

itself
to print the database

name
as well

as
the

table's
data.

Remember that as per our
use

case
scenario,

the web
server instances

are

isolated from
the

database
instances by

different
subnets as well as

security
groups

and network
ACLs, so

make
sure

your
subnets can communicate

with each other

correctly before testing. If
all

goes
well, you

should see
your

database,
as well

as
the

newly
created table

and its
data,

as
shown in

the
following screenshot:

Modifying your DB instances

Once your
DB Instances

are
created

and launched, you can further
modify

them

using two methods. The
first method is

by
using

the AWSCLI,
where

you can use the

modify-db-instance
command

along with a
bunch

of options
to

specify and
assign

new
parameters and values

to your
DB instances.

For
example,

we need to expand the

storage
as well

as the instance class of our
DB instance

so
that

it can
accommodate

the

growing
database's needs. To

do so, type in the
following command:

aws modify-db-instance --db-instance-identifier us-west-prod-db \

--allocate-storage 100 \

--db-instance-class db.m1.large

[234]

Chapter 8

The preceding
command

will update the
DB

instance with the
identifier us-west

prod-db with
100 GB of

disk
space and change its

instance
class to

db.m1.large
as

well. The CLI
provides a host

of
additional

parameters as well which you can use to

configure almost
any

aspect
of your DB

Instance,
such as the

master user's password,

the preferred backup and maintenance window, the
database engine versions,

and

so on. You can
find

the complete
list

of parameters
and

their
descriptions

at
http://

docs.aws.amazon.com/cli/latest/reference/rds/modify-db-instance.html.

Changing
the

instance class of a
DB

instance will result
in

an

outage,
so

plan
the

changes in
advance

and perform
them

during
the

maintenance window only.

The second method of
modifying

the DB instances is by
using

the RDS
Management

dashboard itself.
Select your DB instance, and from the Instance

Actions
dropdown

list, select
the

Modify option,
as shown in the

following screenshot:

Using
the

Modify
page, you can change

almost
all

configuration
parameters of

your DB
instance just

as you would by using the
CLI.

You can
optionally

set the

changes to take
effect immediately as

well by
selecting

the
Apply Immediately

checkbox.
Note, however, that by doing so, your

DB
instance will try to accept the

made
changes

instantly, which can cause outages
and even

performance degradation

at
certain times.

So as
good practice, avoid setting

this checkbox unless
absolutely

necessary.
Changes

made
otherwise are

reflected in
your

DB
instance during

its next

scheduled maintenance window.

[235]

Database-as-a-Service
Using

Amazon
RDS

Backing up DB instances

RDS
provides

two
mechanisms

using which you can
perform

backups of
your

database
instances as per your

requirements.
The

first is
an

automated
backup

job

that can be
scheduled

to run
at a particular

backup job
interval, preferably when

the
database

is at its
least utilization

point.
This

is
something

that we
configured

sometime
back while creating our DB Instance.

The second is a manual database

instance
snapshot

that you can
perform

at any
point

in time. Here's
a look

at both

the
techniques

in
a
bit more

detail:

• Automated backup:
Automated backups

are
conducted

periodically
by RDS

on
a daily user configured

backup
window.

These
backups

are
kept stored

by

RDS until the backup's retention period
doesn't

expire. By
default,

your
first

new
database

instance will
have

these backups enabled for
ease

of use.
You

can use these backups to restore your
database

to any point in
time, down

to the
last

second. The only thing that you need to be
aware

of is the
slight

freeze
in storage IO

operations that occurs when RDS
actually performs

the backups.

•
DB

snapshots:
DB snapshots are point

in-time snapshots
that

are
created by

you
as

and when required. To create
a
DB

Instance
snapshot, select the Take

Snapshot
option

from
the

Instance
Actions dropdown

list,
as shown in the

following screenshot:

This will bring
up the

Take Snapshot page where all you need to
do

is provide a

suitable name for
your

snapshot
and

click
on

Take Snapshot
to

complete
the

process.

Alternatively, you
can also

use
the AWS

CLI for performing a manual
DB instance

snapshot. Type
in

the
following

command:

aws rds-create-db-snapshot -i<DB_IDENTIFIER> -s <SNAPSHOT_NAME>

[236]

Chapter 8

Once
you

have taken your DB instance
snapshot,

you can
view

them on the RDS

Management dashboard under
the

Snapshots
page, as shown in the

following

screenshot:

The snapshot dashboard
allows you

to perform
various operations

on your DB

snapshots
including copying

DB
snapshots from

one
region

to another
for

high

availability, restoring
the state of

a
DB

instance
based on

a particular snapshot,

as well as
options

to
migrate

your MySQL database
completely over

to the

Amazon
Aurora database engine!

Creating Read Replicas and promoting them

We have
already discussed

the concept of read
replicas

in
some

depth, and how they

can be
useful

for
offloading

the read operations
from

your
primary

DB
instance

as

well as
providing a mechanism using

which you can
create and set

up Read Replicas

across AWS regions.
In this

section,
we are going to check out

a few simple
steps

using which you can create and
set

up read replicas
for

your own environment
using

the RDS
Management dashboard.

To get started,
first

select
your newly created

database
from

the RDS
dashboard,

as

shown in the
following screenshot.

Next, using the
Instance Actions

tab,
select

the

Create Read Replica option:

[237]

Database-as-a-Service
Using

Amazon
RDS

This
will bring

up the
Create Read Replica

DB Instance page, as shown in the

following screenshot.
The page is pretty

self-explanatory
and easy to

configure.
Start

off
by selecting an appropriate DB

Instance Class
from the dropdown

list.
You

can

alternatively select a high-end
DB instance

class
here as compared to the

primary
DB

instance.
Next, select a

Storage Type
for

your Read
Replica

DB instance.
In

this
case,

I
have opted to go

for
the

General Purpose (SSD) volumes:

Next, select your primary DB instance as the source for your Read Replica using
the

Read Replica Source dropdown list,
and

provide a suitable
and

unique name for your

Read Replica
in the DB

Instance Identifier field, as shown in the preceding screenshot.

Now comes
the

fun part where you actually
get to

specify
where

you wish
to

deploy

your Read Replica DB instance. Remember that you can have a maximum
of

five read

replicas for a single primary
DB

instance, so ideally have your replicas spread out

across
the AZs that

are present
in

your operating region or even have
them

residing

in a different region altogether. Select
an

appropriate Destination Region and its

corresponding Availability Zone.
In

this case, I have opted for
the

same region (US

West (Oregon))
as

well
as

same AZ (us-west-2a)
as my

primary DB instance.

Besides
the placement of your replica

instance,
you will also need to

make
it
a
part of

your
existing

DB Subnet Group. Select the
same subnet

group as
provided

for your

primary
DB instance

from
the

Destination
DB

Subnet Group field,
as shown in the

following screenshot.
Leave the

rest
of the

fields
to their

default values
and click on

the
Create

Read
Replica

option:

[238]

Chapter 8

Here's what
will

happen
next. First

up, RDS will
start off

by
taking a snapshot

of

your primary DB
instance.

During this
process,

the DB instance will face
a brief

moment
of IO freeze

which
is an

expected
behavior. Here's

a handy
tip

that
you

can use to
avoid

the IO freeze! Deploy your DB instances
using

the multi-AZ

deployment. Why?
Well, because

when
it comes

to
taking

the
snapshot,

RDS will

perform
the

snapshot
on the

primary
DB

instance's standby
copy, thereby not

affecting
any

performance
on your

primary
DB instance. Once the

snapshot
is taken,

RDS will
start

to
spin

up
a
new Read Replica based on your

specified configurations,

as shown in the
following screenshot.

During
the replica's creation

phase,
your

primary
DB instance will change

from

a backing
up

state
to

modifying,
and

ultimately
back to

available status
once the

Replica is
launched.

Each Replica will behave as
a
DB

instance
on its own; hence,

each of them
will

be
provided

with
a unique

DB endpoint
as

well.
Refer

to the

following screenshot
as an

example
of

multiple Replicas:

In
case

you create multiple Replicas
at

the
same

time
using

the
same primary

DB

instance, then RDS will
only

perform the snapshot
activity

once, and that too at the

start of the
first

replica's creation
process.

You can even
perform

the
same process

using the
AWSCLI's rds-create-db-instance-read-replica command,

as

shown in the
following:

rds-create-db-instance-read-replica <REPLICA_NAME> -s <DATABASE_

IDENTIFIER>

In this
case,

RDS will create
a
new Replica DB

instance
based on your

supplied

database identifier value
while keeping

all
the

configurations same
as

that
of

the
primary

DB
instance.

To
know more about

the
various options

and related

operations
that you can

perform
using this

command,
refer to

http://docs.aws.amazon.com/AmazonRDS/latest/CommandLineReference//CLIReference-cmd-

CreateDBInstanceReadReplica.html.

[239]

Database-as-a-Service
Using

Amazon
RDS

Once
your

Read Replica instance
is

created and functioning, you can
promote

it as

a
primary DB

instance
as well.

This feature comes in
real handy when you

have
to

perform a
DB

failure
recovery, where your

primary DB
instance

fails
and

you
need

to direct all
traffic

to the newly
promoted

Read Replica, and
so

on. To
promote

any

Read Replica instance,
all

you need to do is
select

it from the RDS
Management

dashboard and select
the Promote

Read Replica option from
the

Instance Action

drop-down list. This
will bring up the

Promote
Read

Replica
page, as

shown
in the

following screenshot:

Enable the
automatic

backups as
well

as
fill

out the
Backup Retention Period

and

Backup
Window details

as
per

your
requirements.

Click on
Continue

to proceed

to the next page.
Acknowledge

the
Replica

instance's
promotion

and click on Yes,

Promote to complete the
process.

As a good practice, always
enable the

automatic backups

option
for your DB

Instances.

During this process,
your Read

Replica instance will
reboot

itself
once,

post
which

it will become
available

as
a
standalone DB

instance.
You can then

perform
all sorts

of
activities on this

DB
instance, such

as
taking manual snapshots

and
creating

new

Read Replica instances from it as well.

You can
promote a

Read Replica using the AWS
CLI

as
well.

Type
in

the
following

command while
replacing the

<REPLICA_NAME> value
with your own Replica

instance's name:

rds-promote-read-replica <REPLICA_NAME> \

--backup-retention-period 7 \

--preferred-backup-window 00:00-00:30

The preceding
command

will
promote

the
<REPLICA_NAME>

to
a standalone

primary
DB instance. It

will also
set the

automated
backup

retention
period to

7
and

configure
the backup

window for
half an hour between

00:00
UTC and

00:30 UTC.

[240]

Chapter 8

Logging and monitoring your DB instance

AWS
provides a variety

of tools and services to track
and monitor

the
performance

of your DB
instances—the most popular

and
commonly used

being Amazon

CloudWatch itself. Besides this,
RDS, too, comes with

a list
of

simple tools that
you

can use to keep an eye
on

your DB
instances.

For
example,

you
can list

and view the

DB
instance's alarms

and
events

by
simply selecting

the DB
instance

from the
RDS

Management dashboard, as
shown

in
the

following screenshot:

You can
additionally

view the
DB

instance's security group and
snapshot events

using this page as
well.

RDS will store the events
for a period

of
14

days,
after

which they are
deleted.

The DB
instance quick view

page
also displays

the
DB

instance's
memory

as well as
storage utilization

in near real
time.

Each of
these fields

has a custom threshold that RDS sets. If the threshold value is crossed, RDS will

automatically
trigger

notifications
and

alarms
to inform you about the

same.
You can

also view
the database's

Read/Write IOPS value using this
page.

RDS
also provides a

page
using which

you can view the DB
Instance's

real
time

performance graphs.
To do so,

simply select Launch
DB

Instance
and the

Show

Monitoring
option, as

shown
in the

following screenshot:

[241]

Database-as-a-Service
Using

Amazon
RDS

Each graph can be further
expanded

by
selecting

it. You
can

optionally
view

graphs

for
the

past
hour or

a
later

duration
by

selecting
the appropriate time

from
the

Time

Range dropdown list.

Furthermore,
RDS

also allows
you to view

your database's essential
logs

using
the

RDS
Management dashboard. Select

your DB instance, and
from

the
dashboard,

select
the Logs

option. This will
bring up the Logs page, as shown in the

following

screenshot:

You can use
this

page to view as well as
download

the appropriate logs as per
your

requirements. RDS obtains
logs

from the
database

at short,
regular intervals (mostly

5 minutes)
and stores them in

files
that rotate as

well.
Selecting the

Watch
option

adjoining a
log

file will display
the

log file in
real

time
within your

browser. You
can

view
up to

1,000 lines
of your logs at

a time using
this

feature.

Cleaning up your DB instances

Once
you

have completed work with
your

DB
instances,

it
is equally

important to

clean up your environment
as

well. You
can delete a

DB
instance

at any time you

want using both the RDS
Management dashboard

and the AWS
CLI.

To
delete a

DB
instance using

the RDS
Management dashboard, select

the
Delete

option from the
Instance

Actions dropdown
list.

You
will

be prompted to
Create

a final Snapshot?
for your

DB
instance

before
you proceed, as

shown in
the

following screenshot:

[242]

Chapter 8

It is strongly recommended that
you

create a snapshot of your DB instance before

you
go

ahead and delete it.
Once

you select
the

Delete option, RDS will delete
the DB

instance along with all the automated backups
that

were taken earlier.
The

manual

snapshots, however, are not deleted and
thus can be

used
to

restore your
DB

instance

to
its original state if you want

to
revert

to
your original settings.

To
delete a

DB
instance using

the AWS
CLI, simply

type in the
following command

and
replace <DATABASE_IDENTIFIER> with

the name
of

your DB instance:

aws rds-delete-db-instance <DATABASE_IDENTIFIER> \

--final-db-snapshot-identifier MyFinalDBSnapshot

The
command

will delete your DB Instance but will
additionally first create a

snapshot for it by the name of
MyFinalDBSnapshot.

Planning your next steps

There are
a ton

of
amazing things

that you can
do besides

the steps that we
have

covered in
this

chapter. To
begin

with, try out
encrypting your databases using

the
Encryption facility provided

by RDS
itself. RDS

encrypts as
well

as decrypts

data without any
major impact

on your DB
instance's performance.

The encryption

process
can

only
be set up

during
the DB

instance's initial
deployment

phase,
so plan

and use the facility before you actually deploy your
database.

An important point to

remember here,
though, is that encryption is not

supported
on the

t1.micro
instance

class.
You

will
have to use the

memory optimized
(R3) or burst

capable
(T2) for the

same.
To know

more
about how you

can
use and

set
up the

encryption
on your DB

instances, refer to http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/

Overview.Encryption.html.

Besides
RDS, AWS

also provides a
host of other

database-related services
that

you can try out
depending

on your
application's needs.

For
example,

if you are

looking for
a
high

performance
and low

cost non-relational
database, then

Amazon

DynamoDB is
your

obvious choice! With DynamoDB
you

can actually
set up

and start
using a

NoSQL
database

in
a matter

of
minutes!

Plus, you don't
have

to

worry about any of the
management overheads

such as
clustering

or scaling.
RDS

automatically
replicates and

synchronizes
your

data across multiple
AZs

present
in

a

region,
thereby

providing
high

availability
and

durability.

[243]

Database-as-a-Service
Using

Amazon
RDS

AWS
also provides a highly scalable

caching service in the
form

of
Amazon

ElastiCache.
You can use this service as an

in-memory
caching

service
for your web

applications and
improve

their overall
performance

by
retrieving information much

faster
than

a disk-based
database.

Along
with

this,
AWS also

provides a
petabyte

scalable
data warehousing service called as

RedShift
that you can

use
to query

extremely large datasets. It's
easy to

set
up and the best part is that

it
scales as per

your
needs! The more

data you
feed

it, the
larger it grows,

and all this
without

any

upfront costs
or

commitments!
To know more about these services and how to

use

them, refer to
https://aws.amazon.com/running_databases.

Recommendations and best practices

Here
are some

key
recommendations

and good
practices

to keep in
mind

when

working with
RDS:

•
To begin

with,
always

monitor
your DB instances for overall

performance

and usage.
Leverage CloudWatch

and its
metrics

to
set

thresholds and

customized
alarms that

notify you in
case of any

issues.

• Additionally,
you can also enable event

notifications for your
DB

instance

that will
inform

you of
all

the
events

that occur with your
instance.

• Leverage Multi-AZ deployments in
conjunction with Read Replicas to

increase
the

overall availability
of your

database
along with its

performance.

•
Always enable

automatic snapshots
for your DB

instances.
Also take

manual

snapshots of
your

DB
instances before performing

any
maintenance activities

on them.

•
For

a small
to

medium-sized
database, set the

storage
type

of
your DB

instance to General
Purpose (SSD).

•
If
your database

has
a
high performance

requirement,
then do

use
the DB

instances with Provisioned IOPS.

•
Tune your

options
group as well as your parameters group to

improve
your

database's overall performance.

•
Secure your DB instances with

a
proper

security group
and encryption

facilities.
Also

remember
to

assign
and use IAM users with

specific
rights

and
privileges.

[244]

Chapter 8

Summary

With
this we

come
to the end of yet another chapter

and
yet another

awesome AWS

service. Let's
quickly recap all the things covered

so
far. First up, we

started off
by

understanding
and learning what RDS is all

about, followed
by an

in-depth look

at DB
instances

and how RDS
actually

works.
Next,

you learnt
about

how you can

leverage
high

availability
for your

databases
by

using something called
as Multi

AZ deployments and Read
Replicas.

You
also learnt a

lot of basic actions that you

can perform
on a database

using
RDS,

such as creating
a
DB instance, connecting to

one, testing
it, and so

on. Toward the end, we topped
it

all
off

with
some easy-to

remember
recommendations

and best practices
that you

should
keep

in mind
when

working with
RDS!

In the next chapter, we are going to
look

at yet another AWS core
service

that

provides
us with

virtually unlimited
storage for all our needs! So stick

around,

there's
more

to learn just around the
corner!

[245]

Working with Simple

Storage Service

In the previous chapter, we
covered a

lot about Amazon RDS and
how

you can

leverage it
to host highly

scalable
and

fault-tolerant databases.

In this chapter, we will be
exploring

yet another popular and
widely

used
AWS

core service, that
is,

the
Simple Storage Service (S3).

This chapter will
cover many

important aspects
of S3,

such
as

its use cases,
its

various terms
and

terminologies,

along
with a few steps

on how to use S3 to store and
retrieve

objects.
It

will
also

go

through few
simple steps using which you

can
archive

your
data using

both the

AWS
Management Console

and the
AWSCLI.

So, buckle up and get ready
for an

awesome time.

Introducing Amazon S3

Ever
used Dropbox to store and back up your important

data and files?
Or how

about
Netflix

to
watch

your
favorite TV shows

online? Both
Dropbox and Netflix

have one very interesting thing
in common,

which you may
have guessed already!

They
are

both
using Amazon

S3 to store and
retrieve

data. How
much

data are we

talking about here?
Well,

way back
in 2008,

S3 was
storing approximately

30
billion

objects or unique data
elements

in it. This number has grown
exponentially ever

since with approximately 2 trillion
objects

reportedly
stored in S3 as of April

2013, so

no
prizes for guessing

what
this number

has gone up to
today!

But enough
numbers,

let's
learn a

bit
more

about what
Amazon

S3 actually
is.

[247]

Working
with Simple

Storage Service

To begin
with, Amazon

S3
is a highly scalable,

durable, and
low

cost
storage

as
a

service option provided
by AWS for everyone to use. Using S3,

you
can upload

virtually
any

file, folder,
or

data
from anywhere on the web and

retrieve
it

just
as

easily
all the

while paying only for
the

storage
that you

use!
Now that's

amazing,

isn't it!

How
much of

data can you
upload

to S3?
Well,

its
virtually unlimited,

so you can

feel
free to

upload
your

songs, movies, high-resolution pictures,
anything and

everything
goes!

S3
will

treat each of the
files

that you
upload

as
individual

objects

and store them redundantly
across

the underlying
secure

hardware. You don't have

to
worry

about the
replication process

or even for the hardware's
scalability,

it is all

taken care of by AWS
itself.

You can
leverage

S3
for a

variety of
purposes; a

few
listed

as
follows:

•
S3

serves
as an ideal

place
to

store and
back up all your data,

including

pictures,
videos, documents,

and so on

•
Since each object in S3 is

provided
and

accessed
by

a
web URL, you

can

actually host a website on
it as

well,
provided your

website
is
completely

static by
design

You can
upload objects

as
small

as
1
KB or as

large
as

5
TB at

a

time
to
Amazon

S3, with
virtually unlimited storage capacity.

How
does

it
all

work? Well, to begin
with,

you
first

need to create
something

called

as
a
Bucket.

A
Bucket is

a
top

level
entity in S3 and acts as

a logical
container that

will hold all your objects. You can
create multiple

buckets and store various
objects

in them as you
please;

however, there are
a few

pointers that you
must

always keep

in mind when working with them:

•
Bucket names

have
to be unique across your entire AWS

account.

•
Bucket names

always
start in

lowercase. Although
you can specify

uppercase

letters in your
names,

it is
advised

that you
avoid doing so.

•
Buckets can be

accessed globally;
however, they are

still
created and located

within
a particular region.

[248]

Chapter 9

It is
equally important

to
note

that
S3 is

not
some hierarchical organization

of
objects,

although
you can create

folders
and

store objects
in

them. Folders
are

just a logical

representation
that

AWS provides you
with

for easier object storing and arrangement,

but
underneath all this,

S3
really does

not use any
hierarchy at all

as it is
a flat storage

system.
This

enables S3
to
add

new
storage

and
scale virtually

without
any limits,

without
having

to worry
about

the
objects

that
already reside in

it.

Buckets
also provide

us with
some simple

access control
mechanisms, using which

you can
restrict

users to operations
such as create, delete,

or
list

all the objects

present in
the bucket. You can even

assign
the bucket

permissions
that govern who

can upload
or even download

data from it.

S3
also provides different

storage
classes for

the objects that you store on it. Each

storage
class has

its own
performance

and cost
associated

with
it,

as
described

here:

• Standard:
This

is
the default

storage
class used to

store all
your objects

unless

you
specify a different value.

This
storage class

comes in
really handy for

common
S3

workloads
where data is

accessed
on

a frequent basis.
For the

first 1
TB that you use per month, the Standard

storage class
will

cost
about

$0.0300
per GB of data

stored
on

S3.

• Standard_IA:
This

is a special
storage

class used
to

store
objects that are

less

frequently accessed.
You

can transition
an

object
to
move from

the Standard

to the Standard_IA storage
class after say a period

of 30
days. This

helps

you
save on

the
costs

as
Standard_IA will

cost you
about $0.0125

per GB.

However,
note that there

is a separate minimal
retrieval fee

in
case you use

Standard_IA
as your storage

class.

•
Glacier: Glacier is

yet
another

less frequently accessed
storage

class,
with

a retrieval time
of nearly

2
to

3 hours.
You cannot

assign
an

object
with the

Glacier storage
class

directly. The object has to be
transitioned

from
Standard

or
Standard_IA

to Glacier and vice versa when
it
comes to

retrieving
as

well.

Glacier storage is by far the cheapest, costing
about

$0.007 per GB of data

stored in S3.

• Reduced Redundancy Storage (RRS):
Each

of
the

previous
storage

classes

are
designed

to
sustain

data
losses

by replicating
data across multiple

data

centers. RRS,
however, is designed

for
non-critical data

and also maintains

fewer redundant copies of data
compared

to its counterparts.
This enables

you to reduce
costs, however,

with less
durability

(only
99.99%).

With
this

basic understanding
in

mind, let's
see how we can

use
the AWS

Management Console
to create and upload

a
few objects to

a
bucket of our

choice.

[249]

Working
with Simple

Storage Service

Getting started with S3
Getting started

with
S3 is by

far
the

simplest
and most

straightforward
thing you

will
ever

do! Simply
log in

to your AWS account using your IAM credentials and

select
the S3

option:

This will bring
up the S3

Management Dashboard
as
shown in

the
following

screenshot.
You

can use this dashboard
to

create, list, upload, and delete objects from

buckets as well
as

provide fine-grained permissions
and

access control rights as well.

Let's start off by creating a simple bucket for
our

demo website all-about-dogs.com.

Creating buckets

To get started with your
first bucket, simply select

the
Create

Bucket option
from

the

S3
dashboard. Provide a suitable name

for your new bucket.
Remember,

your bucket

name will have to be unique and will have to
start

with
a
lowercase

character. Next,

select a particular Region
where you would

like
your bucket to be

created.
Although

buckets are global entities
in
AWS, you

still
need to

provide it
with

a
Region

option.

This
comes

in handy,
especially

when you
wish

to create
a
bucket

close
to your

location to
optimize latency or meet

certain regulatory
compliances.

Also keep in

mind
that you are not allowed to change the bucket's

name after
it has been created,

so make sure
you provide

it
a
correct and meaningful name

before you proceed.
In

this
case,

I
opted to create my bucket

in
the Oregon region, as shown:

[250]

Chapter 9

You are
not charged

for
creating a

bucket; you
are charged

only for storing
objects in the bucket

and for transferring

objects
in and

out
of the

bucket.

You can
optionally enable logging

for your bucket as
well,

by
selecting

the
Set

Up

Logging option.
This

will store detailed access
logs of your bucket to

a different

bucket of your
choice.

By default,
logging of a

bucket is
disabled; however,

you

can
always re-enable

it even after
your

bucket
is created.

AWS will not charge
you

for
any of the

logging
that it will

perform; however,
it will still charge you for the

storage
capacity

that your
logs will consume

on S3.

Log records
are

delivered
by S3 on

a
best

effort basis.
This means

that most records
will be

delivered
to your bucket

within a
few

hours
of

their creation. However,
not

all logs
may be

delivered on

time, depending
on the

overall traffic your bucket handles.

Once
your details

are in place,
select

the
Create option

to
create

your new
bucket.

The
bucket is created

within
a
few seconds,

and
you should

see
the

following

landing
page for

your bucket
as
shown here:

You can even create one or more
folders in

your bucket by selecting the
Create

Folder
option.

Folders are
just

a
nice way to

represent
and categorize your objects

more
effectively.

You
can even

perform
additional

operations on your bucket
using

this dashboard,
such as

assign permissions,
enable

logging, versioning, cross-region

replication, and so
on. We

shall
be exploring each of these

operations in detail

throughout this chapter, but
for

now, let's upload some objects to our newly

created bucket.

[251]

Working
with Simple

Storage Service

Uploading your first object to a bucket

With
your bucket now created, you

can easily upload
any object to it. But

first,
let's

take
a closer look

at what an S3 object
actually comprises:

•
Key: This

is
nothing but the

unique name
using which you upload objects

into S3. Each object has its own key, which can be
used

to
identify and

retrieve
the object when

necessary.

• Value:
This can be

defined
as

a
sequence of bytes

used
to

store
the object's

content. As
discussed previously,

an object's value can range anywhere

between zero bytes to
5
TB.

• Version ID: This is yet another entity that
in

conjunction with a key can
be

used
to

uniquely identify an object
by

S3. Version ID is equally important

for maintaining an object's version count. Using S3, you can keep multiple

versions of an object in a single bucket. Versioning helps protect your objects

against accidental overwrites as well as deletions by maintaining a separate

version number for each new object that you upload into
the

bucket. By default,

versioning is disabled on your bucket and thus your objects get the version ID

Null. It is your responsibility to enable versioning on your buckets in case you

wish
to

protect them against accidental deletions and overwrites.

• Metadata:
These are nothing but

simple name-value
pairs that

define some

information
regarding

a given object.
There are two types of metadata

provided
in S3: the

first
is
system-defined metadata,

which
is
generated by S3

itself
when an object is first uploaded and it generally

contains information

such as the object's creation date,
version

ID,
storage class,

and
so

on.
The

second is
user-defined metadata,

which, as the name
suggests, requires

you

as
a user

to
provide some additional name-value information

to your
objects

when they are
uploaded.

• Sub resources: Sub resources are a set of resources that can be associated

with either objects or
buckets.

S3 currently
supports

two
sub

resources
with

objects. The
first

is an Access
Control List (ACL), which consists

of
a list

of

users and
permissions

that are granted
access over

the object. The second sub

resource is called torrent and is used to return the torrent file associated with

any
particular

object.

Apart
from

the traditional client-server model, S3 also

supports the BitTorrent protocol
that

you can
use to

distribute

your objects
over

a large
number

of users.
To know more

about BitTorrent protocol
and how

you can
leverage it

using

S3,
go to

http://docs.aws.amazon.com/AmazonS3/

latest/dev/S3Torrent.html.

[252]

Chapter 9

•
Access

control: This provides
the

access
information of

a particular

object. You can control
access

to your objects
that

are
stored

in S3
using a

combination of
access

control
mechanisms

that are
discussed briefly

in the

later parts of this chapter.

With
this

basic understanding
in

mind,
we are now ready to

upload
our

first
object

into S3. You can
upload

objects directly
into

your buckets or within sub
folders that

you
may have

created.
To

get
started, simply select

the Upload
option from

your

bucket or
folder. In

the
Upload–Select Files

and
Folders dialog

box, shown in the

following screenshot,
you can

browse
and

select
any

video, document, media file,

and so on, of your
choice

and upload it to
S3.

The
wizard also provides

you with an

advanced enhanced uploader
that is

basically a Java applet
that can

help
you

upload

entire folders into S3 with ease.

The enhanced
uploader will

be installed on your local
machine's browser only

once

per
console session.

In my case,
I
opted to upload

a single video file
to my S3 bucket,

and hence opted to select the Add
Files

option rather than
Enhanced Uploader.

Once
your

required
files

are loaded into the
wizard,

start the
upload process

by selecting the Start
Upload

button. You can
view

the
transfer

process of your

individual files
by

selecting
the

transfer
panel shown

here:

Keep in
mind

though that you can
upload files

up to
5
TB in

size
at any

given
point

in time
using

the
Upload—Select

the
Files

and
Folders dialog

box. Once the
file

is

uploaded
to

S3,
you are ready to view it!

[253]

Working
with Simple

Storage Service

Viewing uploaded objects

Each
uploaded

object in S3
is provided with a

URL
that

you can use to
view

your object
using a browser

of your
choice.

The URL
is

in the
following

format:

https://s3.amazonaws.com/<BUCKET_NAME>/<OBJECT_NAME>.
You can view the

URL of your object by
simply selecting

your object
from

the
dashboard

and the

Properties option,
as

shown in
the

following screenshot.
Copy the URL presented

against the
Link

attribute and
paste

it into
a
web

browser of
your

choice:

But
wait!

That's
really

not going to help you
much. In fact

if you
did

try
and access

your object's URL from
a
browser, you make

have ended
up with an

XML-based

access denied
warning!

Well,
that's because

all
buckets and objects in S3 are set to

private
by

default.
You can change this default behavior by

simply selecting
the

Make Public
option from the

Actions
tab.

This
will

modify
your object's

permissions

and
enable

everyone to
view as

well as
download

your object. You can
even

perform

the
same action

by
selecting

the
Permissions option

from the object's
Properties

tab.

Once the object
is made public,

you can
view it using

the URL copied
earlier.

Accessing buckets and objects using S3CMD

Now here's the
fun

part! S3
provides a wide

variety of
CLI

tools
using which

you can

manipulate your buckets and objects; one of the
popular

ones being S3CMD.
In this

section, we
will walk through some simple

steps to install S3CMD on
a
local

Linux

box
and

then check out
some

cool
commands using

which you
can

work with
S3.

[254]

Chapter 9

So what is S3CMD?
In simple

words it's
a Python-based

open
source tool

used to

query any cloud storage
service

that
supports

and uses the S3
protocol, including

Amazon
S3 and even Google's

cloud storage.
S3CMD can be

installed
and

configured

on any
major Linux

OS,
such as

CentOS, RHEL, Ubuntu, and so on, and even comes

with
Windows

OS
support in

the form of
a commercial tool called S3Express.

The

main reason I'm
talking about S3CMD here is

because
of

its high versatility
and

use.

If
you

are
capable

of writing
bash scripts

and
cron

jobs, then you
can easily

perform

automated
backups of

your files
and

folders
in S3

using S3CMD in a few easy
steps.

To know more about S3CMD, check

http://s3tools.org/s3cmd.

First
off,

let's get started by
installing

S3CMD on our
trusty Linux box.

To do
so,

simply
type in the

following command. However, S3CMD requires
Python

Version

2.6 and
above,

so
make

sure this
prerequisite

is met before you proceed
further:

wget http://sourceforge.net/projects/s3tools/files/s3cmd/1.6.0/s3cmd-1.6.0.tar.gz

Here
as a screenshot

of the preceding
command:

Once the tar is
downloaded, extract

its contents using the
following command:

tar -xvfs3cmd-1.6.0.tar.gz

Next, install S3CMD on your Linux box by executing the
following command:

cd s3cmd-1.6.0

python setup.py install

[255]

Working
with Simple

Storage Service

With this,
S3CMD is now

successfully installed.
The next

step
is to

configure
it to

work with your
Amazon

S3. To
do

so, type in the
following command

and
follow

the

on
screen

instructions
provided:

s3cmd --configure

The
configuration utility

will
request

an
AWSaccess

and Secret Key. It will also

prompt
you to set your operating region, which is

set
to US by

default.
You can

even

enable S3CMD to
communicate

with
Amazon

S3
using

the https
protocol;

however,

do note that
this setting

can have
a slight impact

on S3CMD's
overall performance.

The entire
configuration

is
saved

locally in the
Linux user's home directory

in
a file

called
.s3cfg.

Once done, you are now ready to
test

your S3CMD! Here are
some

basic commands that
you

can
use to

query your Amazon
S3.

First
up, let's

list
our

Buckets
using

the
following

S3CMD
command:

s3cmdlss3://<BUCKET_NAME>

You
should

see the
contents

of your bucket
listed

using this
command. If

you
do not

specify the bucket name, then by
default

the
s3cmdls command will

print out all

the buckets present in that
particular

region. Next, let's try to upload
some

data to

our bucket.
Uploading

is
performed using

the
s3cmd

put
command

and
conversely,

downloads
are

performed
using the

s3cmd
get

command.
Type in the

following

command in
your

Linux terminal:

s3cmd put -r /opt s3://<BUCKET_NAME>

This
command will recursively upload all

the contents present
in

the /opt directory

to the bucket
name

that you
specify.

Remember one
important

thing though!
Trailing

slashes after
the

/opt
directory

would
have

copied
only the

directory's
content over

to the bucket, but not the directory
itself.

[256]

Chapter 9

To know
more about

the
usage

of
various s3cmd commands

visit http://s3tools.org/usage.

On
a similar note,

you can perform
a wide

variety of operations using the
s3cmd

tool. For
example,

you can
upload

your instance
log files

to an S3
bucket

on
a

periodic basis.
Here is

a base snippet
of the

/etc/logrotate.d/httpd file
where we

use the
s3cmd command

with the
sync

attribute. The sync attribute is
a really useful

tool
for transferring files

over to
Amazon S3.

sync
performs

conditional
transfers,

which
means

that only
files

that
don't exist

at the
destination

in the
same version

are transferred.

In this snippet, we are
assuming

that
a
bucket with the name

httpd-logger
has

already
been created

in
S3.

The
code will sync the

instance's httpd error
log

file

(/etc/httpd/logs/error_log) and the
httpd access log file (/etc/httpd/logs/

access_log)
and

transfer
them to their

respective folders:

BUCKET=httpd-logger

INSTANCE_ID=`curl --silent http://169.254.169.254/latest/meta-data/

instance-id`

/usr/bin/s3cmd -m text/plain sync /etc/httpd/logs/access_log*

s3://${BUCKET}/httpd/access_log/instance=${INSTANCE_ID}/

/usr/bin/s3cmd -m text/plain sync /etc/httpd/logs/error_log*

s3://${BUCKET}/httppd/error_log/instance=${INSTANCE_ID}/

Managing an object's and bucket's

permissions

Just
like

we talked
about

IAM
permissions

and
policies

back in Chapter 2, Security and

Access
Management, security and access management, S3 too

provides permissions

and policies
using which

you can control
access

to both your buckets and the objects

they contain. In this section, we will
have a quick

look at two
such methods provided

by S3,
namely resource-based policies

and
user-based policies,

as
follows:

• Resource-based policies: Resource-based policies
are

simple Json-based

policies that are
generally

created and
enforced

on S3
resources

by the

bucket or the resource owner themselves. These S3 resources include the

object
lifecycle management configuration

information, the
versioning

configuration,
the website

config details,
and

a few
other

parameters.

Resource-based policies
can be

further sub-classified
into two

types:
Bucket

Policies and Access Control Lists (ACLs).

[257]

Working
with Simple

Storage Service

• Bucket policies: These are enforced on the bucket level or on the individual

objects contained
within

it.
Here is a simple example

of
a Bucket Policy

that
basically will allow

any user to
perform

any operation on the
specified

bucket
name, provided

the request
source

is
generated

from the IP address

specified
in the condition

(23.226.51.110):

{

"Id": "Policy1448937262025",

"Version": "2012-10-17",

"Statement": [

{

"Sid": "Stmt1448937260611",

"Effect": "Allow",

"Principal": "*",

"Action": "s3:*",

"Resource": "arn:aws:s3:::<BUCKET_NAME>/*",

"Condition": {

"IpAddress": {"aws:SourceIp": "23.226.51.110"}

}

}

]

}

You
will notice

that
a
lot of the syntax

actually matches
up with what we have

already seen in
Chapter

2,
Security and

Access
Management, while

discussing
the

building
blocks of an IAM policy.

Well,
here,

most
of the things

remain
the

same.

The
only

notable
difference will

be the
inclusion

of the
Principal element, which

lists
the

principals
or owners that bucket

policy
controls access for. The

Principal

element
is

not mandatory
when creating

an
IAM policy as

it is
by

default
the entity

to which the IAM
policy is

going to be attached. The
best

part of
all this

is that AWS

provides a really easy
to

use policy generator
tool that you can use to

interactively

set and create your S3 policies
with.

You can try out and create your own
policies

at

http://awspolicygen.s3.amazonaws.com/policygen.html.

How
do you

apply bucket
policies?

Well that's really
simple! Select

your bucket from

the S3 dashboard and from the
Properties panel, select

the
Permissions drop-down

menu, as
shown

in the
following screenshot.

Here,
select

the
Add bucket policy

option.
This

will bring up
a
Bucket Policy

Editor dialog box
using which you can

type in your
policy

or even
use

the
AWS policy

generator to create one
for

yourself

interactively.

[258]

Chapter 9

Remember
to

save
your

policy
in the Bucket Policy

Editor before closing
the

dialog
box.

ACLs
are very

similar
to bucket

policies. An
ACL is

basically a list
of grant

operations

comprising a
grantee

and a set
of

permissions granted. Every
bucket that

you create

in S3
along with

each
object that

you
upload

gets
a set

of
ACLs

with
them. ACLs are

a great
way to control

which users get access
to your buckets

and resources,
whether

they are
AWS users

or
even some random normal user. To view your bucket's

or

object's ACLs, simply select
the

bucket
or

object from
the S3

dashboard
and

select
the

Properties option.
There,

select
the

Permissions drop-down
to

view
the

associated

ACLs, as shown here:

[259]

Working
with Simple

Storage Service

owner of the bucket.

A default ACL
is
provided with each

object
that

you
upload

into
S3. This

default ACL has
one

grant attribute
set

for
the

ACLs
have

a predefined set
of

user groups created using which you can configure

access
control

for
your

buckets. These user
groups

include Everyone, Any

Authenticated AWSUser, Log Delivery, along
with your bucket's

creator. ACLs
can

enforce
the

following set
of

permissions (read/write) over an
object

as well
as bucket.

On the
basis

of these
permissions, a user

can
perform operations such

as
uploading

new
files or delete existing objects.

Here's
a quick look at

the
ACL permissions

provided
by S3 and

how they
are

associated with
both

buckets
and

objects:

Permissions Associated with Buckets Associated
with

Objects

READ Users can list
the

object names,
their

size,and last modified date from a Bucket. Users
can

download the
object.

WRITE Users can upload
new

objects in
yourBucket. They

can also delete files onwhich
they don't have

permission. Users
can

replace
the

object or

delete it.

READ_ACP
Users can read the ACL associated with a
Bucket, but

cannot
make any

writes
to it.

Users can read the ACL

associated
with

that
object but

cannot make writes to it.

WRITE_ACP Users can
modify the ACL

associatedwith the bucket. Users
can

modify
the ACL

associated
with the object.

FULL_CONTROL Users
get READ,

WRITE, READ_ACP,
and

WRITE_ACP permissions on
the

associated bucket. Users
get

READ, READ_ACP,and
WRITE_ACP

permissions

on
the

associated object.

Bucket
ACLs

are completely independent
from

Object
ACLs.

This means that bucket ACLs can be different from ACLs set

on
any Object

contained in a bucket.

Now the obvious
question

running through your
mind

right now is
what do I

use
for

my S3 buckets and
objects? ACLs

or bucket
policies?

The
answer for

this is two
folds.

First
off, understand

that the
main difference

between an ACL and
a
bucket

policy

is that an ACL grants access
permissions

to buckets or objects
individually, whereas

a
bucket

policy
will

help
you write

a policy
that will either

grant
or deny access to

a

bucket or
its

objects.
Ideally,

you can use
ACLs

when each object
in

the bucket needs

to be
provided

with
some

explicit
grant permissions.

You will
also

need to use
ACLs

instead
of

bucket
policies

when your
policy's size

reaches
20KB.

Bucket
policies

have

a size limit
of 20KB, so if you have

a
very

large
number of objects and

users
to grant

access
to, you might want to

consider
the

use
of

ACLs.

[260]

Chapter 9

User-based policies,
perhaps the

most simple
and easy to use, the

user-based policies

are
nothing more

than
simple

IAM
policies

that
you

can create and
use

to manage

access
to your

Amazon
S3

resources.
Using these

policies,
you

can create users,

groups,
and roles

in your account
and attach specific

access
permissions

to
them.

Consider
this

simple example
IAM

policy in
which we grant the

user-specific
rights

to put objects into S3, to get objects,
list

them, as
well

as delete
them. Notice

the

syntax remains
quite the

same
as we have seen throughout

this
book. You can create

multiple
such

IAM
policies

and attach them to
your

users and groups as
described

here
in

the AWSS3
documentation

page:
http://docs.aws.amazon.com/AmazonS3/

latest/dev/example-policies-s3.html.

The
following

is an
example

of the IAM
policy:

{

"Statement": [

{

"Effect":"Allow",

"Action": [

"s3:PutObject",

"s3:GetObject",

"s3:DeleteObject",

"s3:ListBucket"

],

"Resource":"arn:aws:s3:::<BUCKET_NAME>/*"

}

]

}

Using buckets to host your websites

Yes!
Believe it

or not, you can actually use
Amazon

S3 to
host

your
websites,

provided
that they are static in

nature.
How does it

work?
Well, its

quite simple and

easy, actually!
All you need to do is create

a
bucket and

enable
the

website
hosting

attribute
on it. Once done, you can

easily
upload the

website's index.html
page

along
with

the other
static

web pages and
voila!

You got
yourself a really simple

website
up and running

in a matter
of

minutes.

[261]

Working
with Simple

Storage Service

Here's
a simple example

in which
I
used

my previously
created bucket as

a website

host. All you need to do
is select

your bucket and from the
Properties

panel
select

the
Static Website Hosting option

as shown here:

Here, you will
see

an
Endpoint (http://<BUCKET_NAME>.s3-website-<REGION>.

amazonaws.com) provided
to you.

This is
your website's

end
URL, which you can

copy and paste
in a

web browser to
view

your website; however, before you
do

that,

don't forget to
make

your
website

public! To do so, copy
and paste

the
following

bucket
policy

in your bucket's
Policy Editor dialog

box:

{

"Version":"2012-10-17",

"Statement":[

{

"Sid":"BucketWebsiteHostingPolicy",

"Effect":"Allow",

"Principal": "*",

"Action":["s3:GetObject"],

"Resource":["arn:aws:s3:::<BUCKET_NAME>/*"

]

}

]

}

Save
the

policy
in the

bucket policy editor, and
then

upload your index.html file as

well as an optional error.html file
to

your bucket. Type your endpoint
URL in

a
web

browser
of

your choice, and
you

should see
your

website's landing (index.html) page.

[262]

Chapter 9

Using
static

website hosting,
you can

also
redirect

all requests
to an

alternate
DNS

hostname
or even to an

alternate
bucket.

Simply select
the

Redirect
all

requests to

another
host name

option
and

provide
an

alternative
bucket's name

in
the

Redirect

all requests to field,
as
shown

in the
following screenshot. Alternatively,

you
can

even setup Amazon Route53 to
act

as your DNS
provider

by
providing a few DNS

records and
a valid

new
domain

name
for your website,

such as
all-about-dogs.com:

S3 events and notification

Amazon
S3

provides an easy-to-use notification feature
that can

send notifications

in
case a certain event

gets triggered
in

your bucket.
Currently,

S3 supports

notifications
on the

following set
of

events:

•
Object

created:
This event

includes
PUT, POST, and COPY

operations
and

even
something called

as Complete Multi-part
Uploads. Multi-part uploads

is
a feature

leveraged by S3 where
a large

object is
broken

down
into smaller,

more
manageable

chunks (approx 10
MB),

and then each chunk
is uploaded

to an S3 bucket
in a parallel fashion,

thereby cutting
down

on the
overall

upload time
as well

as
costs.

•
Objects removed: This event

includes any
delete operations

that
are

performed either
on the bucket

or
on the

objects
contained

within
it.

•
Object

lost:
Don't worry! We are not

talking
about S3

misplacing
any of your

objects here! This
event

is
raised only

when an
object

of the RRS storage
class

has been lost.

[263]

Working
with Simple

Storage Service

To enable the
notification service, select

your bucket and from the
Properties

panel,

select
the

Events drop-down
menu,

as
shown.

Fill
in the required

details
and

click
on

Save once done to enable the notification service:

The
parameters

are as
follows:

•
Name:

Provide a
suitable

name for
your

notification alert. In this
case,

I

named
my

alert
<BUCKET_NAME>-PUT-ALERT for notifying

me
against

any

PUT
operations

that are
performed

on the bucket.

• Events: Type
in the

event for which
you

wish
to get

notified.
Here

I
have

specified
the

PUT
event, but you can

specify
anything from POST, COPY,

CompleteMultiPartUpload,
to
DELETE,

based on your
requirements.

• Prefix:
This is an optional

attribute
and is

used
to

limit
the

notifications
of an

object
based

on its
matching characters.

For
example,

notify
me

in
case

any

PUT
operation

is
performed in

the Images directory.

• Suffix:
Once again this is an optional attribute

that is
used to

limit
the

notifications
of an object

based on
its

suffix.
For

example, notify
me

in
case

any PUT operation is
performed

and the key contains
a .png

as
a suffix.

• Send
To: Currently, S3

supports
sending

notifications
to three AWS

services,

namely SNS, SQS, and Amazon
Lambda.

•
SNS

topic:
Select

a
SNS

topic using
which S3

will
send

notifications
to. You

can optionally
create a

new SNS topic here
as

well.

Once all the fields are filled in, click on Save to enable the notification service.

Remember
to

alter
the

Bucket's
access

policy
to

allow
S3 to

publish statements
to SNS

using
the

sample policy snippet provided
here.

Replace <SNS_TOPIC_ARN>
with

an

actual SNS
Topic

ARN
value (arn:aws:sns:aws-region:account-id:topic-name)

and
<BUCKET_NAME>

with your bucket
name:

{

"Version": "2008-10-17",

[264]

Chapter 9

"Id": "Policy1448937262025",

"Statement": [

{

"Sid": "Stmt1448937260611",

"Effect": "Allow",

"Principal": {

"Service": "s3.amazonaws.com"},

"Action": [

"SNS:Publish"

],

"Resource": "<SNS_TOPIC_ARN>",

"Condition": {

"ArnLike": {

"aws:SourceArn": "arn:aws:s3:*:*:<BUCKET_NAME>"

}

}

}

]

}

Bucket versioning and lifecycle management

Versioning
is perhaps the

most important
and

useful feature provided
by S3. In

a

way,
it is a means

to create and
maintain multiple

copies of
a
single object

present

in
a
bucket. Each copy of the

same
object that you

upload into
the bucket

receives a

unique version ID,
which can

later
be used to retrieve and

restore
the object in

case

of an
accidental deletion

or
failure.

To enable
versioning

on
a
bucket,

all
you need

to do
is select

the
particular

bucket
from

the S3
dashboard,

and from the
Properties

panel, select
the

Versioning
drop-down menu, as shown here:

[265]

Working
with Simple

Storage Service

By
default,

versioning is
disabled

on all buckets,
so

you
will have

to
explicitly

enable

versioning
on the ones that

require it.
Once enabled, all

newly uploaded
objects

will receive
a unique version

ID. Older objects stored in the bucket
prior

to enabling

versioning also
contain

a version
ID parameter, but the

value
of that is

set
to null.

However, once versioning
is
enabled

on the bucket,
it applies

to all the objects

contained
in

the bucket,
so

all
objects uploaded henceforth,

new or
old, will

obtain

version IDs.
An

important
point to

remember
here

is
that once you have enabled

versioning
on

a
bucket, there is no way you

can disable
it.
You

can, however,

suspend
it by

selecting
the

Suspend Versioning
option.

Each object version
that you

upload
is
an entire

object in
itself

and
hence

each version upload you
do

will
be

charged
the

normal
S3 rates

for storage
as

well as
data

transfers.

So how
do

you upload
versions of

your objects to
a
bucket?

Well,
the

process

remains absolutely
the

same for any
object that you upload into S3. The

only

difference
now is that with each new

version
of the object that you

upload,
S3

will

assign
it
a unique version

ID
and store

it in the
same

bucket
as

its
originator.

To
list

the
different versions

of
an

object,
all

you need to
do

is toggle between the
Hide

and

Show
versions

buttons as shown in the
following

screenshot.

Selecting the Show
versions

will
display

all the
uploaded versions

of that object

including
the

object's
creation date,

version
ID,

and size.
You can then

download

any
of

the
versioned

objects that you want by
simply selecting it from

the dashboard

and, from the
Actions drop-down

menu, select the
Download option. In

case the

download request is issued
on the

main
object, then S3 will

simply fetch
the

latest

uploaded version
of that object and

download
it

for
you:

[266]

Chapter 9

Versioning also
comes in real handy when you want to

protect your
data

from
any

accidental
deletions or

overwrites.
How?

Well,
to put in

simple
words, when you try

to
DELETE

an object
that is versioned

in S3, you actually don't wipe
it from existence

immediately.
In

fact,
S3

will
insert

something called
as

a delete
marker

in
the bucket

and that
marker becomes

the current
version

of the object with
a
new

version ID.

When you try to GET an object
whose

current
version

is
a delete marker, Amazon

S3

behaves
as though the object has been

deleted
and returns

a 404 error even
though

that object
is

not
physically deleted

from the bucket. To
permanently

wipe out the

object, you
will

need to
use

the
DELETE

object along
with

its
version

ID.
Want

to

try it out?
Then

go ahead and delete
a main

object from your
versioned

S3 bucket.

You
will notice

that although the main object is
successfully deleted

and not
visible

from the S3
dashboard,

its
versions

are
still

pretty much intact. So
even if this

was an

accidental DELETE operation,
you can

still
retrieve the main

image
from the

version

ID!
Amazing, isn't it!

Another
sweet part of

enabling versioning
on

a
bucket is that you can specify an

object's transition or
lifecycle

as
well.

This
feature

comes in
real handy

when you

want the objects stored
in

your bucket to get
auto-archived

to, let's say,
Amazon

Glacier after
a
long period of

storage in
S3,

or wish
to

transition
the

storage
class

of an object
from

Standard to
Standard_IA for infrequent access. Logs

are
a classic

example
of where this feature comes in really

handy.
Your bucket can

store
the logs

for
up to

a
week's

duration
using

standard
storage and then

post
that you transition

the
logs

to either Glacier for
archiving

or
even delete

them permanently. To enable

lifecycle management,
you will need to select

your
bucket

from
the S3

Dashboard

and from the
Properties panel, select

the
Lifecycle drop-down menu,

as shown:

Next,
select

the
Add rule

option to create
a lifecycle rule

for your bucket. This will

pop up the
Lifecycle Rules

wizard
using

which you can
configure

as
well

as
choose

the target
objects for which

you
wish

to enable the
lifecycle management.

The
first

page of the
wizard

is
Choose Rule Target,

where
you

can
specify

either
a prefix

or

the entire
bucket

to
which

the
lifecycle

rules
shall

apply.
A prefix is more

or
less

like

a folder
name

that
you

can specify, for example,
in my

case I provided
the

prefix

Videos/, which
is
an

actual directory
inside

my bucket. Select
Configure Rule

to

move
on to the

next page
of the wizard.

[267]

Working
with Simple

Storage Service

You can
use lifecycle rules

to
manage

all
versions of

your

objects;
both

current
as

well as previously created.

In the
Action

on
Current

Version
page,

you get to choose
and specify

the type of

action
you

wish
to

perform
over your

selected
objects. For

example,
you can

enable

an object's
transition

to the
Standard - Infrequent

Access Storage
class 30

days
after

the object's creation date,
which

is the
ideal

time to
set

for an object, or
you

can even

enable Archiving to the Glacier Storage
Class post

60 days your object's
creation,

and so on.
There

are
a few rules

that you have to keep
in mind, however,

when

performing transition
actions:

•
You cannot

transition
from

Standard-IA
to

Standard
or

reduced
redundancy

•
You cannot

transition
from

Glacier
to any other storage

class

•
You cannot

transition
from any storage

class
to

reduced redundancy

The
following screenshot shows

the
lifecycle configuration:

If
you

are happy
with

your
lifecycle configuration,

click on
Review

to
complete

the

process.
In the

Review
and

Name pages,
you can

specify
an

optional name
for

this

particular transition
rule as

well.
Make sure you review your

rules
correctly

before

selecting
the

Create
and

Activate Rule options. Post
your rules creation. You can

further edit or
even delete

them
from

the
same Lifecycle

drop-down
menu found

in

the
Properties

panel of the S3
dashboard.

To know
more

about
lifecycle management

and how you can
leverage it for

your objects and buckets, check
http://docs.aws.amazon.com/AmazonS3/latest/UG/LifecycleConfiguration.html.

[268]

Chapter 9

Cross-Region Replication

Versioning
in S3

also provides
us with yet another easy to use

feature,
which is

called
Cross-Region

Replication. As the
name suggests, this feature enables

you to

copy the
contents

of your bucket or the bucket
itself

asynchronously to
a
bucket

present in some different
AWS

region.
The copy process

will basically
copy all

aspects
of

your
source bucket and

objects,
including their

creation date
and

time,

version IDs, metadata, and so on, over to the destination bucket.

To enable
Cross-Region Replication

on
a
bucket, all you need to do

is first
make sure

that the bucket has
versioning

enabled.
Next, from

the
Properties

panel,
select

the

option
Cross-Region Replication,

as shown
here:

Click
on

Enable Cross-Region Replication
to get

things started.
You can

either select

the entire
bucket

as the
Source

or
even specify a prefix

in the bucket, for
example,

Images/.
Next, select

an
appropriate Destination Region

for your bucket
replication.

In my case,
I opted

for the
Northern California

region. Select the
Destination Bucket

of your choice as
well.

This
destination

bucket is not auto created by S3,
so

it's your

responsibility
to go ahead and create one

in
the destination

region
of

your
choice:

[269]

Working
with Simple

Storage Service

You can
optionally

change the
Destination Storage Class

of your replicated

objects as well. For
example,

if you
wish

to
minimize

your
costs

of
replication,

you

can
instruct

S3 to
store all replicated objects in

the destination bucket
using

the

Standard-IA
storage

class. Finally,
you

will also
need to

setup
an
IAM Role

to grant

S3
permission

to replicate objects on your behalf.
Click

on
Create/Select

IAM Role

to
bring

up the IAM Dashboard. There, select the
Roles

option from the navigation

pane
and attach

the
following

role
policy:

{

"Version":"2012-10-17",

"Statement":[{

"Effect":"Allow",

"Principal":{"Service":"s3.amazonaws.com"

},

"Action":"sts:AssumeRole"

}

]

}

Once done, S3 will asynchronously copy the contents
from

your
source

bucket

over to the destination bucket. This includes any new objects that you add to the

source
bucket as

well.
An

important
point to note here is that using

Cross-Region

Replication,
S3

will
only

replicate
your actions

over
to the

destination
bucket, such

as
adding, copying,

and deleting
objects. Lifecycle configuration actions,

such as

transitioning
objects from Standard to

Standard-IA
or to Glacier are not replicated.

You can
however, configure

the same
lifecycle configurations

as your source bucket

over to your
destination

buckets
manually.

Planning your next steps

There are
plenty

of
amazing

things that you can
configure

and try on
S3 besides

the

steps we have covered in
this

chapter. For
example,

you
can leverage

the encryption

functionality
provided

by S3 to encrypt
data

in transit as
well

as at
rest.

Amazon S3

supports
two types of

encryption
technique

especially
for

this
purpose:

client-side

encryption and
server-side

encryption.

[270]

Chapter 9

Client-side encryption
comes in really handy when you as an end

user
want to

manage the
encryption process,

the encryption
keys,

tools, and so on.
Generally,

this

encryption
process

is
performed

on the
object before

it
gets uploaded

to S3. You can

also protect
your data in

transit using client-side encryption facilities
such as SSL.

Server-side encryption is
where

Amazon
S3 encrypts and decrypts your

data
for you

before it
is stored

within
its

data centers.
Server-side

encryption can be
leveraged

along
with

AWS Key
Management

Service
(KMS)

as
well

as with Amazon S3

managed keys. You can read about both in depth
using

this link
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html.

Another
feature worth

trying
out

in
S3

is
the

presigned URLs.
These URLs are

used

to
provide temporary

access for
downloading

any
particular

object
from

S3.
Each

URL comes with its own expiry
date

and
time, which

denies
access

to the object once

it
expires.

S3
provides

SDKs in
Java

and
.NET

using which you can create your own

pre-signed URLs.
To read

more
about presigned URLs

and
how to generate them

for

your own
objects,

go to
http://docs.aws.amazon.com/AmazonS3/latest/dev/

ShareObjectPreSignedURL.html.

Recommendations and best practices
Here

are some
key best

practices
and

recommendations
that

you
ought to keep

in

mind
when working

with Amazon
S3:

• Before
creating your

buckets, plan
and

choose a
region that has

closer

proximity
to your

users.
You

may also
want to

consider
any legal

or

regulatory
compliance before

selecting
a particular

region.

• Leverage
S3's

versioning
and

lifecycle
management for

automatically

archiving
or

cleaning
up

of
your buckets and

objects.
This will

help
you

save

a lot
on

storage
costs

as
well.

• Employ server-side encryption for
encrypting your

data
at

rest.
Although

all objects and buckets in S3 are private by
default,

you
can still

enforce

additional security
by encrypting them using either

AWSKMS
or using S3

Managed
Keys.

• Design
and use bucket policies for restricting delete operations on

buckets.

You can even enable Multi-factor authentication (MFA) for certain users

who will be
required

to
provide additional authentication

to perform
a

change in
an

object's version ID or
even delete

it.

• Leverage multi-part
upload when it comes to

uploading large
objects into

Amazon
S3. Using multi-part

uploads,
you can even resume your upload

process
in case

it
was

abruptly stopped
or

failed.

[271]

Working
with Simple

Storage Service

•
You can

optionally enable
Amazon CloudFront to speed up your

static

website's
performance as well by caching your HTML code, photos, and

videos.
To know more about how

you
can leverage

CloudFront
for your S3

buckets,
go to

http://docs.aws.amazon.com/gettingstarted/latest/

swh/getting-started-create-cfdist.html.

Summary

So yet another chapter and yet another
awesome

AWS
Service

walkthrough comes to

an
end! Let's

take
a
quick

flashback
into the things we've

learned so far.

First
off,

we started by
learning

what
exactly Amazon

S3
is,

along with the
various

storage
class options provided

with it.
Next,

we
saw

how easy and
effortless

it is to

create buckets, upload
objects

into them, and view them. We even
tried

out
a simple

CLI
tool called as

S3CMD
for syncing log files

from your
instances over

to
an

S3

bucket.
Toward

the end, you
even learned

how to
host static

websites on
S3

and

enable
lifecycle management

on
objects

as
well.

In the next and
final

chapter, you
will

be learning
a
bit

more about a few
key AWS

services,
such as Route53

and CloudFront,
along with

a
quick

look
at some of the

newer AWS
service offerings, such

as
Amazon

EFS and ECS,
so

stay tuned!

[272]

Extended AWS Services for

Your Applications

In the previous chapter, you learned
a
lot about how you can

leverage
S3 to store

your objects and
even

perform
some

pretty
interesting

and
useful lifecycle

operations

on them.

In this
final

chapter, we
will

be exploring
a
few

additional
AWS

services that

you can leverage to enhance your
application's overall performance

as well as

availability. The
two services that I'm going to

cover
are

Amazon
Route53 and

Amazon CloudFront. After
this, we will also take

a quick look
at
some

of the recently

launched AWS
services

and products
and

how you can
leverage

them
for your

own

environments,
along with

a final
word on how to get going

with
AWS;

so without

further ado,
let's

get busy!

Introducing Amazon Route53

Amazon
Route53 is

a highly available
and

scalable
authoritative Domain Name

Service
(DNS),

which is
responsible for routing users

to
internet-based applications.

How
does

it
do

that? Well, Route53 works like any other DNS but on
a
much

larger

scale. It translates names such as www.all-about-dogs.com to either an instance's IP

address, such as 192.168.0.15, or even to an elastic load balancer's or Amazon S3's

endpoints.
But that's not all!

The
real power of Route53 comes

with
its

ability
to

route

traffic intelligently,
which is

achieved
with the

use
of health checks and

route-based

traffic flows
that route

traffic based
on latencies and geographies,

and in a
weighted

round robin
fashion.

Recently,
Route53

has
also

launched its very own
domain

registration service,
using which you can

register
your very own custom

domain

names with AWS at
absolutely

nominal rates.

[273]

Extended
AWS

Services
for

Your Applications

In this section, we will be exploring
a
few of these

features along
with

some simple

to
follow examples

and use
cases

that you can use to
extend

the
functionality

and

availability
of your

applications.

Working with Route53

Getting started
with

Route53
is a very simple and straightforward process.

From the

AWS
Management Console, select

the
Route53 option from

the
Networking

group,

as shown here:

This
will bring

up the
Route53 Management Console

for the
first

time.
Using

this

console,
you can create and

configure
your

very
own custom

domain
names as well

as
configure

health checks and
traffic

routing
policies as

per your
requirements.

First

up,
let's

go
ahead

and create
a simple hosted

zone for our demo application all

about-dogs.com.

A
hosted zone is

nothing more
than

a
logical

container
that holds

information
on

how you
wish

to route
traffic

for your
application.

You create
a
hosted

zone for

your
custom domain (all-about-dogs.com)

and then create one or
more resource

record
sets

to tell the DNS
service

how you
want traffic

to be routed
for

that
domain.

If
your

Hosted Zone
routes traffic

over the
Internet,

then it is
called a public hosted

zone, and conversely if you are
routing

within an Amazon VPC, it is
called a private

hosted
zone.

Once your
hosted

zone is created, Route 53
will automatically

create
a

Name Server
(NS)

record
and a

Start Of
Authority

(SOA) record for that
zone. The

NS record
identifies

the four
name

servers that Route53 creates
for

you. You can then

provide
these

four
NS records to

a registrar
or your DNS service

provider, such as

https://in.godaddy.com/,
so that your

application's
DNS

queries
are routed to

Amazon Route53's name servers.

You can create more than one hosted zone with the same

name and add different resources to it.

[274]

Chapter
10

Here
is a

pictorial
representation

of how things
actually

work out.
In this

case, our

demo application's domain
name is

already registered
with

http://www.godaddy.

com/; however,
you can

alternatively
use any other

domain provider
of your choice,

or Route53's newly launched
domain registrar service

as well:

Creating hosted zones

To create your very own
hosted

zone,
select

the
Create

Hosted Zone
option

from

the Route53
dashboard.

This will bring up the
Create Hosted

Zone
panel,

as shown

in the
following screenshot. Provide a suitable Domain

Name
(in this

case,
I have

provided
our

demo
application's

name all-about-dogs.com)
and an

optional

Comment
as

well.
Next, from the Type

drop-down
menu,

select
the option

Public

Hosted
Zone,

as
shown.

Click
on Create once

all the required
fields

are
filled

in:

[275]

Extended
AWS

Services
for

Your Applications

You
should

get two record
sets created

as
shown.

The
first

record
set

is your
hosted

zone's NS record set that contains the four name servers, and the second record set

is the SOA record
set.

Each new
hosted

zone that
you create will contain

its own

unique
NS

and
SOA record sets:

Once
your

hosted zone is created, the
next

step is where you create
a
new

resource

record
set. A

resource record set
basically tells

the DNS how the
traffic should

be

routed for that
particular domain. For example,

you may want to route
all

Internet

traffic for
your

domain
name

all-about-dogs.com
to

a specific
IP

address of
an

instance or an
ELB,

or
you may even

want
all

your
e-mails

to be routed to
a specific

mail server
with the

domain name mail.all-about-dogs.com
and

so
on.

Each
resource

record
set

that you create
will include

the name of
your domain, a

record type, and other
miscellaneous information applicable

to that
particular

record

type,
such

as
Time

To
Live (TTL), routing policies,

and health checks. Here are
some

of the
commonly

used record
set

types
provided

by Route53:

• A record: A simple
IP

address in
the

form 192.168.0.15.
You can

provide

the IP address of an EC2 instance in this set.

•
AAAA

record: A simple
IPv6 IP

address in
the form

2001:0db8:85a3:0000:

0000:8a2e:0370:7334.

•
CNAME

records: A Canonical
Name

(CNAME)
is

basically a
record set that

acts as an
alias, pointing

one
domain

name to another. For
example, you

can

route
all

internet
traffic

from
your domain name all-about-dogs.com

to an

ELBal's DNS name.

[276]

Chapter
10

•
MX

records:
MX records are

used
to

specify
the

priority
and

domain name
of

a mail server,
for

example,
10

mail.all-about-dogs.com;
here, 10

specifies

the priority of the MX
record.

To create your own
record

set,
simply select

the
Create

Record Set option
from

the

hosted zone
dashboard. This

will bring up the
Create

Record Set panel as shown

in the
following screenshot. Now

in my case,
I
want to route all of

my incoming

application
traffic

on the
ELB,

which is hosted in
us-west-2, via a domain name

of

www.all-about-dogs.com.
In this case,

I provided
the value www in the

record
set

Name
field. Alternatively,

you can
provide

any
meaningful

value there as per your

requirements. Next,
from

the
Type

drop-down menu, select the
CNAME - Canonical

Name option. We
will

be
using

CNAME because the
ELB is provided

by
a
default

DNS
name,

which you can obtain by selecting your
ELB from

the
EC2 Management

Dashboard
and

noting
down

its
DNS

name,
which

is generally
of the

following

format: US-WEST-PROD-LB-01-1582564436.us-west-2.elb.amazonaws.com. Once

done, paste the ELB's DNS
name

in the
Value field.

You can optionally
edit

the TTL

(seconds) value; however, I have chosen to stick with the default of 300 seconds.

Next,
select

an appropriate routing
policy based

on
your

requirements. There are
five

routing
policies provided, using

which you
can decide

the best
mechanism

to route

your
queries

to Route53.
They

are as
follows:

• Simple routing: This
is
used

when you
only

have
a single

source where you

want your
queries

to be routed to,
such

as
a
single web

server
or

a standalone

server connected to Route53.

• Weighted routing:
As the name

suggests,
here each record set

is provided

with
some definite

numeric
value or

weight
that

Route53 uses to

proportionately divide traffic into.
As

a
result, you can now

associate
more

than one
resource

with
a single

DNS
name using

this
approach.

For
example,

a single DNS
name, such as

all-about-dogs.com,
routes

traffic
to

five
web

server instances,
out of

which
three are

assigned
the weight 1, whereas

the
rest

of the two are
assigned

the weight 2. Then, on
average,

Route53

will select each of the first three resource record sets 1/7th of the time

(1+1+1+2+2=7) and the rest of the two record sets 2/7th of the time.

[277]

Extended
AWS

Services
for

Your Applications

Latency-based routing:
Perhaps

one
of the

most commonly
used

modes
of

routing,
latency-based

routing
comes in really

handy when you
have your

application's instances
spread across multiple

EC2 regions. In
this

case,

Route53
determines

the
origin

of the
request made

to your application and

routes the
traffic

to the instances where the latency is at its
minimum.

For

example, consider
your

application is spread across
the us-west

(Oregon)
and

a
European region (Frankfurt) and

a
user request originates

from,
let's

say,

Texas;
then, Route53

will
route that

particular request
to the

us-west
region

as the latency between
Texas

and
Frankfurt is far

greater than the latency

between
Texas

and Oregon.

Latency-based routing is based on latency measurements

performed
over

a period of
time and

can change
as

a result

of
improved network connectivity

and
routing.

• Geolocation routing: Geolocation
works on

a similar
principle as

latency

based
routing

with the
difference

that here you can
choose

the resources

that
serve your application's traffic, based

on the geographical location of

your users. For
example,

you can route
all traffic

that
originates

from
India

and send
it
to

a particular instance
or an

ELB. This
method of routing has

numerous applications,
such as

restricting distribution
of content to only

a few geographies, routing users
to the

same
endpoint,

and so
on. You can

specify
geographical

locations by
either continent or

by
country

or even by

state in the United States.

• Failover routing: Failover
routing

policy
is yet another

simple routing

technique
that you can

use
to route

traffic
from one

downed region
to an

active
region.

Failover routing
only works if

your
hosted zone is Public and

can only be
configured for an active-passive failover scenario.

Coming
back to our record

set,
for this particular

scenario I
opted to go for the

latency-based routing
for

my
application. Select the

Latency
option from the

Routing

Policy drop-down list. This
will

provide
you with an option to

select
an

associated

region
to route your

traffic
to. In this

case, I
selected the

us-west-2 region
where

my

ELB
is currently

present.
The

final step is
to

provide a meaningful
and

unique Set

ID or
description for

this
particular

record
set.

Once
done,

complete the record
set

creation process
by

selecting
the

Create
option, as

shown:

•

[278]

Chapter
10

Once
your record set is created,

it
will

be
displayed along

the NS and the SOA
records

that were created
by

Route53
when the

hosted zone was first deployed. You can create

additional record sets for your hosted zone using the same steps
as

mentioned.

Getting started with traffic flow

It's all ok
to

create individual record sets using
the

previously described method, but

what
if you had multiple resources present across multiple locations

and
each resource

required a different routing policy and configuration? This
can

become a real pain

point
when

you look
at

it from a management point
of

view
and that

is precisely
the

reason
why

AWS recently launched an interactive visual tool called traffic flow.

Traffic flow basically provides you
with an

easy to use interface using
which

you can

create and manage complex traffic policies, all within a fraction
of the

time. Using the

tool is a fairly simple and straightforward process.
You

start off
by

creating
one

or

more traffic policies, each containing multiple routing and configuration options
in the

form
of

policy records. You
can

even create multiple versions
of

the same traffic policy

and use different versions to roll out
or

roll back configuration changes
as you

see fit.

[279]

Extended
AWS

Services
for

Your Applications

To create your
first traffic policy, select

the
Traffic policies

option from the Route53

Management dashboard. Next, select
the

Create traffic
policy

option
to get

started.

Provide a
suitable

Policy name
and

Version description
as

required.
Click on Next

to
continue. This will

bring up the
Create traffic policy

page where you can use the

Start Point and
the

Connect
to

options
to create

child rules
and

endpoints.
To

delete

any child rule,
simply select close (marked

by x) in the upper-right corner of
each

rule box.

The
Start Point actually

is where you
choose

the DNS type that you
want

Route 53 to

assign
to

all
of the

resource
record

sets.
Use the

following
DNS types if you

wish
to

route
traffic

to the
following

AWS
resources:

• ELB:
You can

provide either
an
A

record
(IPAddress)

or
an
AAAA Record

(IPv6 Address) here.

•
Amazon

S3 bucket: Provide
an
A

record
of

your S3 bucket. Note that this is

only
going

to
work

if
your

bucket
is configured

as
a static

website
container.

• CloudFront distribution: Provide
an
A

record
for

your
CloudFrontdistribution here.

Once
you

have
defined

the
Start

Point
value,

you
can

use the Connect to
option

to

select
an

applicable
rule or

endpoint
based

on
the

design
for your

configuration.

The rules can be anything
from Weighted

rules to
Failover, Geolocation,

and
even

Latency-based
rules. Once

done, click
on the

Create traffic policy option
to complete

the
traffic policy's

creation:

[280]

Chapter
10

Do note that once your
traffic policy is created,

each
edit

of it will end up creating
a

new
version

of it.
The

previous
versions

of the
policy

are
retained unless

you choose

to
delete

them
explicitly.

You can
even

create
a
new

Traffic policy
by importing

a

JSON-based document that describes all
of the

endpoints
and rules that you want

to
include

in the
policy.

To know more about
traffic policy document

format and

how you can use them for your
own scenarios,

go to
http://docs.aws.amazon.com/Route53/latest/APIReference/api-policies-traffic-policy-document-

format.html.

Configuring health checks

Route53 also
provides a mechanism

using which you can
effectively

monitor the

health and
performance

of your web
application as

well as other resources using

the health check
facility provided.

Health checks can be
configured

to
periodically

monitor the health of your
application

in
a
very

similar
way that ELB

does.
All

you need to
do

is
provide

your application's URL or endpoint and
configure

the

notification
alarm.

That's it!
The rest is

completely taken care of
by Route53.

To create your very own health
check,

select
the

Health checks option from
the

Route53 dashboard. Next, click on
the

Create health check option to
get

started.

This will bring
up the

Configure health check page. The first thing
you

need
to
do is

provide a suitable name for
your

health check using
the

Name field. Next, select for

what
you wish to configure this health check. There are

two
options available: you

can

either monitor
an

Endpoint, such
as an

instance or an ELB
or

even your application's

endpoint,
or

you can select to monitor
the

Status of other health checks as well:

For this
example, I

opted to go for
Endpoint monitoring. Next, configure

the details

to monitor your endpoint
in

the
Monitor

an
endpoint section.

Here, too, you have

the
flexibility

to select
between having

an IP
address

or
a Domain name

as an

endpoint.

You
cannot

change the
Specify

endpoint by
option once

the

health check is created.

[281]

Extended
AWS

Services
for

Your Applications

From the
Protocol drop-down list,

select the
appropriate

protocol you want
Route53

to use to check the
health

of
your

endpoint. Currently, the
valid values provided

are

HTTP,
HTTPS

and TCP. For this
particular scenario, I

opted for the
HTTP protocol

as shown. In this
case,

Route
53 will

try to
establish a connection

with the
application

using the HTTP protocol. If the
connection is successful, Route

53 will submit an

HTTP
request

and
wait for

an HTTP response
in

the
form

of
a
status code of 200 or

greater
but

less
than 400.

In the
Domain name field, provide

the
domain name

of the endpoint that you wish

Route53 to monitor
and also provide

the
Port

on
which

Route53
will communicate.

By
default,

port 80
is selected

for your HTTP protocol and
so

port 443
is selected,

in
case

you
have

selected HTTPS as the protocol. The
final field left

now is the
Path

field, which specifies
the path that you wish Route53 to

request
when

performing

health checks. Do note that this
field

is only
valid for HTTP

and HTTPS
protocols.

If no
value

is
provided

here, then Route53 will
automatically

start
requesting

the

Domain name itself:

Once done, you can
optionally

edit the
Request Interval

and
Failure threshold levels

from the Advanced
configuration section,

as shown in the
following screenshot.

Do

remember that changing
the

request interval
from

Standard (30 seconds)
to Fast

(10
seconds)

results
in an

additional
payment. To know more about how Route53

is

priced, check http://aws.amazon.com/route53/pricing/#Health_Checks:

[282]

Chapter
10

With these
settings

configured,
you can now proceed to the

final step
of the

configuration
where you can create or reuse

an
SNS

notification
to

notify
you in

case

a
health check

fails.
Click

on
Next to

continue with
the health check

creation process.

You can specify health checks to
provide you

with SNS
notifications

using the
final

configuration
page as shown here. Select Yes to create an alarm and choose

either

Existing SNS topic
or New SNS

topic
to send

notifications
to. Once you are happy

with your
settings,

click on
Create health

check to complete the
process:

Health
checks also

help you to
design

and
configure DNS failover scenarios.

For

example,
if your web

application
is running ten EC2

instances in
the

backend,

five present
in one

region
and the other

five
in another, then you can

configure

Route53 to check the health of those instances and respond only to the servers that

are
healthy. Using

this
mechanism,

you
can configure active-active

or
even active

passive failover scenarios
and

maintain
the uptime of your

applications.
For

a

complete
overview

and guidance
on

how you
can leverage DNS failover

for your

applications,
refer to Route53's

developer's guide: http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-failover-configuring.html.

[283]

Extended
AWS

Services
for

Your Applications

Content delivery using Amazon

CloudFront

Moving on, Route53 is yet another
awesome service provided

by AWS that is

specially designed for distributing
and

delivering
content

across
the

globe and it

is called Amazon CloudFront. For some reason, CloudFront is not one of the most

commonly
used services

in
the AWS

service family; nevertheless,
it is

still a
good

alternative
to S3 when it

comes
to

distributing
content geographically. How

does it

all work?
Well, it's

quite
simple actually! To begin

with, the
first

thing that you need

to do
is configure

an Origin Server. An Origin
Server is

nothing more than
a
place

from where CloudFront
retrieves

the
files

or content
for distribution.

Origin
Servers

can be anything
from

an S3 bucket to
even an

EC2
instance running

in
a
VPC. Once

an Origin is
defined,

the
next

step
involves

the upload
of

objects to your Origin

Server. Objects can be anything
from images, media files,

to even web
pages!

Yes,

you heard it right! Web pages as
well! Anything

and everything that can be served

over the
HTTP

protocol or
a
supported

version
of the Real Time

Messaging protocol

(RTMP).
Refer to the

following diagram
as an

example
of

Origin
Server:

The next step
is
perhaps

the
most important one and involves

the
creation of a

CloudFront distribution. The distribution describes which Origin Server to use when

a user initiates a request
to

an image or a media object from your application or

website. This step will provide your objects with a new CloudFront URL, which you

need
to

substitute
in

your application.
For

example, a standard image URL may look

something like this
once

it is referenced
by

CloudFront: http://112233.cloudfront.net/myimage.jpg. CloudFront
then

sends this distribution configuration
to

all
of

its

specialized edge locations that
are

spread
out

across
the

world.

[284]

Chapter
10

As
of date,

Amazon CloudFront has forty-plus
edge

locations

spread across five continents, including North
and

South

America, Europe, Asia,
and

Australia.

These
edge locations

are nothing
more

than
small

data centers
where CloudFront

caches copies of your objects and keeps them
ready

for
distribution.

When
a user

accesses
or

requests
the object from your

application
or

website,
the

DNS
will route

it to the nearest edge
location.

CloudFront will then check its cache
for

the requested

file
in the edge

location.
If the

file
is

present
in the cache, then

it is
returned to the

user. If not,
then

CloudFront will
request

the
file

from the
Origin

Server and cache

it in its
edge location. This delivery

method
comes in really

handy when you
have

a lot
of data that gets

requested
or

accessed
by users on high

frequency basis.
It

also improves
the

overall performance
of your

application
and

website
as well as

increasing reliability
and

availability.

Getting started with distributions

Now that the
basic

concepts are out
of

the way, let's
look

at
some simple

steps using

which you can get
your

own
CloudFront distribution

up and running
in a matter

of

minutes!
First up,

access
the

CloudFront
option from the AWS Management

Console,

as shown here:

This
will bring

up the CloudFront
Management dashboard

where you
will

be able

to create your
distributions

as well
as

perform
a wide

variety of
monitoring

and

analysis tasks, such as
view

Cache
Statistics, Popular Objects

based
on frequency

of
requests,

Usage,
alarms,

and
so

on.

[285]

Extended
AWS

Services
for

Your Applications

To create your
first distribution, select

the
Create Distribution

button.
This

will bring up
a
page where you need to

select
the

distribution's delivery

method. Currently, CloudFront supports two modes of
delivering

content;

they are as
follows:

• Web: Create a web distribution
if you

wish
to

distribute static
as

well as

dynamic content
in the

form of HTML pages,
or

even
CSS, PHP

pages, and

static images. Do remember
that

web distributions serve
the

following
content

over
the

HTTP or
HTTPS

protocols
only. You can

use
either

an
S3

bucket
or

even
an

EC2 instance such as a
web

server for
your web

distribution.

• RTMP:
The

RTMP distribution
is only

meant for live streaming data
and

media files
such as

videos.
This

distribution only supports
an S3 bucket as

the origin
server. The following variants

of the RTMP
protocol are supported

by CloudFront:

° RTMP:
Adobe's

Real-Time Message Protocol.

° RTMPT:
Adobe

streaming
tunnel over HTTP.

° RTMPE:
Adobe

encrypted.

° RTMPTE:
Adobe encrypted tunnel

over HTTP.

For this little
demonstration, I'll

be
using one

of the S3 buckets that we
created

in the

previous
chapter (Chapter 9, Working

with Simple Storage Service).
The bucket

contains

a simple video
that

I wish
to

distribute using CloudFront's
edge locations,

so
the

obvious
choice for the

distribution selection
in this

case will
be RTMP.

In
case you do

not have
a
bucket by now,

follow
the

simple steps outlined
in

Chapter
9, Working

with

Simple Storage Service,
and create

a
bucket,

upload a video
to it, and

make
sure that

the bucket
has public permissions provided

to
it.

Next,
fill

out the
following details

to create your very own RTMP
distribution:

•
Origin Domain

Name: Provide
the DNS name of the S3 bucket

from
which

you want
CloudFront

to get objects for this origin. In
my case,

the
value

provided
here is

master-doggy-12-01-2015.s3.amazonaws.com.

• Restrict
Bucket Access: CloudFront

provides
an

added
layer of

security

using which you can restrict end users
from accessing

objects
using

only

CloudFront URLs and not using Amazon S3
URLs. This

particular
feature

is
called as

Origin Access
Identity

(OAI). For now, let's go ahead
and

use

this feature
to

safeguard
our bucket.

Select
the Yes option, as

shown
in the

following image.

[286]

Chapter
10

Origin Access
Identity:

Once you
have

opted to
restrict

bucket
access,

the

next step
involves

the creation of an OAI. Select the
Create a

New
Identity

option as
shown and provide a meaningful name for

the new
identity

in the

Comment section as well:

•
Grant

Read Permissions
on

Bucket: Select
the Yes,

Update
Bucket

Policy

option to
allow CloudFront

to
automatically

grant the OAI the
permission

to

read objects stored in your
Amazon

S3 bucket. You
can choose

to
update

the

permissions manually as
well.

• Restrict Viewer
Access: Select the Yes option if you want to use

a

CloudFront-signed
URL or signed cookies as

a medium
to

provide
access

to objects
in

your
Amazon

S3 bucket.
This

is yet
another advanced

security

feature using which
you can

restrict
user

access
to your buckets. For now,

I

have
selected

No as the
option

here.

• Price Class: CloudFront provides
three

basic pricing classes that
can

basically

help you pay
lower

prices
based on

the content
you deliver

out
of CloudFront.

The
Price Classes field

come
in

three
variants: All,

which
includes all

the
edge

locations present in AWS; Price Class 200,
which

includes US, Europe, a bit

of
Southeast Asia,

and
India;

and
finally Price Class 300,

which
only includes

edge locations present
in US and

Europe. Depending
on your

application's

reach,
you can

select
the Price

Class as
per your

requirements. For a complete

overview of how CloudFront
charges you

as well
as

its Price Class,
check

http://aws.amazon.com/cloudfront/pricing/.

•

[287]

Extended
AWS

Services
for

Your Applications

• Alternate Domain
Names

(CNAMES): This
is an

optional field
you can

use

if
you

want to replace the CloudFront URL's
domain

name with
something a

bit more
customized

and
meaningful,

such as your own
domain name.

• Logging:
You can enable

logging
at any

time
to log

information
about

each

request
made

to an object.
Simply select

the On
option,

as shown in the

following screenshot,
and

fill
out the

Bucket
for Logs option as well as

Log Prefix values. You can
optionally provide a Comment

as

well if required:

• Distribution State: Before
you

complete
the

distribution's creation,
you

need to specify whether you want the
distribution

to be
enabled

or
disabled

after
its creation. By

selecting
the

Enabled option,
your

users can access
the

CloudFront
distribution immediately after

its
creation,

whereas
Disabled

means
that even though the

distribution is
ready for use, the end

users
will

not be able to use it.

Once
your configurations

are completed,
select

the
Create Distribution option.

The

distribution will
take

a
couple

of minutes
to change from

pending
state to

enabled.

Once it's ready, you can use the CloudFront
Domain Name

to
retrieve

your
objects

from the
Origin

Server:

[288]

Chapter
10

You can edit your
distribution's

settings anytime by
simply selecting

the
distribution

entry and
clicking

on
Distribution Settings as shown.

You can
also Disable

or

Delete
the

state
of your

distribution
using this

dashboard. Follow
the

same
steps and

you can
also configure a

web
distribution for

your
application, so give that a

try as

well.

CloudFront recommendations and

best practices

Here
are some

key
takeaways and best practices

to keep
in mind

when
working

with CloudFront:•
Cache at

every
layer of your

application,
wherever

possible.

• Use a combination of Amazon S3 and CloudFront to distribute static data.

Remember that data transfer between S3 and CloudFront is free!

• Control access of data on CloudFront and S3. Make use of OAIs to ensure

that there are no unwanted content leaks.

•
Don't

forward any headers,
cookies, or

query strings.
Use

Signed
cookies

instead
of signed URLs.

•
Use Route53 to check the

health
of

your
origin servers.

In
this way,

you

can configure Route53 to
divert all traffic from

the
failed

Origin to the

healthy one.

•
Use Price

Classes
to

optimize
content

delivery
costs.

•
Make

use
of the alarms and

notification
services

using Amazon CloudWatch.

What's new in AWS?

With
the

basic services now covered,
here's

a quick look
at
some

of the newer

AWS services
and how you

can potentially leverage
them to

build
and

host
your

applications
and

infrastructure. First
up on the

list is Elastic Container Service (ECS).

Elastic Container Service

Before I talk about Elastic Container Service, it is essential to understand what a

container is
all

about and why
is it

getting so much of
importance

lately.

[289]

Extended
AWS

Services
for

Your Applications

A container is a logical
entity that

consists
of

one
entire

runtime environment. This

environment
can

include an application, its dependencies,
all

of its libraries,
and

configuration files needed
to run

it, all
packed into

one small
package. But

wait a

minute! Doesn't
this

all seem a bit familiar? Well
to be

honest, containers
are

nothing

like virtualization, in fact I
see them

replacing virtualization
very

soon. If you see a

virtual machine today,
it

basically comprises
an entire OS plus the

application hosted

on
top

of
it.
You

can
have one or

more
such VMs running on

top
of

a virtualization

layer in
the

form
of

a hypervisor, which again
has its

own set
of
memory

and CPU

requirements. In contrast
to
VMs, a server

running three
containers

runs on top

of
a single

OS,
and each container shares

the OS kernel with the
other containers.

This means that
the

containers
are

much leaner
and

lightweight
and use

far fewer

resources
than

conventional virtual machines, as depicted in
the

image
here:

Containers
are

a potent
solution to the

problem
of porting one application from one

environment
to the other. These environments

can
be anything

from a simple laptop

to virtualized
environments

to
public clouds.

That's where ECS comes into
picture.

ECS
is a highly scalable

container management
service using

which you can create,

run, manage, and scale
Docker-based

containers. Here are
a
few key

benefits
and

features
of

using ECS:

• Automated Clustering:
One

of
the key

advantages
of ECS

is
that

it
can

automatically manage clusters
of

containers.
ECS can

maintain
the state of

your clusters as
well

as help you to scale past
thousands

of
containers,

all

with relative ease.

[290]

Chapter
10

• Container Scheduling:
ECS

also provides you
with an in-built

scheduling

functionality using which you can
maintain

the
availability

as well as the

scalability
of your

containers across
your clusters.

• Portability and extensibility: Containers
that run on your

ECS environment

can be
made

to run on any other Docker-based
environment without

any

changes
made

at all.
This feature can

come
in really

handy when you don't

want to get tied down with
a particular

cloud
provider

and
wish

to have the

flexibility
to
move

your workloads
anytime

anywhere you want.

•
AWS

integration:
You can

leverage
ECS containers to work with other

AWS

services
as

well,
such as CloudWatch,

VPC, S3, Elastic File System (EFS),

ELBs, and so on.

ECS was
made generally available for use

in the
mid

of
2015,

and ever
since then,

AWS has
continued

to
make further improvements

and
enhancements

to
it. I would

really
recommend trying

out
ECS

and containers
just

because they
are so

cool

to
work with!

There are plenty of
starter guides available out

there,
so

go
ahead

and try to deploy
a simple

web application on
containers using

ECS. Here is the

Getting
Started with ECS guide provided

by AWS: http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_GetStarted.html.

Elastic File System

Elastic File
System

or EFS is also newly launched, still in
preview

service provided

by
AWS

that
provides scalable file

storage services
for your

EC2
instances.

This of

EFS as
a highly

scalable and
available

NFS
server

that multiple
EC2 instances

can
use

at the
same time

as
a common

data
source

for your applications,
a
central

repository,

and so on.
The best

part of
working with

EFS is that it is
designed

to
scale

up and

down
automatically,

so the more data that you put in, the
larger

it
grows,

and vice

versa.
It is also

based
on the pay-per-use

model,
which

means
that you

only
have to

pay for the
storage

used by your
filesystem

and not
a
penny

more!

[291]

Extended
AWS

Services
for

Your Applications

How
does

it work?
Well,

it's just like any other NFS
server

that
you

would
create in

an
on-premises environment.

You
can start off

by
simply

creating an EFS,
mounting

it to your EC2
instances and using

it
just

as any NFS
mount point would.

You can

even use EFS
along with

your
VPC

environments as
well,

but with
a minor

change.

In the case
of VPC,

you end up creating one
or more special mount points called

as mount
targets,

and you
mount

your
filesystem

to the EC2 instances using these

mount
targets. A pictorial representation

of
mount

targets
is shown

here:

Courtesy:
Amazon Web Services.

[292]

Chapter
10

Database migration made easy with Database

Migration Service

Yet another newly launched service by AWS, Database Migration Service provides

customers with an easy to use and secure way
to

migrate their on-premises databases

to
AWS. The databases can

be
anything from propriety ones, such

as
Microsoft SQL

and Oracle, to open source ones such as MySQL as well.
Once

a database migration is

initiated using the Database Migration Service, AWS manages all
the

complexities of the

migration process.
It
also makes sure that any data changes made in the source database

are automatically replicated
to the

target database during
the

migration process.

The Database Migration
Service

also
comes equipped

with
a
Schema

Conversion

Tool that
makes heterogeneous

database
migrations a

real ease.
This

is
made possible

by converting the
entire schema

of the
source

database to
a format

compatible with

that of the target
database.

If any
schema

code
is

not converted during the process

automatically,
it is clearly marked by the Schema

Conversion
Tool

so that it
can be

converted manually at a
later

time.

To know
more about

the
Database Migration

Service and how you
can sign

up for

the preview,
go to

https://aws.amazon.com/dms/.

Go serverless with AWS Lambda

Imagine if you had
the

power
of

running and scaling your code dynamically based

on certain events getting triggered! That's precisely what AWS Lambda is all about.

AWS Lambda is basically a compute service very similar
to
EC2 or Elastic Beanstalk

where
you

upload your code
to
Lambda

and the
service

runs the
code

on your
behalf

using
the

underlying AWS infrastructure.
Once

your code is uploaded, you need to

create some custom functions called as Lambda functions. These functions take care

of provisioning
and

managing
the

underlying instances that
you

use
to run the

code.

But how is this so different from your EC2 service? Well in
the

case
of
Lambda, all

the
heavy lifting and complex tasks such

as
server management and provisioning,

OS

patching, code monitoring, logging,
and

so
on,

are managed
by

Lambda itself. All
you

need
to
do is upload your code and voila!

The
rest

is
all taken care

of by
Lambda itself.

As of date,
AWS Lambda supports

Node.js, Java,
and

Python
as the

languages
for your

application's code.

[293]

Extended
AWS

Services
for

Your Applications

So when and where is Lambda
useful?

Well if you
have

any
real-time log processing

or analyzing
a stream

of data for pattern
analysis,

social
media analysis,

or even

if
you

want to build
scalable

backend
services for

your mobile or web
applications,

then
Lambda

is the right
choice for

you. To know
more

about
Lambda

and how

it works, check http://docs.aws.amazon.com/lambda/latest/dg/lambda

introduction.html.

Resources, recommendations, and best

practices

There are
a ton

of
resources present

on the
web and

on AWS's
website

itself where

you can
find

good content,
guides, how-to tutorials,

and much
more:

•
For anyone just

starting
off with AWS,

I
would

really recommend reading

the Getting Started
with

AWS
guides. These

are
some well written

and to

the point
guides

covering topics
such

as hosting static
websites,

deploying

web
apps, analyzing

Big Data,
and so

on. Go to
https://aws.amazon.com/documentation/gettingstarted/ to know more.

•
Next, the holy

grail
of all

AWS services
and

a
must to read if you

are

planning to work with AWS—the AWS
documentations

page. This
page is a

one stop shop for all
your

AWS
service user guides,

CLI and API
references

as well. Refer to https://aws.amazon.com/documentation/ for more

information.

• Although
not mandatory, the AWS

case studies
page is yet another

important
place where you can read about how and what

customers
are

using AWS for. You
can filter case

studies based on their
use cases,

all

provided at https://aws.amazon.com/solutions/case-studies/.

•
Make sure you

also have a look
at the pricing

for
each of the AWS

services

that you
use

by
following

this link:
https://aws.amazon.com/pricing/

services/.

•
Here

are some best practice
guides

provided
by AWS as

well, which
are

a

must read
if
you are

planning
to use

AWS
as

a production
environment:

° General AWS Cloud Best Practices to follow: http://media.

amazonwebservices.com/AWS_Cloud_Best_Practices.pdf.

°
How to build

fault tolerant
application on

AWS: http://media.

amazonwebservices.com/AWS_Building_Fault_Tolerant_

Applications.pdf.

[294]

Chapter
10

A
few

design considerations
and

best
practices to keep

in

mind
when

designing
DR

solutions
on

AWS: http://media.

amazonwebservices.com/AWS_Disaster_Recovery.pdf.

°
AWS

Security Best Practices guide: http://media.

amazonwebservices.com/AWS_Security_Best_Practices.pdf.

Summary

Well
it
has really

been
a wonderful

journey
writing

this book! You
started off

with

learning the
basics

of Cloud
Computing

and
slowly,

but
gradually, covered

so

much. From compute
(EC2)

to
networks (VPC)

to
storage (S3), identity

and
access

management (IAM),
databases

(RDS), DNS
(Route53),

and content
delivery services

(CloudFront).

Although
this

book may
seem

a
lot to read and

grasp,
trust

me,
this is all just

a
drop

in the ocean. AWS is
a
rapidly

expanding
and

highly innovative public
cloud that,

if
used

correctly, can bring your business and
organization a

lot of
benefits

such as

scalability, flexibility,
and cost

savings.
The

principle, however, remains
the

same—

plan out your way before you
start, make

sure you have
designed

for
failure,

and

continuously
monitor

and automate
your

infrastructure. Remember
these and you

should be just
fine!

°

[295]

Symbols

32-bit AWS CLI installer

URL 18

64-bit AWS CLI installer

URL 18

A

Access Control Lists (ACLs) 252, 257

administration services

about 7

identity
and

access
management

11

monitoring
11

administrators 33

alarms 153,154

Amazon Aurora

reference 217

Amazon CloudFrontabout 10

distributions 285

URL 272, 289

used, for
content delivery 284,

285

Amazon CloudWatch. See CloudWatch

Amazon DynamoDB
9

Amazon
Elastic

File System
9

Amazon Elastic Load Balancer. See Elastic

Load Balancer

Amazon
Elastic MapReduce (EMR)

10

Amazon Glacier 9

Amazon Kinesis

URL 180

Amazon Linux AMI

about 56

URL 56

Amazon
Machine

Images
(AMIs)

53, 54

Index

Amazon Redshift 9, 10

Amazon Relational Database

Service (Amazon RDS)

about 9

best practices
244

instance
types 217

MySQL,
working with 223,

224

overview 215-217

recommendations 244

steps, planning
243,244

working
with

222

Amazon Resource Name (ARN) 38

Amazon Route53

about 10, 273

failover routing 278

geolocation routing
278

health checks, configuring 281-283

hosted zones, creating 275-279

latency-based routing 278

simple routing
277

traffic flow 279-281

URL 282, 283

weighted routing 277

working
with

274,275

Amazon
Simple Email

Service
(SES) 10

Amazon
Simple

Notification

Service (SNS) 10

Amazon
Simple

Storage Service
(S3)

about 9, 247-249

best practices and

recommendations 271, 272

bucket permissions, managing 257-260

bucket policies 258

buckets accessing,
S3CMD used

254-257

buckets, creating 250,251

buckets,
used for

hosting websites 261-263

[297]

bucket, versioning
265-267

Cross-Region Replication
269,270

events 263, 264

first
object,

uploading to bucket 252,
253

getting started
250

Glacier, storage class
249

lifecycle management 265-268

next steps,
planning 270,

271

notification 263

object permissions,
managing 257-260

objects accessing, S3CMD used 254-257

Reduced Redundancy Storage
(RRS),

storage class
249

resource-based policies
257

Standard_IA, storage class
249

Standard, storage class
249

storage class
249

uploaded Objects, viewing
254

Amazon Virtual Private Cloud (VPC).SeeVirtual Private Cloud (VPC)

Amazon Web Services (AWS)

about 1, 4, 5

architecture 5

availability
zones 5,

7

components 5

platform
overview

7

regions 5, 7

signup process
11-15

support
plans 15

URL 7, 12

URL,
for free

tier usage 12

AMI

URL 112

application
services

about 7

content distribution
and

delivery
10

distributed computing and analytics
10

messaging
10

workflow 10

automated backup, DB
instances

236

Auto Scaling

about 183-185

AMI,
selecting 198

CLI commands, URL 212

components
186

deleting 210,
211

details, configuring 198

getting started 196,
197

group
186

Instance
type,

selecting 198

Launch Configuration, creating
197

launch configurations 186

next
steps, planning

212,
213

resuming 210-212

Review 199

scaling plans 187

Security Group, configuring 199

storage,
adding

199

suspending
210,

211

testing 208,209

URL 213

verifying 208,209

Auto Scaling
Group

creating 200

details, configuring
201, 202

notifications, configuring 206

Review 207

scaling policies, configuring 203-205

tags, configuring
207

Availability Zones
(AZs)

6

AWS

DR solutions, URL 295

fault tolerant application,
URL 294

Security
Best

Practices,
URL 295

security layers
24

shared responsibility
model 24, 25

URL 294

AWS CLI

about 18-20

used,
for

launching instances
77

used,
for

managing access 41-46

used,
for

managing
EBS

volumes
105-107

used,
for

managing security 41-46

AWS Cloud Best Practices

URL 294

AWSCloudTrail

about 47

URL 47

AWSConfig

about 47

URL 47

AWSIAM

features 46

[298]

AWS
Key

Management Service

about 47

URL 47

AWS Lambda

about 293

URL 294

awslogs.conf file

URL 176

AWS
Management

Console

about 15-17

URL 16, 27

AWS Marketplace

URL 55

AWS Multi-Factor Authentication

(AWS MFA) 25

AWS namespaces

URL 151

AWS naming conventions

URL 106

AWSrisk

URL 24

AWSS3 documentation
page

URL 261

AWS SQS

URL 213

B

Bastion Host 144

best
practices 48

BitTorrent
protocol

URL 252

C

CIDRs

URL 117

cloud computing

about 2

benefits 3

features 3

use cases 3, 4

CloudFront. See Amazon CloudFrontclouds

security
23

CloudWatch

about 11, 149-155

access roles, creating 166-168

alarms 153, 154

best practices
180,

181

concept
150

custom metrics, viewing 171, 172

dimensions 151

limits and costs 154, 155

metrics 150

monitoring scripts, installing 168-170

namespaces 151

recommendations 180, 181

scripts,
used, for

monitoring memory
and

disk utilization 166

time stamps
and

periods
151

units and statistics 152

used,
for

monitoring accounts estimate

charges 155-159

used,
for

monitoring instance's
CPU

Utilization 159-165

CloudWatch
logs

about 173-176

alarms, creating
177, 179

events 172

groups
173

log agents
173

metric filters 173

metric filters, creating 177

monitoring
172

retention policies
173

stream 172

used,
for

monitoring logs
172

viewing 177

Cross-Region
Replication

enabling,
on

bucket 269,270

Custom Metrics 166

D

Database
migration

Database Migration Service
with 293

DB
Snapshots 236

DHCP
Option

124

dimensions 151

DNS service
provider

URL 274

DNS
types

Amazon S3 bucket 280

CloudFront distribution 280

[299]

ELB 280

Domain name 125

Domain Name Servers (DNS) 124

E

EBS-backed AMI

about 55

and Instance store backed AMI,

differences 56

EBS-optimized instances
112

EBS
snapshots

used, for
backing

up
volumes 107-109

EBS volumes

about 98

attaching 102

attaching, from instance 103-105

benefits 98

creating
100,

101

detaching
104

getting started
99,

100

managing, AWS
CLI

used 105-107

recommendations and best practices
113

URL 102

EBS volumes, types

General
purpose volumes (SSD)

99

Magnetic volumes
99

Provisioned IOPS volumes (SSD) 99

EC2-Classic 91

EC2 Container Service (EC2) 8

EC2 dashboard

used, for
editing security dashboards 85-89

EC2
networking

about 89-91

instances
IP

addresses, determining
92,93

e-commerce website

hosting, on cloud
20-22

Elastic Block
Storage

(EBS)
9

Elastic Block Store (EBS) 55

Elastic
Compute Cloud (EC2)

about 8, 51, 52

URL 132

use cases 52

Elastic
Compute Cloud (EC2), use cases

Backup and
disaster recovery

52

Dev/Test environment 52

High
Performance Computing (HPC)

52

Hosting environment
52

Marketing
and

advertisements
52

Elastic Container Service (ECS)

about 289, 291

benefits 290

URL 291

Elastic
File System (EFS) 9,

291,
292

Elastic IP Address (EIP)

about 93, 94

allocating 95,
96

creating
95

disassociating
97

releasing 97

Elasticity
184

Elastic Load Balancer (ELB)

about 9, 154, 183, 187, 188

creating 189

Dashboard, URL 196

defining 190-192

EC2
Instances, adding

195

Health Check, configuring
193, 194

Review and Create 195, 196

Security Groups, assigning 192

Security Settings, configuring 192

Tags, adding
195

URL 212, 214

endpoint policies

URL 121

F

filter
patterns

URL 178

Flow Logs

URL 146

foundation services

about 7

compute 8

databases 9

networking 9

storage 9

G

G2 58

General
purpose volumes (SSD) 99

[300]

H

hosted zones

creating 275,276

I

rules,
adding to

security
group 79

security group, creating
78

instances launching,
in Virtual Private

Cloud (VPC)

about 142

database servers, creating 144

web servers,
creating 142-144

instances,
pricing options

about 58

on-demand instances 58,59

reserved instances 59

spot instances
60

instance store-backed AMI 55

instances,
working with

about 60-62

AMI, selecting
62

instance details, configuring 64,
65

instance launch, reviewing 68,
69

instance
type,

selecting
63

security groups, configuring
67

storage,
adding

65,
66

tag instances
66

Internet Gateways

about 122

listing 137,
138

K

Key Management Service
(KMS) 98

URL 271

L

Lambda functions 293

lifecycle,
DB

instance

available 231

backing-up
231

creating 231

modifying
231

lifecycle
management

URL 268

link-local address 93

Lookbusy

URL 165

M

IAM Console

groups, creating 30-35

permissions
35-38

policies
35-38

users, creating
30-35

using
27-29

IAM roles

URL 47, 167

Identity
and

Access Management (IAM)

about 23, 25

business use case scenario 27

features 26

Identity
and

Access Management

(IAM), features

access mechanisms 26

global reach
26

Identity federation 26

integration, with
other AWS

products 26

multi-factor authentication 26

shared
access

to
single account

26

images 53-56

individual
processes

URL 211

instance metadata 92

instances

about 53, 57

cleaning up
80, 81

compute optimized
57

configuring
75-77

connecting
to

69-75

general
purpose

57

GPU instances 58

launching,
AWS CLI used 77

memory optimized
57

Putty,
using 71

storage optimized
57

types, URL
58

web
browser, using

69

instances
launching, AWS

CLI used

about 79, 80

key
pair, creating

77 main route table 120

[301]

metric
filter examples

URL 179

metrics 150

MindTerm 69

Multi-AZ
deployment

about 220

Multi-factor authentication (MFA) 271

MySQL DB instance

advanced settings, configuring 227-231

creating
224

Database engine, selecting
225

DB
details, specifying 225-227

production database 225

MySQL, on
Amazon

RDS

about 223, 224

database, testing
233

DB
instance, cleaning

up
242,

243

DB
Instance, connecting remotely 232

DB
instance, logging 241,

242

DB
instance, monitoring 241,242

DB
instances, backing

up 236, 237

DB
instances, modifying 234,

235

MySQL DB instance, creating
224

Read Replicas, creating 237-240

N

Name Server (NS) record 274

namespaces
151

NAT instances 123, 124

NetBIOS name server 125

NetBIOS node type
125

Network Access Control Lists (ACLs) 116

Network
Attached

Storage (NAS) drive 55

NTP servers 125

O

Origin
Access

Identity (OAI) 286

P

permissions,
IAM Console

about 35, 37

resource-based permissions class
36

user-based permissions class 36

policies,
IAM Console

about 35-37

Action 38

assigning
39,41

creating 39,41

Effect 38

Resource 38

statement 38

URL 38, 258

version 38

presigned URLs

URL 271

Price Class

URL 287

private hosted zone 274

private subnet
117

Provisioned IOPS volumes (SSD) 99

public
datasets

URL 113

public DNS

URL 208

public hosted zone 274

public
subnet 117

PuttyGen
URL 71

R

RDS instance
types

about 217

burst capable 218

memory optimized 218

micro instances 217

standard instance 218

Read Replicas
221

Real
Time

Messaging protocol
(RTMP)

protocol
284

record set types

AAAA record 276

about 276

Canonical Name (CNAME) 276

MX records 277

record 276

RedHat
Enterprise Linux (RHEL) 56

RedShift 244

roles 46

Route 53. See Amazon Route53

route tables

working
with

136, 137

[302]

S

S3 bucket

about 36

URL 180

S3CMD

about 272

URL 255

security 23

security
groups

about 85-89

editing,
EC2

dashboard used
85, 86

security
layers, AWS

physical
data

center security 24

regulatory compliances
24

virtualization
and OS

security 24

services, Amazon Web Services (AWS)

administration services 7

application services 7

AWSCloudTrail 47

AWSConfig
47

foundation services 7

Key Management
Service

47

Simple
Notification Service

(SNS). See

Amazon
Simple

Notification

Service (SNS)

Simple Storage Service (S3).
See

Amazon

Simple Storage Service (S3)

snapshots 108-111

spot
instances

URL 81

Start Of Authority (SOA)
record

274

storage
types,

RDS
instances

general
purpose (SSD) 219

magnetic (standard)
218

provisioned IOPs
219

Stress

URL 165

subnets

private
subnet 117

public
subnet 117,

118

T

Technical
Account Manager

(TAM)
15

time stamps
and

periods
151

Time To Live (TTL) 276

traffic flow

about 279-281

U

units and statistics 152, 153

user-based permissions

inline policies
36

managed policies
36

V

vCenter

URL 81

virtualization
types

URL 111

Virtual Private Cloud (VPC)

about 8, 64, 115-117

best practices 146,147

concepts 117

costs 125

deleting 144

deployment scenarios 126,
127

DNS
and

DHCP Option
Sets 124, 125

endpoints
120, 121

instances, launching
142

Internet
Gateways 122

limits 125

limits, URL 125

NAT instances 123, 124

network ACLs 119

peering,
145

recommendations 146, 147

routing tables 120

Security Groups 119

subnets 117

URL 116, 146

wizard 127-133

working
with

126

Virtual Private Cloud (VPC) wizard

about 127-133

Internet
Gateways, listing 137, 138

Network ACLs 138-142

route tables, working with
136, 137

Security Groups 138-142

subnets, listing 135,136

viewing 133,
134

Virtual
Private

Gateway 116

[303]

Thank you for buying

AWS Administration – The Definitive Guide

About Packt Publishing

Packt,
pronounced

'packed', published
its

first
book,

Mastering
phpMyAdmin for

Effective
MySQL

Management,
in April 2004,

and subsequently continued
to specialize in publishing

highly

focused
books

on
specific technologies and

solutions.

Our
books and publications share

the
experiences

of
your fellow

IT
professionals

in adapting

and customizing
today's systems,

applications, and
frameworks.

Our
solution-based

books
give

you
the knowledge

and power
to

customize
the

software and
technologies you're using

to
get

the
job

done.
Packt

books
are more

specific and less general than the
IT books you

have seen
in

the past.
Our

unique business
model allows us

to
bring

you
more

focused information,
giving

you more of
what

you
need to know, and less

of what you
don't.

Packt is
a modern

yet unique publishing company
that

focuses on producing
quality,

cutting-edge books for communities
of

developers, administrators,
and

newbies alike.

For more
information,

please
visit

our
website

at www.packtpub.com.

About Packt Enterprise

In 2010, Packt
launched

two
new

brands, Packt
Enterprise and Packt

Open
Source,

in order

to
continue its focus

on specialization.
This

book is part of
the Packt Enterprise brand,

home

to books
published

on
enterprise software –

software
created

by major
vendors, including

(but not
limited to) IBM, Microsoft,

and
Oracle, often

for use in
other corporations.

Its
titles

will
offer information relevant

to
a range

of users of
this software,

including
administrators,

developers, architects,
and

end
users.

Writing for Packt

We
welcome

all
inquiries

from
people who

are
interested

in
authoring. Book

proposals
should

be
sent to author@packtpub.com.

If
your

book
idea

is
still

at an
early stage and you

would

like to discuss it
first before writing a formal book proposal, then

please
contact

us;
one

of
our

commissioning editors
will

get
in

touch with you.

We're not
just

looking
for published

authors;
if you

have
strong

technical skills
but

no writing

experience,
our

experienced editors
can

help you develop a writing career,
or simply

get
some

additional reward for your expertise.

Learning AWS

ISBN: 978-1-78439-463-9 Paperback:
236

pages

Design, build,
and

deploy responsive applications

using
AWS cloud components

1. Build
scalable

and
highly available real-time

applications.

2. Make
cost-effective architectural

decisions by

implementing your
product's functional

and

non-functional requirements.

3. Develop your skills with hands-on
exercises

using
a three-tiered service oriented application

as an
example.

Amazon Web Services: Migrating

your .NET Enterprise Application

ISBN: 978-1-84968-194-0 Paperback:
336

pages

Evaluate your Cloud requirements
and

successfully

migrate
your .NET

Enterprise Application
to the

Amazon Web Services Platform

1. Get to
grips

with Amazon Web
Services

from
a

Microsoft Enterprise
.NET

viewpoint.

2. Fully
understand

all of
the AWS products

including
EC2, EBS,

and
S3.

3.
Quickly

set
up

your
account and manage

application security.

4. Learn through an easy-to-follow
sample

application
with step-by-step

instructions.

Please check www.PacktPub.com for information on our titles

Implementing Cloud Design

Patterns for AWS

ISBN: 978-1-78217-734-0 Paperback:
228

pages

Create highly efficient design patterns
for

scalability,

redundancy,
and

high
availability

in the AWS
Cloud

1. Create
highly robust systems using cloud

infrastructure.

2. Make web
applications resilient against

scheduled and accidental down-time.

3.
Explore and apply Amazon-provided

services

in
unique

ways to solve common
problems.

AWS Development Essentials

ISBN: 978-1-78217-361-8 Paperback:
226

pages

Design and build flexible, highly scalable, and

cost-effective applications using Amazon Web Services

1. Integrate and
use AWS services

in an

application.

2.
Reduce

the
development time and billing cost

using the AWS billing and management console.

3. This is
a fast-paced

tutorial that will cover

application
deployment using various tools

along
with best

practices
for working with

AWS services.

Please check www.PacktPub.com for information on our titles

